LT1215/16 Datasheet by Analog Devices Inc.

View All Related Products | Download PDF Datasheet
‘ ' I t "p LT1215/LT1216 TECHNOLOGY V/r w; an mzm L7 WW
1
LT1215/LT1216
23MHz, 50V/µs, Single Supply
Dual and Quad
Precision Op Amps
Slew Rate: 50V/µs Typ
Gain-Bandwidth Product: 23MHz Typ
Fast Settling to 0.01%
2V Step to 200µV: 250ns Typ
10V Step to 1mV: 480ns Typ
Excellent DC Precision in All Packages
Input Offset Voltage: 450µV Max
Input Offset Voltage Drift: 10µV/°C Max
Input Offset Current: 120nA Max
Input Bias Current: 600nA Max
Open-Loop Gain: 1000V/mV Min
Single Supply Operation
Input Voltage Range Includes Ground
Output Swings to Ground While Sinking Current
Low Input Noise Voltage: 12.5nV/Hz Typ
Low Input Noise Current: 0.5pA/Hz Typ
Specified on 3.3V, 5V and ±15V
Large Output Drive Current: 30mA Min
Low Supply Current per Amplifier: 6.6mA Max
Dual in 8-Pin DIP and SO-8
Quad in 14-Pin DIP and NARROW SO-16
The LT
®
1215 is a dual, single supply precision op amp with
a 23MHz gain-bandwidth product and a 50V/µs slew rate.
The LT1216 is a quad version of the same amplifier. The
DC precision of the LT1215/LT1216 eliminates trims in
most systems while providing high frequency perfor-
mance not usually found in single supply amplifiers.
The LT1215/LT1216 will operate on any supply greater
than 2.5V and less than 36V total. These amplifiers are
specified on single 3.3V, single 5V and ±15V supplies, and
only require 5mA of quiescent supply current per ampli-
fier. The inputs can be driven beyond the supplies without
damage or phase reversal of the output. The minimum
output drive is 30mA, ideal for driving low impedance loads.
2.5V Full-Scale 12-Bit Systems: V
OS
0.75 LSB
10V Full-Scale 16-Bit Systems: V
OS
3 LSB
Active Filters
Photo Diode Amplifiers
DAC Current to Voltage Amplifiers
Battery-Powered Systems
Single Supply Instrumentation Amplifier Frequency Response
FREQUENCY (Hz)
GAIN (dB)
30
20
10
0
–10
–20
–30
–40
–50
–60
–701k 100k 1M 10M
1215/16 TA02
10k
DIFFERENTIAL INPUT
COMMON MODE INPUT
+
V
IN
5V
1/2
LT1215
113
V
OUT
1215/16 TA01
0.1µF
+
113
1020
V
IN+
1020
1/2
LT1215
NOTE:
0.1% RESISTORS GIVE CMRR 68dB.
GAIN IS 10.0V/V.
COMMON MODE INPUT RANGE
IS FROM 0.3V TO 3.0V.
BANDWIDTH IS 2.8MHz.
Note: For applications requiring less slew rate, see the LT1211/LT1212 and
LT1213/LT1214 data sheets.
APPLICATIO S
U
FEATURES
TYPICAL APPLICATIO
U
DESCRIPTIO
U
, LTC and LT are registered trademarks of Linear Technology Corporation.
UUUUUUUU QQ >, >/ j j j j E E E E j j EEEEEEEE j E1> <% E ED <§ E E
2
LT1215/LT1216
A
U
G
W
A
W
U
W
ARBSOLUTEXI T
IS
Total Supply Voltage (V
+
to V
) ............................. 36V
Input Current ..................................................... ±15mA
Output Short-Circuit Duration (Note 2)........ Continuous
Operating Temperature Range
LT1215C/LT1216C (Note 3) .............. 40°C to 85°C
LT1215M (OBSOLETE) ............... –55°C to 125°C
Specified Temperature Range
LT1215C/LT1216C (Note 4) .............. 40°C to 85°C
LT1215M (OBSOLETE) ............... –55°C to 125°C
Storage Temperature Range ................ 65°C to 150°C
Junction Temperature (Note 5)............................. 150°C
Plastic Package (CN8, CS8, CN, CS)................ 150°C
Ceramic Package (MJ8) (OBSOLETE) .......... 175°C
Lead Temperature (Soldering, 10 sec)................. 300°C
WU
U
PACKAGE/ORDER I FOR ATIO
N8 PACKAGE
8-LEAD PDIP
1
2
3
4
8
7
6
5
TOP VIEW
OUT A
IN A
+IN A
V
V+
OUT B
IN B
+IN B
B
A
LT1215CS8
ORDER PART
NUMBER
LT1215CN8
LT1215ACN8
J8 PACKAGE 8-LEAD CERDIP
TJMAX = 175°C, θJA = 100°C/W
1
2
3
4
8
7
6
5
TOP VIEW
S8 PACKAGE
8-LEAD PLASTIC SO
B
A
OUT A
IN A
+IN A
V
V+
OUT B
IN B
+IN B
S8 PART MARKING
1215
ORDER PART
NUMBER
ORDER PART
NUMBER
ORDER PART
NUMBER
LT1216CS
TJMAX = 150°C, θJA = 150°C/W
TOP VIEW
S PACKAGE
16-LEAD PLASTIC SO
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
OUT A
–IN A
+IN A
V
+
+IN B
IN B
OUT B
NC
OUT D
IN D
+IN D
V
+IN C
IN C
OUT C
NC
A
C
B
D
TJMAX = 150°C, θJA = 100°C/W
LT1216CN
TJMAX = 150°C, θJA = 70°C/W
N PACKAGE
14-LEAD PDIP
OUT A
–IN A
+IN A
V
+
+IN B
–IN B
OUT B
OUT D
–IN D
+IN D
V
+IN C
–IN C
OUT C
1
2
3
4
5
6
7
14
13
12
11
10
9
8
D
A
C
B
TOP VIEW
(Note 1)
TJMAX = 150°C, θJA = 100°C/W
LT1215MJ8
LT1215AMJ8
OBSOLETE PACKAGE
Consider the N8 Package for Alternate Source
Consult LTC Marketing for parts specified with wider operating temperature ranges.
AVos nV/V‘Hi nV/V‘Hz NH; NH: L7 WW
3
LT1215/LT1216
5V
ELECTRICAL C CHARA TERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted.
LT1215AC LT1215C/LT1215M
LT1215AM LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 125 300 150 450 µV
V
OS
Long-Term Input Offset 0.8 1.0 µV/Mo
Time Voltage Stability
I
OS
Input Offset Current 35 80 35 120 nA
I
B
Input Bias Current 420 500 420 600 nA
Input Noise Voltage 0.1Hz to 10Hz 400 400 nV
P-P
e
n
Input Noise Voltage Density f
O
= 10Hz 15.0 15.0 nV/Hz
f
O
= 1000Hz 12.5 12.5 nV/Hz
i
n
Input Noise Current Density f
O
= 10Hz 7.0 7.0 pA/Hz
f
O
= 1000Hz 0.5 0.5 pA/Hz
Input Resistance (Note 6) Differential Mode 10 40 10 40 M
Common Mode 200 200 M
Input Capacitance f = 1MHz 10 10 pF
Input Voltage Range 3.0 3.2 3.0 3.2 V
0 –0.2 0 –0.2 V
CMRR Common Mode Rejection Ratio V
CM
= 0V to 3V 90 108 86 108 dB
PSRR Power Supply Rejection Ratio V
S
= 2.5V to 12.5V 96 115 93 115 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500150 600 150 600 V/mV
Maximum Output Voltage Swing Output High, No Load 4.30 4.39 4.30 4.39 V
(Note 7) Output High, I
SOURCE
= 1mA 4.20 4.30 4.20 4.30 V
Output High, I
SOURCE
= 30mA 3.60 3.75 3.60 3.75 V
Output Low, No Load 0.005 0.008 0.005 0.008 V
Output Low, I
SINK
= 1mA 0.030 0.050 0.030 0.050 V
Output Low, I
SINK
= 30mA 0.630 1.000 0.630 1.000 V
I
O
Maximum Output Current (Note 11) ±30 ±50 ±30 ±50 mA
SR Slew Rate A
V
= –2 30 30 V/µs
GBW Gain-Bandwidth Product f = 100kHz 23 23 MHz
I
S
Supply Current Per Amplifier 3.6 4.75 6.6 3.6 4.75 6.6 mA
Minimum Supply Voltage Single Supply 2.2 2.5 2.2 2.5 V
Full Power Bandwidth A
V
= 1, V
O
= 2.5V
P-P
2.6 2.6 MHz
t
r
, t
f
Rise Time, Fall Time A
V
= 1, 10% to 90%, V
O
= 100mV 16 16 ns
OS Overshoot A
V
= 1, V
O
= 100mV 25 25 %
t
PD
Propagation Delay A
V
= 1, V
O
= 100mV 13 13 ns
t
S
Settling Time 0.01%, A
V
= 1, V
O
= 2V 250 250 ns
Open-Loop Output Resistance I
O
= 0mA, f = 10MHz 40 40
THD Total Harmonic Distortion A
V
= 1, V
O
= 1V
RMS
, 20Hz to 20kHz 0.001 0.001 %
PACKAGE
NUMBER OF MAX TC V
OS
CERAMIC (J) PLASTIC DIP SURFACE MOUNT
OP AMPS T
A
RANGE MAX V
OS
(25°C) (V
OS
/T) OBSOLETE (N) (S)
Two (Dual) 40°C to 85°C 300µV 2.5µV/°C LT1215ACN8
450µV5µV/°C LT1215CN8
450µV10µV/°C LT1215CS8
–55°C to 125°C 300µV 2.5µV/°C LT1215AMJ8
450µV5µV/°C LT1215MJ8
Four (Quad) 40°C to 85°C 450µV10µV/°C LT1216CN LT1216CS
AVAILABLE OPTIO S
U
Vos
4
LT1215/LT1216
5V
ELECTRICAL C CHARA TERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C TA 70°C, unless otherwise noted.
LT1215AC LT1215C/LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 200 350 250 550 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 1 2.5 2 5 µV/°C
T(Note 6) 14-Pin DIP, SO Package 3 10 µV/°C
I
OS
Input Offset Current 35 100 35 170 nA
I
B
Input Bias Current 450 530 450 830 nA
Input Voltage Range 2.9 3.1 2.9 3.1 V
0.1 –0.1 0.1 –0.1 V
CMRR Common Mode Rejection Ratio V
CM
= 0.1V to 2.9V 89 108 85 108 dB
PSRR Power Supply Rejection Ratio V
S
= 2.6V to 12.5V 95 114 92 114 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500100 600 100 600 V/mV
Maximum Output Voltage Swing Output High, No Load 4.20 4.33 4.20 4.33 V
(Note 7) Output High, I
SOURCE
= 1mA 4.10 4.24 4.10 4.24 V
Output High, I
SOURCE
= 20mA 3.70 3.89 3.70 3.89 V
Output Low, No Load 0.006 0.009 0.006 0.009 V
Output Low, I
SINK
= 1mA 0.035 0.055 0.035 0.055 V
Output Low, I
SINK
= 20mA 0.500 0.725 0.500 0.725 V
I
S
Supply Current Per Amplifier 3.3 5.2 7.5 3.3 5.2 7.5 mA
VS = 5V, VCM = 0.5V, VOUT = 0.5V, –40°C TA 85°C, unless otherwise noted. (Note 4)
LT1215AC LT1215C/LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 200 400 250 600 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 1 2.5 2 5 µV/°C
T(Note 6) 14-Pin DIP, SO Package 3 10 µV/°C
I
OS
Input Offset Current 35 110 35 190 nA
I
B
Input Bias Current 450 550 450 850 nA
Input Voltage Range 2.8 3.0 2.8 3.0 V
0.2 0 0.2 0 V
CMRR Common Mode Rejection Ratio V
CM
= 0.2V to 2.8V 88 108 84 108 dB
PSRR Power Supply Rejection Ratio V
S
= 2.7V to 12.5V 94 114 91 114 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 500100 600 100 600 V/mV
Maximum Output Voltage Swing Output High, No Load 4.10 4.30 4.10 4.30 V
(Note 7) Output High, I
SOURCE
= 1mA 4.00 4.16 4.00 4.16 V
Output High, I
SOURCE
= 20mA 3.60 3.82 3.60 3.82 V
Output Low, No Load 0.006 0.010 0.006 0.010 V
Output Low, I
SINK
= 1mA 0.035 0.060 0.035 0.060 V
Output Low, I
SINK
= 20mA 0.500 0.750 0.500 0.750 V
I
S
Supply Current Per Amplifier 2.9 5.3 7.6 2.9 5.3 7.6 mA
L7 WW
5
LT1215/LT1216
5V
ELECTRICAL C CHARA TERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, –55°C TA 125°C, unless otherwise noted.
LT1215AM LT1215M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 250 450 350 750 µV
V
OS
Input Offset Voltage Drift 1 2.5 2 5 µV/°C
T(Note 6)
I
OS
Input Offset Current 35 150 35 200 nA
I
B
Input Bias Current 450 600 450 700 nA
Input Voltage Range 2.8 3.0 2.8 3.0 V
0.4 0.2 0.4 0.2 V
CMRR Common Mode Rejection Ratio V
CM
= 0.4V to 2.8V 87 108 82 108 dB
PSRR Power Supply Rejection Ratio V
S
= 2.7V to 12.5V 93 114 90 114 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0.05V to 3.7V, R
L
= 50050 100 50 100 V/mV
Maximum Output Voltage Swing Output High, No Load 4.00 4.20 4.00 4.20 V
(Note 7) Output High, I
SOURCE
= 1mA 3.90 4.10 3.90 4.10 V
Output High, I
SOURCE
= 20mA 3.50 3.80 3.50 3.80 V
Output Low, No Load 0.007 0.012 0.007 0.012 mV
Output Low, I
SINK
= 1mA 0.040 0.070 0.040 0.070 mV
Output Low, I
SINK
= 20mA 0.700 1.000 0.700 1.000 mV
I
S
Supply Current Per Amplifier 2.3 5.5 8.4 2.3 5.5 8.4 mA
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted.
LT1215AC LT1215C/LT1215M
LT1215AM LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 225 500 250 650 µV
I
OS
Input Offset Current 30 80 30 110 nA
I
B
Input Bias Current 360 500 360 550 nA
Input Voltage Range 13.0 13.2 13.0 13.2 V
–15.0 15.2 15.0 – 15.2 V
CMRR Common Mode Rejection Ratio V
CM
= –15V to 13V 90 108 86 108 dB
PSRR Power Supply Rejection Ratio V
S
= ±2V to ±18V 96 110 93 110 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 1000 3500 1000 3500 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 30mA 13.5 13.75 13.5 13.75 V
Output Low, I
SINK
= 30mA 14 14.4 –14 –14.4 V
I
O
Maximum Output Current (Note 11) ±30 ±50 ±30 ±50 mA
SR Slew Rate A
V
= –2 (Note 8) 40 50 40 50 V/µs
GBW Gain-Bandwidth Product f = 100kHz 15 23 15 23 MHz
I
S
Supply Current Per Amplifier 3.6 5.7 8 3.6 5.7 8 mA
Channel Separation V
O
= ±10V, R
L
= 2k 128 140 128 140 dB
Minimum Supply Voltage Equal Split Supplies ±1.7 ±2±1.7 ±2V
Full-Power Bandwidth A
V
= 1, V
O
= 20V
P-P
750 750 kHz
Settling Time 0.01%, A
V
= 1, V
O
= 10V 480 480 ns
+15V
ELECTRICAL C CHARA TERISTICS
0 Va
6
LT1215/LT1216
VS = ±15V, VCM = 0V, VOUT = 0V, 0°C TA 70°C, unless otherwise noted.
+
15V
ELECTRICAL C CHARA TERISTICS
LT1215AC LT1215C/LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 325 550 400 750 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 1 2.5 2 5 µV/°C
T(Note 6) 14-Pin DIP, SO Package 3 10 µV/°C
I
OS
Input Offset Current 30 100 30 160 nA
I
B
Input Bias Current 360 530 360 800 nA
Input Voltage Range 12.9 13.1 12.9 13.1 V
14.9 –15.1 14.9 –15.1 V
CMRR Common Mode Rejection Ratio V
CM
= –14.9V to 12.9V 89 108 85 108 dB
PSRR Power Supply Rejection Ratio V
S
= ±2.1V to ±18V 95 110 92 110 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 800 3000 800 3000 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 20mA 13.7 13.9 13.7 13.9 V
Output Low, I
SINK
= 20mA 14.2 14.5 14.2 14.5 V
I
S
Supply Current Per Amplifier 3.3 6.3 9.2 3.3 6.3 9.2 mA
VS = ±15V, VCM = 0V, VOUT = 0V, –55°C TA 125°C, unless otherwise noted.
LT1215AM LT1215M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 350 650 500 950 µV
V
OS
Input Offset Voltage Drift 1 2.5 2 5 µV/°C
T(Note 6)
I
OS
Input Offset Current 30 150 30 200 nA
I
B
Input Bias Current 360 600 360 700 nA
Input Voltage Range 12.8 13.0 12.8 13.0 V
–14.6 –14.8 –14.6 –14.8 V
CMRR Common Mode Rejection Ratio V
CM
= –14.6V to 12.8V 87 108 82 108 dB
PSRR Power Supply Rejection Ratio V
S
= ±2.2V to ±15V 93 110 90 110 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 500 2000 500 2000 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 20mA 13.4 13.8 13.4 13.8 V
Output Low, I
SINK
= 20mA 14 –14.5 14 14.5 V
I
S
Supply Current Per Amplifier 2.3 7 10.3 2.3 7 10.3 mA
LT1215AC LT1215C/LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 325 600 400 800 µV
V
OS
Input Offset Voltage Drift 8-Pin DIP Package 1 2.5 2 5 µV/°C
T(Note 6) 14-Pin DIP, SO Package 3 10 µV/°C
I
OS
Input Offset Current 30 110 30 180 nA
I
B
Input Bias Current 360 550 360 820 nA
Input Voltage Range 12.8 13.0 12.8 13.0 V
14.8 –15.0 14.8 –15.0 V
CMRR Common Mode Rejection Ratio V
CM
= –14.8V to 12.8V 88 108 84 108 dB
PSRR Power Supply Rejection Ratio V
S
= ±2.2V to ±18V 94 110 91 110 dB
A
VOL
Large-Signal Voltage Gain V
O
= 0V to ±10V, R
L
= 2k 800 2500 800 2500 V/mV
Maximum Output Voltage Swing Output High, I
SOURCE
= 20mA 13.6 13.8 13.6 13.8 V
Output Low, I
SINK
= 20mA 14.1 14.5 14.1 14.5 V
I
S
Supply Current Per Amplifier 2.9 6.5 9.5 2.9 6.5 9.5 mA
VS = ±15V, VCM = 0V, VOUT = 0V, –40°C TA 85°C, unless otherwise noted. (Note 4)
L7 WW
7
LT1215/LT1216
3.3V
ELECTRICAL C CHARA TERISTICS
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 8)
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C TA 70°C, unless otherwise noted. (Note 9)
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, –40°C TA 85°C, unless otherwise noted. (Notes 4, 9)
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, –55°C TA 125°C, unless otherwise noted. (Note 9)
LT1215AC LT1215C/LT1215M
LT1215AM LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 125 300 150 450 µV
Input Voltage Range (Note 10) 1.3 1.5 1.3 1.5 V
0 0.2 0 – 0.2 V
Maximum Output Voltage Swing Output High, No Load 2.60 2.69 2.60 2.69 V
Output High, I
SOURCE
= 1mA 2.50 2.60 2.50 2.60 V
Output High, I
SOURCE
= 30mA 1.90 2.05 1.90 2.05 V
Output Low, No Load 0.005 0.008 0.005 0.008 V
Output Low, I
SINK
= 1mA 0.035 0.050 0.035 0.050 V
Output Low, I
SINK
= 30mA 0.700 1.000 0.700 1.000 V
I
O
Maximum Output Current ±30 ±50 ±30 ±50 mA
LT1215AM LT1215M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 250 450 350 750 µV
Input Voltage Range (Note 10) 1.1 1.3 1.1 1.3 V
0.4 0.2 0.4 0.2 V
Maximum Output Voltage Swing Output High, No Load 2.30 2.50 2.30 2.50 V
Output High, I
SOURCE
= 1mA 2.20 2.40 2.20 2.40 V
Output High, I
SOURCE
= 20mA 1.80 2.10 1.80 2.10 V
Output Low, No Load 0.007 0.012 0.007 0.012 V
Output Low, I
SINK
= 1mA 0.040 0.070 0.040 0.070 V
Output Low, I
SINK
= 20mA 0.700 1.000 0.700 1.000 V
LT1215AC LT1215C/LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 200 350 250 550 µV
Input Voltage Range (Note 10) 1.2 1.4 1.2 1.4 V
0.1 –0.1 0.1 –0.1 V
Maximum Output Voltage Swing Output High, No Load 2.50 2.63 2.50 2.63 V
Output High, I
SOURCE
= 1mA 2.40 2.54 2.40 2.54 V
Output High, I
SOURCE
= 20mA 2.00 2.19 2.00 2.19 V
Output Low, No Load 0.006 0.009 0.006 0.009 V
Output Low, I
SINK
= 1mA 0.035 0.055 0.035 0.055 V
Output Low, I
SINK
= 20mA 0.500 0.725 0.500 0.725 V
LT1215AC LT1215C/LT1216C
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 200 400 250 600 µV
Input Voltage Range (Note 10) 1.1 1.3 1.1 1.3 V
0.2 0 0.2 0 V
Maximum Output Voltage Swing Output High, No Load 2.40 2.50 2.40 2.50 V
Output High, I
SOURCE
= 1mA 2.30 2.46 2.30 2.46 V
Output High, I
SOURCE
= 20mA 1.90 2.12 1.90 2.12 V
Output Low, No Load 0.006 0.010 0.006 0.010 V
Output Low, I
SINK
= 1mA 0.035 0.060 0.035 0.060 V
Output Low, I
SINK
= 20mA 0.500 0.750 0.500 0.750 V
_ j 7 4 r L r LH L “I _ l— — j J |—. L7LJHWEGB
8
LT1215/LT1216
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: A heat sink may be required to keep the junction temperature
below absolute maximum when the output is shorted indefinitely.
Note 3: The LT1215C/LT1216C are guaranteed functional over the
operating temperature range of –40°C to 85°C. The LT1215M is
guaranteed functional over the operating temperature range of
–55°C to 125°C.
Note 4: The LT1215C/LT1216C are guaranteed to meet specified
performance from 0°C to 70°C. The LT1215C/LT1216C are designed,
characterized and expected to meet specified performance from –40°C to
85°C but are not tested or QA sampled at these temperatures. For
guaranteed I-grade parts consult the factory. The LT1215M is guaranteed
to meet specified performance from –55°C to 125°C.
Note 5: T
J
is calculated from the ambient temperature T
A
and power
dissipation P
D
according to the following formulas:
LT1215MJ8, LT1215AMJ8: T
J
= T
A
+ (P
D
100°C/W)
LT1215CN8, LT1215ACN8: T
J
= T
A
+ (P
D
100°C/W)
LT1215CS8: T
J
= T
A
+ (P
D
150°C/W)
LT1216CN: T
J
= T
A
+ (P
D
70°C/W)
LT1216CS: T
J
= T
A
+ (P
D
100°C/W)
Note 6: This parameter is not 100% tested.
Note 7: Guaranteed by correlation to 3.3V and ±15V tests.
Note 8: Slew rate is measured between ±8.5V on an output swing of ±10V
on ±15V supplies.
Note 9: Most LT1215/LT1216 electrical characteristics change very little
with supply voltage. See the 5V tables for characteristics not listed in the
3.3V table.
Note 10: Guaranteed by correlation to 5V and ±15V tests.
Note 11: Guaranteed by correlation to 3.3V tests.
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
ELECTRICAL C CHARA TERISTICS
INPUT OFFSET VOLTAGE (µV)
525
PERCENT OF UNITS (%)
50
45
40
35
30
25
20
15
10
5
0225 75 225
1215/16 G04
375 –75 375 525
LT1215 N8 PACKAGE
LT1215 J8 PACKAGE
V
S
= 5V
Distribution of Offset Voltage Drift
Distribution of Input Offset Voltage with Temperature Distribution of Input Offset Voltage
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
–10
PERCENT OF UNITS (%)
50
40
30
20
10
06
1215/16 G08
–6 –2 210
LT1215 S8 PACKAGE
LT1216 N PACKAGE
LT1216 S PACKAGE
V
S
= 5V
–8 –4 0 4 8
INPUT OFFSET VOLTAGE (µV)
750
PERCENT OF UNITS (%)
30
25
20
15
10
5
0450 –150 150 450 750
1215/16 G09
LT1215 S8 PACKAGE
LT1216 N PACKAGE
LT1216 S PACKAGE
V
S
= ±15V
INPUT OFFSET VOLTAGE (µV)
525
PERCENT OF UNITS (%)
50
45
40
35
30
25
20
15
10
5
0225 75 225
1215/16 G07
375 –75 375 525
LT1215 S8 PACKAGE
LT1216 N PACKAGE
LT1216 S PACKAGE
V
S
= 5V
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
–5
PERCENT OF UNITS (%)
50
40
30
20
10
03
1215/16 G05
–3 –1 15
LT1215 N8 PACKAGE
LT1215 J8 PACKAGE
V
S
= 5V
–4 –2 0 2 4
Distribution of Offset Voltage Drift Distribution of Input Offset
Distribution of Input Offset Voltage with Temperature Voltage
TA = 25% mm TA: 755°C L7L'F1WEGB
9
LT1215/LT1216
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
Voltage Gain, Phase vs Gain-Bandwidth Product,
Voltage Gain vs Frequency Frequency Phase Margin vs Supply Voltage
FREQUENCY (Hz)
100k
VOLTAGE GAIN (dB)
60
40
20
0
–20 1M 10M 100M
1215/16 G11
100
80
60
40
20
0
–20
–40
–60
PHASE SHIFT (DEG)
PHASE
GAIN
VS = 5V
VS = ±15V
VS = 5V
VS = ±15V
CL = 20pF
RL = 2k
TOTAL SUPPLY VOLTAGE (V)
1
GAIN-BANDWIDTH PRODUCT (MHz)
23
22
21
20
19
18
17
10 40
1215/16 G12
60
50
40
30
20
10
0
35720 30
PHASE MARGIN (DEG)
T
A
= –55°C T
A
= 25°C
T
A
= 125°C
T
A
= 25°C, 125°C
T
A
= –55°C
FREQUENCY (Hz)
1
VOLTAGE GAIN (dB)
100M
1215/16 G10
100 10k 1M
140
120
100
80
60
40
20
0
–20 10 1k 100k 10M
C
L
= 20pF
R
L
= 2k
V
S
= 5V
V
S
= ±15V
TEMPERATURE (°C)
–50
SLEW RATE (V/µs)
60
50
40
30
20
10 –25 05075
1215/16 G13
100 125
25
V
S
= ±15V
V
S
= 5V
T
A
= 25°C
A
V
= –2
R
L
= 10k
Slew Rate vs Temperature Slew Rate vs Supply Voltage Capacitive Load Handling
FREQUENCY (Hz)
OUTPUT SWING (V
P-P
)
5
4
3
2
1
010k 100k 1M
1215/16 G16
1k
A
V
= –1
A
V
= 1
V
S
= 5V
TOTAL SUPPLY VOLTAGE (V)
0
SLEW RATE (V/µs)
816 20 36
412 24 28 32
65
55
45
35
25
15
5
1215/16 G14
A
V
= –2
R
L
= 10k T
A
= 125°C
T
A
= 25°C
T
A
= –55°C
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION AND NOISE (%)
10 1k 10k 100k
1215/16 G18
100
0.1
0.01
0.001
0.0001
V
S
= 5V
V
O
= 3V
P-P
R
L
= 1k
A
V
= 10
A
V
= 1
Undistorted Output Swing Undistorted Output Swing Total Harmonic Distortion and
vs Frequency, VS = 5V vs Frequency, VS = ±15V Noise vs Frequency
FREQUENCY (Hz)
OUTPUT SWING (V
P-P
)
30
28
26
24
22
20
18
16
14
12
10 10k 100k 1M
1215/16 G17
1k
V
S
= ±15V
A
V
= –1
A
V
= 1
CAPACITIVE LOAD (pF)
10
OVERSHOOT (%)
80
70
60
50
40
30
20
10
0100 1000
1216/ G15
A
V
= 1
A
V
= 5
A
V
= 10
V
S
= 5V
vs: 5v souncws \ ‘sauRcE = 30'“ \ \\ ‘SDURCE‘WVW‘ \ w 1\ \\\ng = WA w mm \\
10
LT1215/LT1216
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
TEMPERATURE (°C)
–50
SATURATION VOLTAGE, V
+
– V
OUT
(V)
1.6
1.4
1.2
1.0
0.8
0.6
0.4 25 75
–25 0 50 100 125
I
SOURCE
= 30mA
V
S
= 5V
I
SOURCE
= 10mA
I
SOURCE
= 1mA
I
SOURCE
= 10µA
1215/16 G21
TOTAL SUPPLY VOLTAGE (V)
0
OPEN-LOOP VOLTAGE GAIN (V/mV)
816 20 36
412 24 28 32
7k
6k
5k
4k
3k
2k
1k
0
1215/16 G19
T
A
= 25°C
T
A
= –55°C
R
L
= 2k
T
A
= 125°C
Open-Loop Voltage Gain Positive Output Saturation
vs Supply Voltage Open-Loop Gain, VS = 5V Voltage vs Temperature
RL = 2k
RL =
500
Output Short-Circuit Current
Channel Separation vs Frequency vs Temperature Output Impedance vs Frequency
FREQUENCY (Hz)
10k
OUTPUT IMPEDANCE ()
1000
100
10
1
0.1
0.01 100k 1M 10M
1215/16 G27
AV = 100
VS = ±15V
AV = 10 AV = 1
CASE TEMPERATURE (°C)
–50
OUTPUT SHORT-CIRCUIT CURRENT (mA)
70
60
50
40
30 25 75
–25 0 50 100 125
1215/16 G26
V
S
= 5V
SOURCING
V
S
= ±15V
SINKING OR
SOURCING
TEMPERATURE (°C)
–50
SATURATION VOLTAGE, V
OUT
– V
(mV)
1000
100
10
125 125
1215/16 G24
I
SINK
= 30mA
V
S
= 5V
0 25 50 10075
I
SINK
= 10mA
I
SINK
= 1mA
I
SINK
= 10µA
Negative Output Saturation
Voltage Gain vs Load Resistance Open-Loop Gain, VS = ±15V Voltage vs Temperature
RL = 2k
RL =
500
LOAD RESISTANCE ()
10
OPEN-LOOP VOLTAGE GAIN (V/mV)
10k
1k
100
10 100 1k 10k
1215/16 G22
TA = 25°C
VS = 5V
VS = ±15V
FREQUENCY (Hz)
CHANNEL SEPARATION (dB)
140
130
120
110
100
90
80
70
60
50
40
30
10k 100k 10M
1215/16 G25
1M
V
S
= ±15V
T
A
= 25°C
INPUT, 5µV/DIV
01234
OUTPUT (V)
1215/16 G20
–10 0 10
OUTPUT (V)
1215/16 G23
INPUT, 5µV/DIV
L7L'UEN?
11
LT1215/LT1216
250µV/DIV
50ns/DIV
VS = 5V
AV = 1 1215/16 G30
500mV/DIV
5V Settling
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
±15V Small-Signal Response
50ns/DIV
VS = ±15V
AV = 1 1215/16 G34
5V Small-Signal Response
50ns/DIV
VS = 5V
AV = 1 1215/16 G34
Settling Time to 0.01%
vs Output Step
SETTLING TIME (ns)
200
OUTPUT STEP (V)
300 400
1215/16 G36
10
8
6
4
2
0
–2
–4
–6
–8
–10 500
NONINVERTING INVERTING
V
S
= ±15V
200ns/DIV
VS = ±15V
AV = –1
RF = RG = 1k 1215/16 G32
10V
0V
–10V
±15V Large-Signal Response
3V
0V
100ns/DIV
VS = 5V
AV = –1
RF = RG = 1k
CF = 20pF 1215/16 G31
5V Large-Signal Response
10V
0V
–10V
200ns/DIV
VS = ±15V
AV = 1 1215/16 G29
±15V Large-Signal Response
3V
0V
200ns/DIV
VS = 5V
AV = 1 1215/16 G28
5V Large-Signal Response
1mV/DIV
2V/DIV
100ns/DIV
VS = ±15V
AV = –1 1215/16 G33
±15V Settling
20mV/DIV
20mV/DIV
CURRENT NmsE PosmvE SUPPLV
12
LT1215/LT1216
CCHARA TERISTICS
UW
ATYPICALPER
FORCE
Input Bias Current vs Common Mode Range
Input Bias Current vs Temperature Common Mode Voltage vs Temperature
TIME AFTER POWER-UP (SEC)
0
CHANGE IN OFFSET VOLTAGE (µV)
20
15
10
5
0
–5
–10
–15
–20 160
1215/16 G03
40 80 120 200
180
140
100
6020
V
S
= ±2.5V
R
L
=
4 TYPICAL AMPLIFIERS
Input Noise Current, Noise Common Mode Rejection Ratio Input Referred Power Supply
Voltage Density vs Frequency vs Frequency Rejection Ratio vs Frequency
Supply Current vs Supply Voltage Supply Current vs Temperature Warm-Up Drift vs Time
SUPPLY VOLTAGE (V)
0
SUPPLY CURRENT PER AMPLIFIER (mA)
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0 245
1215/16 G01
13
TA = 125°C
TA = 25°C
TA = –55°C
TEMPERATURE (°C)
COMMON-MODE RANGE (V)
V
+
V
+
–1
V
+
–2
1215/16 G39
V
+1
V
V
–1–50 25 75
–25 0 50 100 125
COMMON-MODE VOLTAGE (V)
–1
INPUT BIAS CURRENT (nA)
0
100
200
300
400
500 3
1215/16 G38
0124
T
A
= 25°C
T
A
= –55°C
V
S
= 5V
T
A
= 125°C
FREQUENCY (Hz)
10k
COMMON-MODE REJECTION RATIO (dB)
110
100
90
80
70
60
50
40
30
20
10 100k 1M 10M
1215/16 G41
V
S
= 5V
FREQUENCY (Hz)
120
110
100
90
80
70
60
50
40
30
201k 100k 1M 10M
1215/16 G42
10k
NEGATIVE SUPPLY
POWER SUPPLY REJECTION RATIO (dB)
V
S
= ±15V
A
V
= 100
POSITIVE SUPPLY
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (mA)
8
7
6
5
4
3
2–25 05075
1215/16 G02
100 125
25
V
S
= ±15V
V
S
= 5V
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
400
380
360
340
320
300
280
260
240 25 75
–25 0 50 100 125
1215/16 G37
I
OS
+I
B
–I
B
V
S
= 5V
FREQUENCY (Hz)
20
18
16
14
12
10
8
6
4
2
010 1k 10k 100k
1215/16 G40
100
CURRENT NOISE
INPUT NOISE CURRENT DENSITY (pA/Hz)
INPUT NOISE VOLTAGE DENSITY (nV/Hz)
V
S
= ±15V
T
A
= 25°C
R
S
= 0
VOLTAGE NOISE
L7 WW
13
LT1215/LT1216
U
S
A
O
PPLICATI
WU
U
I FOR ATIO
Supply Voltage
The LT1215/LT1216 op amps are fully functional and all
internal bias circuits are in regulation with 2.2V of supply.
The amplifiers will continue to function with as little as
1.5V, although the input common mode range and the
phase margin are about gone. The minimum operating
supply voltage is guaranteed by the PSRR tests which are
done with the input common mode equal to 500mV and a
minimum supply voltage of 2.5V. The LT1215/LT1216 are
guaranteed over the full –55°C to 125°C range with a
minimum supply voltage of 2.7V.
The positive supply pin of the LT1215/LT1216 should be
bypassed with a small capacitor (about 0.01µF) within an
inch of the pin. When driving heavy loads and for good
settling time, an additional 4.7µF capacitor should be
used. When using split supplies, the same is true for the
negative supply pin.
Power Dissipation
The LT1215/LT1216 amplifiers combine high speed and
large output current drive into very small packages. Be-
cause these amplifiers work over a very wide supply range,
it is possible to exceed the maximum junction temperature
under certain conditions. To insure that the LT1215/
LT1216 are used properly, calculate the worst case power
dissipation, define the maximum ambient temperature,
select the appropriate package and then calculate the
maximum junction temperature.
The worst case amplifier power dissipation is the total of
the quiescent current times the total power supply voltage
plus the power in the IC due to the load. The quiescent
supply current of the LT1215/LT1216 has a positive tem-
perature coefficient. The maximum supply current of each
amplifier at 125°C is given by the following formula:
I
SMAX
= 8.4 + 0.076 • (V
S
– 5) in mA
V
S
is the total supply voltage.
The power in the IC due to the load is a function of the
output voltage, the supply voltage and load resistance. The
worst case occurs when the output voltage is at half
supply, if it can go that far, or its maximum value if it
cannot reach half supply.
For example, calculate the worst case power dissipation
while operating on ±15V supplies and driving a 500 load.
I
SMAX
= 8.4 + 0.076 • (30 – 5) = 10.3mA
P
DMAX
= 2 • V
S
• I
SMAX
+ (V
S
– V
OMAX
) • V
OMAX
/R
L
P
DMAX
= 2 • 15V
• 10.3mA + (15V – 7.5V) • 7.5V/500
= 0.309 + 0.113 = 0.422 Watt per Amp
If this is the dual LT1215, the total power in the package is
twice that, or 0.844W. Now calculate how much the die
temperature will rise above the ambient. The total power
dissipation times the thermal resistance of the package
gives the amount of temperature rise. For this example, in
the SO-8 surface mount package, the thermal resistance is
150°C/W junction-to-ambient in still air.
Temperature Rise = P
DMAX
θ
JA
= 0.844W • 150°C/W
= 126.6°C
The maximum junction temperature allowed in the plastic
package is 150°C. Therefore the maximum ambient al-
lowed is the maximum junction temperature less the
temperature rise.
Maximum Ambient = 150°C – 126.6°C = 23.4°C
That means the SO-8 dual can only be operated at or below
room temperature on ±15V supplies with a 500 load.
Obviously this is not recommended. Lowering the supply
voltage is recommended, or use the DIP packaged part.
As a guideline to help in the selection of the LT1215/
LT1216, the following table describes the maximum sup-
ply voltage that can be used with each part based on the
following assumptions:
1. The maximum ambient is 70°C or 125°C depending
on the part rating.
2. The load is 500, includes the feedback resistors.
3. The output can be anywhere between the supplies.
PART MAX SUPPLIES MAX POWER AT MAX TA
LT1215MJ8 15.0V or ±10.3V 500mW
LT1215CN8 20.3V or ±14.5V 800mW
LT1215CS8 15.7V or ±10.8V 533mW
LT1216CN 16.4V or ±11.4V 1143mW
LT1216CS 13.0V or ±8.7V 800mW
14
LT1215/LT1216
U
S
A
O
PPLICATI
WU
U
I FOR ATIO
Inputs
Typically at room temperature, the inputs of the LT1215/
LT1216 can common mode 400mV below ground (V
)
and to within 1.5V of the positive supply with the amplifier
still functional. However the input bias current and offset
voltage will shift as shown in the characteristic curves. For
full precision performance, the common mode range
should be limited between ground (V
) and 2V below the
positive supply.
When either of the inputs is taken below ground (V
) by
more than about 700mV, that input current will increase
dramatically. The current is limited by internal 100
resistors between the input pins and diodes to each
supply. The output will remain low (no phase reversal) for
inputs 1.3V below ground (V
). If the output does not have
to sink current, such as in a single supply system with a 1k
load to ground, there is no phase reversal for inputs up to
8V below ground.
There are no clamps across the inputs of the LT1215/
LT1216 and therefore each input can be forced to any
voltage between the supplies. The input current will re-
main constant at about 360nA over most of this range.
When an input gets closer than 2V to the positive supply,
that input current will gradually decrease to zero until the
input goes above the supply, then it will increase due to the
previously mentioned diodes. If the inverting input is held
more positive than the noninverting input by 200mV or
more, while at the same time the noninverting input is
within 300mV of ground (V
), then the supply current will
increase by 5mA and the noninverting input current will
increase to about 100µA. This should be kept in mind in
comparator applications where the inverting input stays
above ground (V
) and the noninverting input does not.
Output
The output of the LT1215/LT1216 will swing to within
0.61V of the positive supply with no load. The open-loop
output resistance, when the output is driven hard into the
positive rail, is about 100 as the output starts to source
current; this resistance drops to about 20 as the current
increases. Therefore when the output sources 1mA, the
output will swing to within 0.7V of the positive supply.
While sourcing 30mA, it is within 1.25V of the positive
supply.
The output of the LT1215/LT1216 will swing to within 5mV
of the negative supply while sinking zero current. Thus, in
a typical single supply application with the load going to
ground, the output will go to within 5mV of ground. The
open-loop output resistance when the output is driven
hard into the negative rail is about 25 at low currents and
reduces to about 21 at high currents. Therefore when the
output sinks 1mA, the output is about 30mV above the
negative supply and while sinking 30mA, it is about
630mV above it.
The output of the LT1215/LT1216 has reverse-biased
diodes to each supply. If the output is forced beyond either
supply, unlimited currents will flow. If the current is
transient and limited to several hundred mA, no damage
will occur.
Feedback Components
Because the input currents of the LT1215/LT1216 are less
than 600nA, it is possible to use high value feedback
resistors to set the gain. However, care must be taken to
insure that the pole that is formed by the feedback resis-
tors and the input capacitance does not degrade the
stability of the amplifier. For example, if a single supply,
noninverting gain of two is set with two 10k resistors, the
LT1215/LT1216 will probably oscillate. This is because
the amplifier goes open-loop at 7MHz (6dB of gain) and
has 50° of phase margin. The feedback resistors and the
10pF input capacitance generate a pole at 3MHz that
introduces 67° of phase shift at 7MHz! The solution is
simple, lower the values of the resistors or add a feedback
capacitor of 10pF or more.
W0"! | | L7 WW
15
LT1215/LT1216
U
S
A
O
PPLICATI
WU
U
I FOR ATIO
Comparator Applications
Sometimes it is desirable to use an op amp as a compara-
tor. When operating the LT1215/LT1216 on a single 3.3V
or 5V supply, the output interfaces directly with most TTL
and CMOS logic.
The response time of the LT1215/LT1216 is a strong
function of the amount of input overdrive as shown in the
4
2
0
100
0
5µs/DIV
V
S
= 5V 1215/16 AI01
R
L
=
4
2
0
100
0
5µs/DIV
V
S
= 5V 1215/16 AI02
R
L
=
LT1215 Comparator Response (+)
20mV, 10mV, 5mV, 2mV Overdrives
LT1215 Comparator Response (–)
20mV, 10mV, 5mV, 2mV Overdrives
W
I
SPL
II
FED S
W
A
CHETIC
following photos. These amplifiers are unity-gain stable
op amps and not fast comparators, therefore, the logic
being driven may oscillate due to the long transition time.
The output can be speeded up by adding 20mV or more of
hysteresis (positive feedback), but the offset is then a
function of the input direction.
INPUT (mV) OUTPUT (V)
OUTPUT (V)
INPUT (mV)
CI
Q5
Q10
CF
RF
I7I8
CO
V
CMBIAS
OUT
V+
I6
I5
I4
I3
I2
I1
–IN +IN
1215/16 SS
Q7
Q9
Q8
Q11
Q12
Q14 Q15
Q13
Q16
Q6
Q3 Q4
Q1 Q2
W r: I: || ‘Ws. 2M2 20k ‘VM. || || ~$1.. -le
16
LT1215/LT1216
Single Supply, AC Coupled Input, RMS Calibrated, Average Detector
AC IN (mV
RMS
)
1
10
DC OUT (mV)
100
1000
10 100
1215/16 GA06
V
S
= 5V
f = 100kHz
f = 1kHz
DC OUTPUT VOLTAGE vs AC INPUT VOLTAGE
+
20k
5V
A
LT1216
11.3k
22pF
1215/16 TA05
2 × R2
20k
22pF
DC OUT
+
+
1µF
+
R1
10k
R1
10k
R1
10k
R1
10k
22pF
R2
10k
C
LT1216
2 × R2
20k
11.3k
22pF
V
A
– V
B
R2
R1 100k
V
IN
+
10µF1k
B
LT1216
D
LT1216
V
B
AC TO DC BIASED
DIFFERENTIAL SIGNAL DIFFERENTIAL INPUT,
ABSOLUTE VALUE CIRCUIT
V
A
10k
R2
10k
+
TYPICAL APPLICATIO
U
L7 WEAR
17
LT1215/LT1216
PACKAGE DESCRIPTIO
U
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
J8 1298
0.014 – 0.026
(0.360 – 0.660)
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.125
3.175
MIN
0.100
(2.54)
BSC
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457) 0° – 15°
0.005
(0.127)
MIN
0.405
(10.287)
MAX
0.220 – 0.310
(5.588 – 7.874)
1234
8765
0.025
(0.635)
RAD TYP
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
CORNER LEADS OPTION
(4 PLCS)
0.045 – 0.065
(1.143 – 1.651)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
OBSOLETE PACKAGE
flflflm 7) UUUU fij $7”H“7 H iJ 77$ V‘ 77* Li; i a W * flflflflflflfl 7) UUUUUUU rfl *: fl“
18
LT1215/LT1216
PACKAGE DESCRIPTIO
U
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N8 1098
0.100
(2.54)
BSC
0.065
(1.651)
TYP
0.045 – 0.065
(1.143 – 1.651)
0.130 ± 0.005
(3.302 ± 0.127)
0.020
(0.508)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
0.125
(3.175)
MIN
12 34
8765
0.255 ± 0.015*
(6.477 ± 0.381)
0.400*
(10.160)
MAX
0.009 – 0.015
(0.229 – 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.325 +0.035
0.015
+0.889
0.381
8.255
()
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
N14 1098
0.020
(0.508)
MIN
0.125
(3.175)
MIN
0.130 ± 0.005
(3.302 ± 0.127)
0.045 – 0.065
(1.143 – 1.651)
0.065
(1.651)
TYP
0.018 ± 0.003
(0.457 ± 0.076)
0.100
(2.54)
BSC
0.005
(0.125)
MIN
0.255 ± 0.015*
(6.477 ± 0.381)
0.770*
(19.558)
MAX
31 24567
8910
11
1213
14
0.009 – 0.015
(0.229 – 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.325 +0.035
0.015
+0.889
0.381
8.255
()
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
HHHH ,7HHHH ifik 7 3:; L; Emma: : JPN? H H H H H H H H ,7H H H H H H H H 7 fir 1:ng ,7mppppmtg L Li ’ iHHH-Li T
19
LT1215/LT1216
PACKAGE DESCRIPTIO
U
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
S Package
16-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
0.016 – 0.050
(0.406 – 1.270)
0.010 – 0.020
(0.254 – 0.508)× 45°
0°8° TYP
0.008 – 0.010
(0.203 0.254)
SO8 1298
0.053 – 0.069
(1.346 1.752)
0.014 – 0.019
(0.355 – 0.483)
TYP
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
BSC
1234
0.150 – 0.157**
(3.810 – 3.988)
8765
0.189 – 0.197*
(4.801 – 5.004)
0.228 – 0.244
(5.791 – 6.197)
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
0.016 – 0.050
(0.406 – 1.270)
0.010 – 0.020
(0.254 – 0.508)× 45°
0° – 8° TYP
0.008 – 0.010
(0.203 – 0.254)
12345678
0.150 – 0.157**
(3.810 – 3.988)
16 15 14 13
0.386 – 0.394*
(9.804 – 10.008)
0.228 – 0.244
(5.791 – 6.197)
12 11 10 9
S16 1098
0.053 – 0.069
(1.346 – 1.752)
0.014 – 0.019
(0.355 – 0.483)
TYP
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
BSC
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
20
LT1215/LT1216
LINEAR TECHNOLOGY CORPORATION 1993
12156fb LT/TP 1101 1.5K REV B • PRINTED IN USA
LT1216 Photo Diode Amplifier
+
2V
5V
1/4
LT1216
5.1k
8pF
VOUT
1215/16 TA03
I TO V BANDWIDTH = 7MHz
TRANSIENT RESPONSE
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
FAX: (408) 434-0507
www.linear.com
RELATED PARTS
PART NUMBER DESCRIPTION COMMENTS
LT1211/LT1212 Dual/Quad 14MHz, 7V/µs Single Supply Precision Op Amps Input Common Mode Includes Ground, 275µV V
OS
(Max),
6µV/°C Max Drift, 1.8mA Max Supply Current per Amplifier
LT1213/LT1214 Dual/Quad 28MHz, 12V/µs Single Supply Precision Op Amps Input Common Mode Includes Ground, 275µV V
OS
(Max),
6µV/°C Max Drift, 3.5mA Max Supply Current per Amplifier
LT1498/LT1499 10MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and 475µV V
OS
(Max), 2.2mA Max Supply Current per Amplifier,
Output Precision C-LoadTM Op Amps 2.5µV/°C Max Drift, Stable with Capacitive Loads to 10,000pF
LT1124/LT1125 12.5MHz, 4.5V/µs, Dual/Quad Low Noise, 70µV V
OS
(Max), 2.75mA Max Supply Current per Amplifier,
High Speed Precision Op Amps 1µV/°C Max Drift
LT1355/LT1356 Dual and Quad 12MHz, 400V/µs Op Amps 1.25mA Max Supply Current per Amplifier, 800µV V
OS
(Max),
Drives All Capacitive Loads
LT1358/LT1359 Dual and Quad 25MHz, 600V/µs Op Amps 2.5mA Max Supply Current per Amplifier, 600µV V
OS
(Max),
Drives All Capacitive Loads
LT1361/LT1362 Dual and Quad 50MHz, 800V/µs Op Amps 5mA Max Supply Current per Amplifier, 1mV V
OS
(Max),
Drives All Capacitive Loads
C-Load is a trademark of Linear Technology Corporation.
1215/16 TA05
TYPICAL APPLICATIO
U

Products related to this Datasheet

IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 4 CIRCUIT 16SO
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 4 CIRCUIT 16SO
IC OPAMP GP 4 CIRCUIT 14DIP
IC OPAMP GP 4 CIRCUIT 14DIP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 4 CIRCUIT 16SO
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8SO