Low Jitter Oscillators

SiTime's family of ultra-low jitter oscillators offer exceptional performance and stable timing

Image of SiTime's Low Jitter OscillatorsSiTime’s low jitter, ultra-performance oscillators for telecom, storage, networking, and wireless applications. These MEMS oscillators deliver 500 femtoseconds of typical integrated RMS phase jitter (12 kHz to 20 MHz) and ±10 ppm frequency stability across all temperature ranges. These parts support a rich set of configurable features, such as frequency, and FlexEdge™ EMI reduction technology, which improves system performance and ensures the fastest time-to-market. Many of these parts are footprint compatible with the legacy quartz devices. SiTime also offers fixed frequency differential oscillators which support LVPECL and LVDS output signaling types in different package options. The most recent products are based on SiTime’s unique Elite Platform™, which offers exceptional dynamic performance and stable timing in the presence of environmental hazards such as shock, vibration, power supply noise, and EMI.

By leveraging SiTime's unique DualMEMS temperature sensing and TurboCompensation technology, these oscillators offer the most stable timing in the presence of environmental stressors: air flow, temperature perturbation, vibration, shock, and electromagnetic interference (EMI). These devices also integrate multiple on-chip regulators, providing power supply noise filtering and eliminating the need for a dedicated external LDO. Low jitter oscillators can be factory-programmed to any combination of frequency, stability, voltage, and pull range. This programmability enables designers to optimize the clock configuration while eliminating the long lead time and customization cost associated with quartz TCXOs where each frequency is custom built.

Features
  • Integrated RMS phase jitter
  • Excellent frequency stability
  • Extensive programmability
  • Drive strength using FlexEdge technology
  • Dynamic performance in real-life operating conditions
  • 20x better vibration sensitivity
  • Superior reliability
Applications
  • Telecom and optical equipment
  • Storage servers and SSD
  • Raid controllers
  • Routers
  • Switches
  • Wireless equipment
  • Sonet, SyncE
  • SATA/SAS
  • Fibre channel
  • 100 M/1 G/10 G Ethernet
  • LTE, GSM, CDMA, Wi-Fi
  • DSL and DOCSIS
  • Optical modules
  • PCIe®
  • FPGA
  • Security appliances
  • Data centers
  • Test and measurement

Low Jitter Oscillators

ImageManufacturer Part NumberDescriptionAvailable QuantityView Details
SIT9120AC-2C2-25E100.000000X datasheet linkMEMS OSC XO 100.0000MHZ LVDS SMDSIT9120AC-2C2-25E100.000000XMEMS OSC XO 100.0000MHZ LVDS SMD250 - Immediate
SIT9120AC-2C2-25E100.000000X product page link
SIT8208AC-23-25E-25.000000X datasheet linkMEMS OSC XO 25.0000MHZ LVCMOS LVSIT8208AC-23-25E-25.000000XMEMS OSC XO 25.0000MHZ LVCMOS LV251 - Immediate
SIT8208AC-23-25E-25.000000X product page link
SIT8208AC-G1-18E-50.000000X datasheet linkMEMS OSC XO 50.0000MHZ LVCMOS LVSIT8208AC-G1-18E-50.000000XMEMS OSC XO 50.0000MHZ LVCMOS LV627 - Immediate
SIT8208AC-G1-18E-50.000000X product page link
SIT8208AI-22-33E-25.000000X datasheet linkMEMS OSC XO 25.0000MHZ LVCMOS LVSIT8208AI-22-33E-25.000000XMEMS OSC XO 25.0000MHZ LVCMOS LV0SIT8208AI-22-33E-25.000000X product page link
SIT8208AI-23-18E-24.000000X datasheet linkMEMS OSC XO 24.0000MHZ LVCMOS LVSIT8208AI-23-18E-24.000000XMEMS OSC XO 24.0000MHZ LVCMOS LV202 - Immediate
SIT8208AI-23-18E-24.000000X product page link
SIT8208AI-23-33E-26.000000X datasheet linkMEMS OSC XO 26.0000MHZ LVCMOS LVSIT8208AI-23-33E-26.000000XMEMS OSC XO 26.0000MHZ LVCMOS LV58 - Immediate
SIT8208AI-23-33E-26.000000X product page link
SIT8208AI-31-28E-40.000000X datasheet linkMEMS OSC XO 40.0000MHZ LVCMOS LVSIT8208AI-31-28E-40.000000XMEMS OSC XO 40.0000MHZ LVCMOS LV0SIT8208AI-31-28E-40.000000X product page link
SIT8208AI-3F-33E-25.000000X datasheet linkMEMS OSC XO 25.0000MHZ LVCMOS LVSIT8208AI-3F-33E-25.000000XMEMS OSC XO 25.0000MHZ LVCMOS LV98 - Immediate
SIT8208AI-3F-33E-25.000000X product page link
View More
Published: 2018-11-07