APT75GN120(B2,L)(G) Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
ADVANCED 7 A POWER TECHNOLOGY ~’(’ 5» \APT Website - hnpy/wwmauvancedpowemomj
050-7607 Rev C 10-2005
APT75GN120B2_L(G)
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA)
Gate Threshold Voltage (VCE = VGE, IC = 3mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 75A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 75A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Symbol
V(BR)CES
VGE(TH)
VCE(ON)
ICES
IGES
RG(int)
Units
Volts
µA
nA
Symbol
VCES
VGE
IC1
IC2
ICM
SSOA
PD
TJ,TSTG
TL
APT75GN120B2_L(G)
1200
±30
200
99
225
225A @ 1200V
833
-55 to 150
300
UNIT
Volts
Amps
Watts
°C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current 8 @ TC = 25°C
Continuous Collector Current @ TC = 110°C
Pulsed Collector Current 1 @ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses.
1200V Field Stop
Trench Gate: Low VCE(on)
Easy Paralleling
Intergrated Gate Resistor: Low EMI, High Reliability
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MIN TYP MAX
1200
5.0 5.8 6.5
1.4 1.7 2.1
2.0
100
TBD
600
10
®
G
C
E
1200V
APT75GN120B2 APT75GN120L
APT75GN120B2G* APT75GN120LG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
T-Max
TO-264
(L)
(B2)
®
O®®® ® ©®®
050-7607 Rev C 10-2005
APT75GN120B2_L(G)
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
8 Current limited by lead temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
UNIT
°C/W
gm
MIN TYP MAX
.15
N/A
5.9
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
Symbol
RθJC
RθJC
WT
DYNAMIC CHARACTERISTICS
Symbol
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 600V
IC = 75A
TJ = 150°C, RG = 4.3 7, VGE =
15V, L = 100µH,VCE = 1200V
Inductive Switching (25°C)
VCC = 800V
VGE = 15V
IC = 75A
RG = 1.0 7
TJ = +25°C
Inductive Switching (125°C)
VCC = 800V
VGE = 15V
IC = 75A
RG = 1.0 7
TJ = +125°C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4 4
Turn-on Switching Energy (Diode) 55
Turn-off Switching Energy 66
MIN TYP MAX
4800
275
210
9.0
425
30
245
225
60
41
620
110
8045
9620
7640
60
41
725
200
8620
13000
11400
UNIT
pF
V
nC
A
ns
µJ
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
\Leaamme \ mug so ‘25 n 25 50 75 100125150
050-7607 Rev C 10-2005
APT75GN120B2_L(G)
TYPICAL PERFORMANCE CURVES
VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A)
(NORMALIZED)
IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
160
140
120
100
80
60
40
20
0
160
140
120
100
80
60
40
20
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 2 4 6 8 10 12 14 16
0 2 4 6 8 10 12 14 0 100 200 300 400 500
8 10 12 14 16 -50 -25 0 25 50 75 100 125 150
-50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150
160
140
120
100
80
60
40
20
0
16
14
12
10
8
6
4
2
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
300
250
200
150
100
50
0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
13 &15V
11V
10V
9V
12V
8V
7V
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 125°C
TJ = 25°C
TJ = -55°C
VGE = 15V
VCE = 960V
VCE = 600V
VCE = 240V
IC = 75A
TJ = 25°C
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 150A
IC = 75A
IC = 37.5A
IC = 150A
IC = 75A
IC = 37.5A
Lead Temperature
Limited
Lead Temperature
Limited
Veg :‘sv Tlazsc vGEasw: \ ’0 v // 5‘0 v \ \ \ ‘ / / / / 7 / / / //// // / ,/ / ’/’— > ’4’,” — _/’, ‘ _ fl
050-7607 Rev C 10-2005
APT75GN120B2_L(G)
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
VCE = 800V
RG = 1.0
L = 100µH
SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) tr, RISE TIME (ns) td(ON), TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (µJ) EOFF, TURN OFF ENERGY LOSS (µJ) tf, FALL TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns)
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current
RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature
VCE = 800V
VGE = +15V
RG = 1.0
RG = 1.0, L = 100µH, VCE = 800V
VCE = 800V
TJ = 25°C, or =125°C
RG = 1.0
L = 100µH
70
60
50
40
30
20
10
0
180
160
140
120
100
80
60
40
20
0
50000
40000
30000
20000
10000
0
100000
80000
60000
40000
20000
0
800
700
600
500
400
300
200
100
0
300
250
200
150
100
50
0
25000
20000
15000
10000
5000
0
50000
40000
30000
20000
10000
0
VGE = 15V
TJ = 125°C, VGE = 15V
TJ = 25 or 125°C,VGE = 15V
TJ = 25°C, VGE = 15V
TJ = 125°C
TJ = 25°C
VCE = 800V
VGE = +15V
RG = 1.0
TJ = 125°C
TJ = 25°C
VCE = 800V
VGE = +15V
RG = 1.0
10 40 70 100 130 160 10 40 70 100 130 160
10 40 70 100 130 160 10 40 70 100 130 160
10 40 70 100 130 160 10 40 70 100 130 160
0 10 20 30 40 50 0 25 50 75 100 125
RG = 1.0, L = 100µH, VCE = 800V
Eon2,150A
Eoff,150A
VCE = 800V
VGE = +15V
TJ = 125°C
Eon2,75A Eoff,75A
Eon2,37.5A
Eoff,37.5A
Eon2,150A
Eoff,150A
Eon2,75A
Eoff,75A
Eon2,37.5A
Eoff,37.5A
050-7607 Rev C 10-2005
APT75GN120B2_L(G)
TYPICAL PERFORMANCE CURVES
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
ZθJC, THERMAL IMPEDANCE (°C/W)
0.3
D = 0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5 10-4 10-3 10-2 10-1 1.0
6,000
1,000
500
100
250
200
150
100
50
0
C, CAPACITANCE (PF)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area
0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10 30 50 70 90 110 130 150
FMAX, OPERATING FREQUENCY (kHz)
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 1.0
60
10
5
1
0.5
0.1
0.05
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
Pdiss - Pcond
Eon2 + Eoff
fmax2 =
Pdiss = TJ - TC
RθJC
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
Cres
Cies
Coes
0.0686
0.0630
0.0182
0.0139
0.203
1.62
Power
(watts)
Junction
temp. (°C)
RC MODEL
Case temperature. (°C)
,x m M mew my ~ ., mm“ lemlsflMSl A 72v A no": mu uv m we H.44mvvs chz mum m 2min; cm 1' mm HAMQZOOS ch: Sunv u sum -. H .239 mm 25m m"; 4»
050-7607 Rev C 10-2005
APT75GN120B2_L(G)
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
TJ = 125°C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
td(on)
90%
10%
tr
5%
TJ = 125°C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
td(off)
10%
tf
90%
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
APT75DQ120
e1 SAC: Tin, Silver, Copper
T-MAX
®
(B2) Package Outline
Dimensions in Millimeters and (Inches)
Collector
Emitter
Gate
Collector
19.51 (.768)
20.50 (.807)
19.81 (.780)
21.39 (.842)
25.48 (1.003)
26.49 (1.043)
2.29 (.090)
2.69 (.106)
0.76 (.030)
1.30 (.051)
3.10 (.122)
3.48 (.137)
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
2.59 (.102)
3.00 (.118)
0.48 (.019)
0.84 (.033)
2.29 (.090)
2.69 (.106)
5.79 (.228)
6.20 (.244)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
2.21 (.087)
2.59 (.102)
0.40 (.016)
0.79 (.031)
Collector
Emitter
Gate
Collector
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
4.50
(.177) Max.
19.81 (.780)
20.32 (.800)
20.80 (.819)
21.46 (.845)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2.87 (.113)
3.12 (.123)
2-Plcs.
e1 SAC: Tin, Silver, Copper
TO-264(L) Package Outline

Products related to this Datasheet

IGBT 1200V 200A 833W TO264
IGBT 1200V 200A 833W TMAX