MAC7100 Family Datasheet by NXP USA Inc.

View All Related Products | Download PDF Datasheet
‘/RoHS 0,. 5' freescale” semiconductor
© Freescale Semiconductor, Inc., 2004-2006. All rights reserved.
• Preliminary
Freescale Semiconductor
Advance Information
MAC7100EC
Rev. 1.2, 02/2006
This document contains information on a new product under development. Freescale
Semiconductor reserves the right to change or discontinue this product without notice.
Table of Contents
1 Overview .................................................................1
2 Ordering Information...............................................2
3 Electrical Characteristics.........................................4
3.1 Parameter Classification......................................4
3.2 Absolute Maximum Ratings.................................4
3.3 ESD Protection and Latch-up Immunity ..............5
3.4 Operating Conditions...........................................6
3.5 Input/Output Characteristics................................7
3.6 Power Dissipation and Thermal Characteristics..8
3.7 Power Supply ....................................................11
3.8 Clock and Reset Generator...............................15
3.9 External Bus Timing ..........................................20
3.10 Analog-to-Digital Converter ...............................24
3.11 Serial Peripheral Interface.................................29
3.12 FlexCAN Interface .............................................32
3.13 Common Flash Module .....................................32
4 Device Pin Assignments .......................................36
4.1 MAC7141 Pin Diagram......................................41
4.2 MAC7142 Pin Diagram......................................42
4.3 MAC7121 / MAC7126 Pin Diagram...................43
4.4 MAC7122 Pin Diagram......................................44
4.5 MAC7101 / MAC7106 Pin Diagram...................45
4.6 MAC7111 / MAC7116 Pin Diagram...................46
4.7 MAC7112 Pin Diagram......................................47
4.8 MAC7131 Pin Diagram......................................48
4.9 MAC7136 Pin Diagram......................................49
5 Mechanical Information.........................................50
Revision History ....................................................51
MAC7100 Microcontroller Family
Hardware Specifications
Covers MAC7101, MAC7106, MAC7111, MAC7116, MAC7121,
MAC7126, MAC7131, MAC7136, MAC7141
1
32-bit Embedded Controller Division
1. With preliminary information on MAC7112, MAC7122, MAC7142 devices.
This document provides electrical specifications, pin
assignments, and package diagrams for MAC7100
family of microcontroller devices. For functional
characteristics, refer to the MAC7100 Microcontroller
Family Reference Manual (MAC7100RM).
1 Overview
The MAC7100 Family of microcontrollers (MCUs) are
members of a pin-compatible family of 32-bit
Flash-memory-based devices developed specifically for
embedded automotive applications. The pin-compatible
family concept enables users to select between different
memory and peripheral options for scalable designs. All
MAC7100 Family members are composed of a 32-bit
ARM7TDMI-S™ central processing unit, up to 1 Mbyte
of embedded Flash EEPROM for program storage, up to
32 Kbytes of embedded Flash for data and/or program
storage, and up to 48 Kbytes of RAM. The family is
implemented with an enhanced DMA (eDMA) controller
to improve performance for transfers between memory
and many of the on-chip peripherals. The peripheral set
includes asynchronous serial communications interfaces
(eSCI), serial peripheral interfaces (DSPI),
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Ordering Information
Freescale Semiconductor2
inter-integrated circuit (I2C™) bus controllers, FlexCAN interfaces, an enhanced modular I/O subsystem
(eMIOS), 10-bit analog-to-digital converter (ATD) module(s), general-purpose timers (PIT) and two
special-purpose timers (RTI and SWT). The peripherals share a large number of general purpose
input-output (GPIO) pins, all of which are bidirectional and available with interrupt capability to trigger
wake-up from low-power chip modes. Refer to Table 2 for a comparison of family members and
availability of peripheral modules on each device.
The use of a PLL allows power drain and performance to be balanced to best fit requirements. The
operating frequency of devices in the family is up to a maximum of 50 MHz. The internal data paths
between the CPU core, eDMA, memory and peripherals are all 32 bits wide, further improving
performance for 32-bit applications. The MAC7111, MAC7116, MAC7131 and MAC7136 also offer a
16-bit wide external data bus with 22 address lines. The family of devices is capable of operating over a
junction temperature range of –40° C to 150° C.
2 Ordering Information
Figure 1. Order Part Number Example
The mask set of a device is marked with a four-character code consisting of a letter, two numerical digits,
and a letter, for example L49P. Slight variations to the mask set identification code may result in an
optional numerical digit preceding the standard four-character code, for example 0L49P.
Table 1. MAC7100 Family Mask Set to Part Number Correspondence
Mask Set Status Part Number(s)
0L49P Engineering samples PAC7101, PAC7111, PAC7121, PAC7131, PAC7141
1L49P Limited production, pre-qualification PAC7101, PAC7111, PAC7121, PAC7131, PAC7141
0L47W Limited production, pre-qualification PAC7101, PAC7111, PAC7121, PAC7131, PAC7141
1L47W Fully-qualified, production MAC7101, MAC7111, MAC7121, MAC7131, MAC7141
0L61W Engineering samples PAC7112, PAC7122, PAC7142
0L38Y Engineering samples PAC7106, PAC7116, PAC7126, PAC7136
1L38Y Fully-qualified, production MAC7106, MAC7116, MAC7126, MAC7136
M AC 7 1 0 1 C PV 50 xx
Qualification Status
Core Code
Core Number
Generation / Family
Package Option
Device Number
Temperature Range
Package Identifier
Speed (MHz)
Optional Package Identifiers
Temperature Option
C = –40° C to 85° C
V = –40° C to105° C
M = –40° C to125° C
Package Option
FU = 100 LQFP
AF = 100 LQFP, RoHS
PV = 112 / 144 LQFP
AG = 112 / 144 LQFP, RoHS
VF = 208 MAP BGA
VM= 208 MAP BGA, RoHS
Ordering Information
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 3
Table 2. MAC7100 Family Device Derivatives
Module Options
MAC7101
MAC7111
MAC7121
MAC7131
MAC7141
MAC7112
MAC7122
MAC7142
MAC7106
MAC7116
MAC7126
MAC7136
Program Flash 512 KBytes 256 KBytes 1 MByte
Data Flash 32 KBytes
SRAM 32 KBytes 16 KBytes 48 KBytes
External Bus YesYes—————YesYes
ATD Modules 1
NOTES:
1. 16 channels, 8/10-bit, per module.
AYes Ye s Ye s Yes Yes Ye s Ye s Yes Yes Yes Ye s Ye s
BYes——Yes————Yes——Yes
CAN Modules A Yes Ye s Ye s Yes Yes Ye s Ye s Yes Yes Yes Ye s Ye s
B Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CYes Ye s Ye s Yes ————Yes Ye s Ye s Yes
DYesYesYesYes————YesYesYesYes
eSCI Modules A Yes Ye s Ye s Yes Yes Ye s Ye s Yes Yes Yes Yes Ye s
B Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CYes Ye s Ye s Yes Yes Yes Yes Yes Yes Ye s
D Yes Yes Yes Yes Yes Yes Yes Yes Yes
DSPI Modules A Yes Ye s Yes Yes Yes Yes Ye s Yes Yes Ye s Ye s Yes 2
2. Four additional chip selects available.
BYes Yes Yes 3
3. PB11 / PCS2_B not available on non-L49P-mask devices; PB10 / PCS5_B / PCSS_B not available on mask L47W devices.
Yes Ye s Ye s Yes 3 Yes Ye s Ye s Yes 3 Yes 2
I2C Module Yes Ye s Ye s Yes Yes Ye s Ye s Yes Yes Yes Ye s Ye s
eMIOS Module 16 channels, 16-bit
Timer Module 10 channels, 24-bit
General-Purpose
I/O Ports/Pins
A10161016 41610 410161016
B16 16 15 16 16 16 15 16 16 16 15 16
C1216 11616 11216 116
D 10 4
4. Reduce these values by one for mask set L49P devices (PD2 is not available for general-purpose use).
16 4 11 4 16 4 10 4 16 11 10 10 16 11 16
E161616161616161616161616
F16 16 16 16 16 16 16 16 16 16 16 16
G161616161016161016161616
H16 16 ————16 16
I———————————16
Total (max.) 112 4 112 4 85 4 128 4 72 4 112 85 72 112 112 85 144
Package 144
LQFP 144
LQFP 112
LQFP 208
BGA
100
LQFP 144
LQFP 112
LQFP 100
LQFP 144
LQFP 144
LQFP 112
LQFP 208
BGA
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor4
3 Electrical Characteristics
This section contains electrical information for MAC7100 Family microcontrollers. The information is
preliminary and subject to change without notice.
MAC7100 Family devices are specified and tested over the 5 V and 3.3 V ranges. For operation at any
voltage within that range, the 3.3 V specifications generally apply. However, no production testing is done
to verify operation at intermediate supply voltage levels.
3.1 Parameter Classification
The electrical parameters shown in this appendix are derived by various methods. To provide a better
understanding to the designer, the following classification is used. Parameters are tagged accordingly in
the column labeled “C” of the parametric tables, as appropriate.
3.2 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. Functional operation outside these maximums is not
guaranteed. Stress beyond these limits may affect reliability or cause permanent damage to the device.
MAC7100 Family devices contain circuitry protecting against damage due to high static voltage or electrical
fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs
are tied to an appropriate logic voltage level (for example, either V
SS
5
1
or V
DD
5
1
).
Table 3. Parametric Value Classification
P Parameters guaranteed during production testing on each individual device.
C Parameters derived by the design characterization and by measuring a statistically relevant sample size across
process variations.
T Parameters derived by design characterization on a small sample size from typical devices under typical conditions
(unless otherwise noted). All values shown in the typical column are within this classification, even if not so tagged.
D Parameters derived mainly from simulations.
1. Refer to Section 3.7, “Power Supply, for definition of VSS5 and VDD5.
Table 4. Absolute Maximum Ratings
Num Rating Symbol Min Max Unit
A1a I/O Drivers Supply Voltage VDDX–0.3 +6.0V
A2 Digital Logic Supply Voltage 1 VDD2.5 –0.3 +3.0 V
A3 PLL Supply Voltage 1 VDDPLL –0.3 +3.0 V
A4 Analog Supply Voltage VDDA–0.3 +6.0V
A5 Analog Reference VRH, VRL –0.3 +6.0 V
A6 Voltage difference VDDX to VDDAΔVDDX –0.3 +0.3 V
A7 Voltage difference VSSX to VSSAΔVSSX –0.3 +0.3 V
A8 Voltage difference VRH – VRL VRH – VRL –0.3 +6.0 V
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 5
3.3 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise.
A9 Voltage difference VDDA – VRH VDDA – VRH –0.3 +6.0 V
A10 Digital I/O Input Voltage VIN –0.3 +6.0 V
A11 XFC, EXTAL, XTAL inputs VILV –0.3 +3.0 V
A12 TEST input VTEST –0.3 — 2 V
Instantaneous Maximum Current 3
A13 Single pin limit for XFC, EXTAL, XTAL 4 IDL –25 +25 mA
A14 Single pin limit for all digital I/O pins 5 ID–25 +25 mA
A15 Single pin limit for all analog input pins 5 IDA –25 +25 mA
A16 Single pin limit for TEST 2 IDT –0.25 0 mA
A17 Storage Temperature Range Tstg –65 +155 °C
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply from the I/O supply. The
absolute maximum ratings apply when the device is powered from an external source.
2. This pin is clamped low to VSSX, but not clamped high, and must be tied low in applications.
3. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,
use the larger of the calculated values using VPOSCLAMP = VDDA + 0.3V and VNEGCLAMP = –0.3 V.
4. These pins are internally clamped to VSSPLL and VDDPLL.
5. All I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
Table 5. ESD and Latch-up Test Conditions
Model Description Symbol Value Unit
Human Body Series Resistance R1 1500 Ohm
Storage Capacitance C 100 pF
Number of Pulses per pin
positive
negative
——
3
3
Machine Series Resistance R1 0 Ohm
Storage Capacitance C 200 pF
Number of Pulse per pin
positive
negative
——
3
3
Latch-up Minimum input voltage limit –2.5 V
Maximum input voltage limit 7.5 V
Table 4. Absolute Maximum Ratings (continued)
Num Rating Symbol Min Max Unit
125° 27° I) svs Operahng Juncuon Tempevature Range Operahng Junchon Temperatuve Range Operahng Junchon Temperatuve Range
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor6
3.4 Operating Conditions
Unless otherwise noted, the following conditions apply to all parametric data. Refer to the temperature
rating of the device (C, V, M) with respect to ambient temperature (TA) and junction temperature (TJ). For
power dissipation calculations refer to Section 3.6, “Power Dissipation and Thermal Characteristics.”
3.4.1 Input/Output Pins
The I/O pins operate at a nominal level of 3.3 V to 5 V. This class of pins is comprised of the clocks, control
and general purpose/peripheral pins. The internal structure of these pins is identical; however, some
functionality may be disabled (for example, for analog inputs the output drivers, pull-up/down resistors
are permanently disabled).
Table 6. ESD and Latch-Up Protection Characteristics
Num C Rating Symbol Min Max Unit
B1 C Human Body Model (HBM) VHBM 2000 — V
B2 C Machine Model (MM) VMM 200 — V
B3 C Charge Device Model (CDM) VCDM 500 — V
B4 C Latch-up Current at TA = 125°C
positive
negative
ILAT +100
–100 mA
B5 C Latch-up Current at TA = 27°C
positive
negative
ILAT +200
–200
—mA
Table 7. MAC7100 Family Device Operating Conditions
Num Rating Symbol Min Typ Max Unit
C1 I/O Drivers Supply Voltage VDDX3.15 5 5.5 V
C2 Digital Logic Supply Voltage 1
NOTES:
1. These ratings apply only when the VREG is disabled and the device is powered from an external source.
VDD2.5 2.35 2.5 2.75 V
C3 PLL Supply Voltage 1 VDDPLL 2.35 2.5 2.75 V
C4 Analog Supply Voltage VDDA3.15 5 5.5 V
C5 Voltage Difference VDDX to VDDAΔVDDX –0.1 0 0.1 V
C6 Voltage Difference VSSX to VSSAΔVSSX –0.1 0 0.1 V
C7 Oscillator Frequency fOSC 2
2. Throughout this document, tOSC refers to 1 ÷ fOSC, and tSYS refers to 1 ÷ fSYS.
0.5 16 MHz
C8 System Clock Frequency fSYS 2 0.5 50 MHz
C9a MAC71xxC
Operating Junction Temperature Range
3
3. Refer to Section 3.6, “Power Dissipation and Thermal Characteristics, for more details about the relation between
ambient temperature TA and device junction temperature TJ.
TJ–40 110 °C
C9b
Operating Ambient Temperature Range
3 TA–40 25 85 °C
C10a MAC71xxV
Operating Junction Temperature Range
3 TJ–40 130 °C
C10b
Operating Ambient Temperature Range
3 TA4025105°C
C11a MAC71xxM
Operating Junction Temperature Range
3 TJ–40 150 °C
C11b
Operating Ambient Temperature Range
3 TA4025125°C
Hvs p m VDD Vss p IL p IH IH }| }|
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 7
3.4.2 Oscillator Pins
The pins XFC, EXTAL, XTAL are dedicated to the oscillator and operate at a nominal level of 2.5V.
3.5 Input/Output Characteristics
This section describes the characteristics of all I/O pins in both 3.3 V and 5 V operating conditions. All
parameters are not always applicable; for example, not all pins feature pull up/down resistances.
Table 8. 5.0 V I/O Characteristics
Conditions shown in Table 7 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
D1a P Input High Voltage VIH 0.65 ×
VDD5 1
NOTES:
1. Refer to Section 3.7, “Power Supply, for definition of VSS5 and VDD5.
—— V
D1b T Input High Voltage VIH ——V
DD5 +
0.3 1 V
D2a P Input Low Voltage VIL — 0.35 ×
VDD5 1 V
D2b T Input Low Voltage VIL VSS5 –
0.3 1 —— V
D3 C Input Hysteresis VHYS —250—mV
D4 P Input Leakage Current (pins in high impedance input mode)
Vin = VDD5 or VSS5 1 Iin –1 2
2. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half
for each 8°C to 12°C in the temperature range from 50°C to 125°C.
—1
2 μA
D5 P Output High Voltage (pins in output mode)
Partial Drive IOH = –2mA
Full Drive IOH = –10mA
VOH VDD5 –
0.8 —— V
D6 P Output Low Voltage (pins in output mode)
Partial Drive IOL = +2mA
Full Drive IOL = +10mA
VOL ——0.8V
D7 P Internal Pull Up Device Current,
tested at VIL Max. IPUL 130 μA
D8 P Internal Pull Up Device Current,
tested at VIH Min. IPUH –10 — μA
D9 P Internal Pull Down Device Current,
tested at VIH Min. IPDH ——130μA
D10 P Internal Pull Down Device Current,
tested at VIL Max. IPDL 10 μA
D11 D Input Capacitance Cin —6—pF
D12 T Injection current 3
Single Pin limit
Total Device Limit. Sum of all injected currents
3. Refer to Section 3.7.1, “Current Injection, for more details
IICS
IICP
–2.5
–25
2.5
25
mA
D13 P Port Interrupt Input Pulse filtered 4
4. Parameter only applies in STOP or Pseudo STOP mode.
tPULSE —— 3 μs
D14 P Port Interrupt Input Pulse passed 4 tPULSE 10 — μs
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor8
3.6 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded.
Table 9. 3.3 V I/O Characteristics
Conditions shown in
Table 7
, with V
DD
X = 3.3 V –5%/+10% and a temperature maximum of +140
°
C unless otherwise noted.
Num C Rating Symbol Min Typ Max Unit
E1a P Input High Voltage VIH 0.65 ×
VDD5 1
NOTES:
1. Refer to Section 3.7, “Power Supply, for definition of VSS5 and VDD5.
—— V
E1b T Input High Voltage VIH ——V
DD5 +
0.3 1 V
E2a P Input Low Voltage VIL 0.35 ×
VDD5 1 V
E2b T Input Low Voltage VIL VSS5 –
0.3 1 —— V
E3 C Input Hysteresis VHYS —250—mV
E4 P
Input Leakage Current
(pins in high impedance input mode)
Vin = VDD5 or VSS5 1 Iin –1 2
2. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half
for each 8°C to 12°C in the temperature range from 50°C to 125°C.
—1
2 μA
E5 P Output High Voltage (pins in output mode)
Partial Drive IOH = –0.75mA
Full Drive IOH = –4.5mA
VOH VDD5 –
0.4 —— V
E6 P Output Low Voltage (pins in output mode)
Partial Drive IOL = +0.9mA
Full Drive IOL = +5.5mA
VOL ——0.4V
E7 P Internal Pull Up Device Current,
tested at VIL Max. IPUL –60 μA
E8 P Internal Pull Up Device Current,
tested at VIH Min. IPUH –6 μA
E9 P Internal Pull Down Device Current,
tested at VIH Min. IPDH ——60μA
E10 P Internal Pull Down Device Current,
tested at VIL Max. IPDL 6—μA
E11 D Input Capacitance Cin —6—pF
E12 T Injection current 3
Single Pin limit
Total Device Limit. Sum of all injected currents
3. Refer to Section 3.7.1, “Current Injection, for more details
IICS
IICP
–2.5
–25
2.5
25
mA
E13 P Port Interrupt Input Pulse filtered 4
4. Parameter only applies in STOP or Pseudo STOP mode.
tPULSE —— 3 μs
E14 P Port Interrupt Input Pulse passed 4 tPULSE 10 — μs
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 9
Note that the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for junction-to-
ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA
(Theta-JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for
junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated that the
generic name, θJA, will continue to be commonly used.
The average chip-junction temperature (TJ) in °C is obtained from the formula:
Eqn. 1
where
The total power dissipation is calculated as:
Eqn. 2
where
Two cases must be considered for PINT:
1. Internal voltage regulator enabled:
Eqn. 3
2. Internal voltage regulator disabled (VDDR = VSSR = system ground):
Eqn. 4
PIO is the sum of all output currents on input/output pins associated with VDDX:
Eqn. 5
where
Eqn. 6
or
Eqn. 7
Table 10. Thermal Resistance 1/8 Simulation Model Packaging Parameters
Component Conductivity
Mold Compound 0.9 W/m K
Leadframe (Copper) 263 W/m K
Die Attach 1.7 W/m K
TJTAPDΘJA
+=
TJJunction Temperature (°C)=
TAAmbient Temperature (°C)=
PDTotal Chip Power Dissipation (W)=
ΘJA Package Thermal Resistance (°C/W)=
PDPINT PIO
+=
PINT Chip Internal Power Dissipation (W)=
PIO Input / Output Power Dissipation (W)=
PINT IDDRV
DDR×()IDDAV
DDA×()+=
PINT IDD2.5 VDD2.5×()IDDPLL VDDPLL×()IDDAV
DDA×()++=
PIO RDSON
i
IIOi
()
2
=
RDSON
VOL
IOL
--------- (for outputs driven low)=
RDSON
VDDXV
OH
IOL
------------------------------- (for outputs driven high)=
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor10
3.6.1 Thermal Resistance Simulation Details
Comments:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature,
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface
of the board at the center lead. For fused lead packages, the adjacent lead is used.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC
JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Table 11. Thermal Resistance for Case Outline 983–02, 100 Lead 14x14 mm LQFP, 0.5 mm Pitch
Rating Environment Symbol Value Unit Comments
Junction to Ambient (Natural Convection) Single layer board (1s) RθJA 44 °C/W 1, 2
Junction to Ambient (Natural Convection) Four layer board (2s2p) RθJMA 34 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Single layer board (1s) RθJMA 37 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Four layer board (2s2p) RθJMA 29 °C/W 1, 3
Junction to Board RθJB 18 °C/W 4
Junction to Case RθJC C/W 5
Junction to Package Top Natural Convection ΨJT C/W 6
Table 12. Thermal Resistance for Case Outline 987–01, 112 Lead 20x20 mm LQFP, 0.65 mm Pitch
Rating Environment Symbol Value Unit Comments
Junction to Ambient (Natural Convection) Single layer board (1s) RθJA 42 °C/W 1, 2
Junction to Ambient (Natural Convection) Four layer board (2s2p) RθJMA 34 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Single layer board (1s) RθJMA 35 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Four layer board (2s2p) RθJMA 30 °C/W 1, 3
Junction to Board RθJB 22 °C/W 4
Junction to Case RθJC C/W 5
Junction to Package Top Natural Convection ΨJT C/W 6
Table 13. Thermal Resistance for Case Outline 918–03, 144 Lead 20x20 mm LQFP, 0.5 mm Pitch
Rating Environment Symbol Value Unit Comments
Junction to Ambient (Natural Convection) Single layer board (1s) RθJA 42 °C/W 1, 2
Junction to Ambient (Natural Convection) Four layer board (2s2p) RθJMA 34 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Single layer board (1s) RθJMA 35 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Four layer board (2s2p) RθJMA 30 °C/W 1, 3
Junction to Board RθJB 22 °C/W 4
Junction to Case RθJC C/W 5
Junction to Package Top Natural Convection ΨJT C/W 6
Table 14. Thermal Resistance for Case Outline 1159A-01, 208 Lead 17x17 mm MAP BGA, 1.0 mm Pitch
Rating Environment Symbol Value Unit Comments
Junction to Ambient (Natural Convection) Single layer board (1s) RθJA 46 °C/W 1, 2
Junction to Ambient (Natural Convection) Four layer board (2s2p) RθJMA 29 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Single layer board (1s) RθJMA 38 °C/W 1, 3
Junction to Ambient (@ 200 ft./min.) Four layer board (2s2p) RθJMA 26 °C/W 1, 3
Junction to Board RθJB 19 °C/W 4
Junction to Case RθJC C/W 5
Junction to Package Top Natural Convection ΨJT C/W 6
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 11
3.7 Power Supply
The MAC71xx Family utilizes several pins to supply power to the oscillator, PLL, digital core, I/O ports
and ATD. In the context of this section, VDD5 is used for VDDA, VDDR or VDDX; VSS5 is used for VSSA,
VSSR or VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA,
VDDX, and VDDR. VDD is used for VDD2.5, and VDDPLL, VSS is used for VSS2.5 and VSSPLL. IDD is
used for the sum of the currents flowing into VDD2.5 and VDDPLL.
3.7.1 Current Injection
The power supply must maintain regulation within the VDD5 or VDD2.5 operating range during
instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is
greater than IDD5, the injection current may flow out of VDD5 and could result in the external power supply
going out of regulation. It is important to ensure that the external VDD5 load will shunt current greater than
the maximum injection current. The greatest risk will be when the MCU is consuming very little power
(for example, if no system clock is present, or if the clock rate is very low).
3.7.2 Power Supply Pins
The VDDR – VSSR pair supplies the internal voltage regulator. The VDDA – VSSA pair supplies the A/D
converter and the reference circuit of the internal voltage regulator. The VDDX – VSSX pair supplies the
I/O pins. VDDPLL – VSSPLL pair supplies the oscillator and PLL.
All VDDX pins are internally connected by metal. All VSSX pins are internally connected by metal. All
VSS2.5 pins are internally connected by metal. VDDA, VDDX and VDDR as well as VSSA, VSSX and VSSR
are connected by anti-parallel diodes for ESD protection.
3.7.3 Supply Current Characteristics
Table 15 and Table 16 list supply current characteristics for MAC71x1 and MAC71x6 devices at 40 MHz
and 50 MHz operation, respectively. Characteristics for MAC71x2 devices are to be determined (TBD).
All current measurements are without output loads. Unless otherwise noted the currents are measured in
single chip mode, internal voltage regulator enabled at the specified system frequency, using a 4 MHz
oscillator in low power mode. Production testing is performed using a square wave signal at the EXTAL
input. In expanded modes, the currents are highly dependent on the load and duty cycle on the address,
data and control signals, thus no general numbers can be given. A good estimate is to take the single chip
currents and add the currents due to the external loads.
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor12
Table 15. MAC71x1/6 1 Device Supply Current Characteristics – 40 MHz
NOTES:
1. MAC71x2 characteristics are to be determined (TBD).
Conditions shown in
Table 7
, with
fSYS = 40 MHz.
Num C Rating Symbol Typ Max Unit
F1 P Run Supply Current, Single Chip IDDRreg 100 130 mA
F2 C Doze Supply Current IDDDreg Run Doze Pseudo Stop
F3 P Pseudo Stop Supply Current
(OSC on) –40° C 2
2. 85°C, 105°C, and 125°C refer to the "C", "V", and "M" Temperature Options, respectively.
IDDPSreg 400 / 500 3
3. RTI disabled / enabled.
600 / 700 3 μA
P25° C 2 400 / 500 3 600 / 700 3 μA
C85° C 2 800 / 1000 3 2000 / 2500 3 μA
C105° C 2 1200 / 1500 3 3500 / 4000 3 μA
P125° C 2 1500 / 2000 3 5500 / 6000 3 μA
F4 P Stop Supply Current
(TJ = TA assumed) –40° C 2 IDDSreg 30 150 μA
P25° C 2 30 150 μA
C85° C 2 330 2500 μA
C105° C 2 470 3500 μA
P125° C 2 660 5000 μA
Table 16. MAC71x1/6 1 Device Supply Current Characteristics – 50 MHz
NOTES:
1. MAC71x2 characteristics are to be determined (TBD).
Conditions shown in
Table 7
, with
fSYS = 50 MHz.
Num C Rating Symbol Typ Max Unit
G1 P Run Supply Current, Single Chip IDDRreg 120 150 mA
G2 C Doze Supply Current IDDDreg Run Doze Pseudo Stop
G3 P Pseudo Stop Supply Current
(OSC on) –40° C 2
2. 85°C, 105°C, and 125°C refer to the "C", "V", and "M" Temperature Options, respectively.
IDDPSreg 400 / 500 3
3. RTI disabled / enabled.
600 / 700 3 μA
P25° C 2 400 / 500 3 600 / 700 3 μA
C85° C 2 800 / 1000 3 2000 / 2500 3 μA
C105° C 2 1200 / 1500 3 3500 / 4000 3 μA
P125° C 2 1500 / 2000 3 5500 / 6000 3 μA
G4 P Stop Supply Current
(TJ = TA assumed) –40° C 2 IDDSreg 30 150 μA
P25° C 2 30 150 μA
C85° C 2 330 2500 μA
C105° C 2 470 3500 μA
P125° C 2 660 5000 μA
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 13
3.7.4 Voltage Regulator Characteristics
Table 17. VREG Operating Conditions
Num C Characteristic Symbol Min Typical Max Unit
H1 P Input Voltages VVDDRA 3.15 — 5.5 V
H2 P Output Voltage, Digital Logic
Full Performance Mode
Reduced Power Mode
Shutdown Mode
VDD2.5 2.45
1.60
1
NOTES:
1. High impedance output.
2.5
2.5
1
2.75
2.75
1
V
V
V
H3 P Output Voltage, PLL
Full Performance Mode
Reduced Power Mode 2
Reduced Power Mode 3
Shutdown Mode
2. Current IDDPLL = 1 mA (Low Power Oscillator).
3. Current IDDPLL = 3 mA (Standard Oscillator).
VDDPLL 2.35
2.00
1.60
1
2.5
2.5
2.5
1
2.75
2.75
2.75
1
V
V
V
V
H4 P Low Voltage Interrupt 4
Assert Level
Negate Level
4. Monitors VDDA, active only in full performance mode. This interrupt indicates that I/O and ATD performance may be
degraded due to low supply voltage.
VLVIA
VLVID
4.10
4.25 4.37
4.52 4.66
4.77 V
V
H5 P Low Voltage Reset 5
Assert Level
5. Monitors VDD2.5, active only in full performance mode. Only POR is active in reduced performance mode.
VLVRA 2.25 2.35 V
H6 P Power On Reset 6
Assert Level
Negate Level
6. Monitors VDD2.5, active in all modes.
VPORA
VPORD
0.97
2.05 V
V
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor14
3.7.5 Chip Power Up and Voltage Drops
The VREG sub-modules LVI (low voltage interrupt), POR (power on reset) and LVR (low voltage reset)
handle chip power-up or drops of the supply voltage. Refer to Figure 2.
Figure 2. VREG Chip Power-up and Voltage Monitoring
3.7.6 Output Loads
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external
DC load is allowed. Capacitive loads are specified in Table 18. Capacitors with X7R dielectricum are
required.
Table 18. VREG Recommended Load Capacitances
Rating Symbol Min Typ Max Unit
Load Capacitance per VDD2.5 pin 1
NOTES:
1. Refer to Table 38 for the specific number of VDD2.5 pins on various packages. Each VDD2.5 pin should have the
recommended loading as described in Section 3.7.3, “Circuit Board Layout, of the MAC7100 Microcontroller Family
Reference Manual (MAC7100RM).
CLVDD 200 220 12000 nF
Load Capacitance on VDDPLL pin CLVDDfcPLL 90 220 5000 nF
LVI Disabled
due to LVR
VLVID
VLVRD
LVR
POR
LVI
VPORD
VLVRA
VLVIA
Time
LVI Enabled
VDDA
VDD2.5
V
o
l
tage
Note: Not to scale.
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 15
3.8 Clock and Reset Generator
This section describes the electrical characteristics for the oscillator, phase-locked loop, clock monitor and
reset generator.
3.8.1 Oscillator Characteristics
The MAC7100 Family features an internal low power loop controlled Pierce oscillator and a full swing
Pierce oscillator/external clock mode. The selection of loop controlled Pierce oscillator or full swing
Pierce oscillator/external clock depends on the level of the XCLKS signal at the rising edge of the RESET
signal. Before asserting the oscillator to the internal system clock distribution subsystem, the quality of the
oscillation is checked for each start from either power on, STOP or oscillator fail. tCQOUT specifies the
maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation
is not detected. The quality check also determines the minimum oscillator start-up time tUPOSC. The device
also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock
signal is below the Clock Monitor Assert Frequency fCMFA.
Table 19. Oscillator Characteristics
Num C Rating Symbol Min Typ Max Unit
J1a C Crystal oscillator range (loop controlled Pierce) fOSC 1
NOTES:
1. If CLKSEL[PLLSEL] is clear then the system clock (fSYS) is equal to fOSC, otherwise it is equal to fVCO (table
Table 20, K3). Throughout this document, tSYS is used to specify a unit of time equal to 1 ÷ fSYS.
4.0 16 MHz
J1b C Crystal oscillator range (full swing Pierce) 2 3
2. Depending on the crystal; a damping series resistor might be necessary
3. XCLKS asserted (low) during reset
fOSC 1 0.5 40 MHz
J2 P Startup Current IOSC 100 μA
J3 C Oscillator start-up time (loop controlled Pierce) tUPOSC —3
4
4. fOSC = 4 MHz, C = 22 pF (refer to the MAC7100 Microcontroller Family Reference Manual (MAC7100RM) for circuit
board layout recommendations, including oscillator capacitor placement and values).
50 5
5. Maximum value is for extreme cases using high Q, low frequency crystals
ms
J4 D Clock Quality check time-out tCQOUT 0.45 2.5 s
J5 P Clock Monitor Failure Assert Frequency fCMFA 50 100 200 KHz
J6 P External square wave input frequency 3 fEXT 0.5 50 MHz
J7 D External square wave pulse width low tEXTL 9.5 — ns
J8 D External square wave pulse width high tEXTH 9.5 — ns
J9 D External square wave rise time tEXTR —— 1ns
J10 D External square wave fall time tEXTF —— 1ns
J11 D Input Capacitance (EXTAL, XTAL pins) CIN —7pF
ET‘ ALTET F E f 1 C 2
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor16
3.8.2 PLL Filter Characteristics
The oscillator provides the reference clock for the PLL as shown in Figure 3. The voltage controlled
oscillator (VCO) of the PLL is also the system clock source in self clock mode. In order to operate reliably,
care must be taken to select proper values for external loop filter components.
Figure 3. Basic PLL Functional Diagram
The procedure described below can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table 20. First, the VCO Gain at the desired VCO output frequency is
approximated by:
Eqn. 8
The phase detector relationship is given by:
Eqn. 9
ich is the current in tracking mode. The loop bandwidth fC should be chosen to fulfill the Gardners stability
criteria by at least a factor of 10, a typical value for the stability factor is 50. ζ = 0.9 ensures a good transient
response.
Eqn. 10
And finally the frequency relationship is defined as:
Eqn. 11
With the above inputs the resistance can be calculated as:
Eqn. 12
The capacitance CS can now be calculated as:
Eqn. 13
Phase
Detector
1
REFDV+1 K
φ
fREF
VDDPLL
R
CP
CS
KV
Loop Divider
1
SYNR+1
fVCO
fOSC
1
2
fCMP
VCO
Δ
KVK1e
f1fVCO
()
K11V
--------------------------
=
KΦich
KV
=
f
C
2ζfREF
⋅⋅
πζ 1ζ2
++()
---------------------------------------- 1
10
------ fC
fREF
410
-------------- ζ0.9=();<<
nfVCO
fREF
---------- 2 SYNR 1+()==
R2πnfC
⋅⋅⋅
KΦ
----------------------------=
CS2ζ2
πfCR⋅⋅
--------------------- 0.516
fCR
------------- ζ0.9=();=
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 17
The capacitance CP should be chosen in the range of:
Eqn. 14
The stabilization delays shown in Table 20 are dependant on PLL operational settings and external
component selection (for example, the crystal and XFC filter).
3.8.2.1 Jitter Information
With each transition of the clock fCMP, the deviation from the reference clock fREF is measured and input
voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes
in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the
control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as
illustrated in Figure 4. It is important to note that the pre-scaler used by timers and serial modules will
eliminate the effect of PLL jitter to a large extent.
Figure 4. Jitter Definitions
The relative deviation of tNOM is at its maximum for one clock period, and decreases towards zero for
larger number of clock periods (N). Thus, jitter is defined as:
Eqn. 15
For N < 100, the following equation is a good fit for the maximum jitter:
Eqn. 16
Figure 5. Maximum Bus Clock Jitter Approximation
CS20÷CPCS10÷≤≤
0
tMIN1
123N1N
tNOM
tMAX1
tMIN(N)
tMAX(N)
JN() max 1tMAX N()
Nt
NOM
--------------------
–1
tMIN N()
Nt
NOM
--------------------
,
⎝⎠
⎛⎞
=
JN() j1
N
-------- j2
+=
01 5 10 2015 N
J(N)
H \
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor18
3.8.3 PLL Characteristics
3.8.4 Crystal Monitor Time-out
The time-out
Table 21
shows the delay for the crystal monitor to trigger when the clock stops, either at the high
or at the low level. The corresponding clock period with an ideal 50% duty cycle is twice this time-out value.
3.8.5 Clock Quality Checker
The timing for the clock quality check is derived from the oscillator and the VCO frequency range in
Table 20. These numbers define the upper time limit for the individual check windows to complete.
Table 20. PLL Characteristics
Num C Rating Symbol Min Typ Max Unit
K1 PLL reference frequency, crystal oscillator range fREF 0.5 16 MHz
K2 P Self Clock Mode frequency fSCM 2—5.5MHz
K3 D VCO locking range fVCO 1
NOTES:
1. If CLKSEL[PLLSEL] is set then the system clock (fSYS) is equal to fVCO, otherwise it is equal to fOSC (table Table 19,
J1a or J1b). Throughout this document, tSYS is used to specify a unit of time equal to 1 ÷ fSYS.
8—50MHz
K4 D
Lock Detector transition from Acquisition to Tracking mode
trk|3—4%
2
2. Percentage deviation from target frequency
K5 D Lock Detection Lock|0—1.5%
2
K6 D Un-Lock Detection unl|0.5 2.5 % 2
K7 D
Lock Detector transition from Tracking to Acquisition mode
unt|6—8%
2
K8 C PLLON Total Stabilization delay (Auto Mode) 3
3. PLL stabilization delay is highly dependent on operational requirement and external component values (for
example, crystal and XFC filter component values). Notes 4 and 5 show component values for a typical
configurations. Appropriate XFC filter values should be chosen based on operational requirement of system.
tstab —0.5
4
4. fOSC = 4 MHz, fVCO = 40 MHz (REFDV = 0x00, SYNR = 0x04), CS = 2.2 nF, CP = 220 pF, RS = 5.6 KΩ.
3 5
5. fOSC = 4 MHz, fVCO = 16 MHz (REFDV = 0x00, SYNR = 0x01), CS = 4.7 nF, CP = 470 pF, RS = 2.7 KΩ.
ms
K9 D PLLON Acquisition mode stabilization delay 3 tacq —0.3
4 1 5 ms
K10 D PLLON Tracking mode stabilization delay 3 tal —0.2
4 2 5 ms
K11 D Charge pump current acquisition mode | ich | 38.5 μA
K12 D Charge pump current tracking mode | ich |—3.5—μA
K13 D Jitter fit VCO loop gain parameter K1 –195 — MHz/V
K14 D Jitter fit VCO loop frequency parameter f1 126 — MHz
K15 C Jitter fit parameter 1 j1——1.3%
4
K16 C Jitter fit parameter 2 j2 0.12 % 4
Table 21. Crystal Monitor Time-Outs
Min Typ Max Unit
61018.5μs
Table 22. CRG Maximum Clock Quality Check Timings
Clock Check Windows Value Unit
Check Window 9.1 to 20.0 ms
Timeout Window 0.46 to 1.0 s
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 19
3.8.6 Startup
Table 23
summarizes several startup characteristics.
Refer to Section 4.3.6.10, “CRG Operating Mode
Details,” in the MAC7100 Microcontroller Family Reference Manual (MAC7100RM) for details.
3.8.6.1 Power On and Low Voltage Reset (POR and LVR)
The VPORR and VPORA levels are derived from VDD2.5. The VLVRA level is derived from VDD2.5. They
are also valid if the device is powered externally. After releasing a POR or LVR reset, the oscillator and
clock quality checks start. After tCQOUT (Table 19, J4) if no valid oscillation is detected, the MCU will
start using the internal self-generated clock. The minimum startup time is given by tuposc (Table 19, J3).
3.8.6.2 SRAM Data Retention
SRAM content integrity is guaranteed if the CRGFLG[PORF] bit is not set following a reset operation.
3.8.6.3 External Reset
When external reset is asserted for a time greater than PWRSTL, the CRG generates an internal reset and
the CPU fetches the reset vector without a clock quality check, if there was stable oscillation before reset.
3.8.6.4 Stop Recovery
The MCU can return from stop to run mode in response to an external interrupt or an API. Two delays
occur before the MCU resumes execution. First, the voltage regulator must exit reduced power mode and
return to full performance mode (this assumes that the internal regulator is used rather than driving VDD2.5
and VDDPLL with an external regulator). Second, a clock quality check is performed in the same manner
as for a power-on reset before releasing the clocks to the system.
3.8.6.5 Pseudo Stop Recovery
Recovery from pseudo stop mode is similar to stop mode in that the VREG must return to FPM, but since
the oscillator is not stopped there is no delay for clock stabilization. The MCU is returned to run mode by
internal or external interrupts.
3.8.6.6 Doze Recovery
Recovery from doze mode avoids both the VREG and oscillator recovery periods. The MCU is returned
to run mode by internal or external interrupts.
Table 23. CRG Startup Characteristics
Num C Rating Symbol Min Typ Max Unit
L1 D Reset input pulse width PWRSTL 2—t
OSC
L2 D Startup from Reset nRST 192 196 tOSC
L3 D XIRQ, IRQ pulse width, edge-sensitive mode PWIRQ 20 — ns
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor20
3.9 External Bus Timing
Table 24 lists processor bus input timings, which are shown in Figure 6, Figure 7 and Figure 8.
NOTE
All processor bus timings are synchronous; that is, input setup/hold and output delay
with respect to the rising edge of a reference clock. The reference clock is the
CLKOUT output. All other timing relationships can be derived from these values.
Figure 6. General Input Timing Requirements
Table 24. External Bus Input Timing Specifications 1
NOTES:
1. Assumes CLKOUT is configured for full drive strength (via the PIM CONFIG2_D[RDS] bit).
Num C Rating Symbol Min Max Unit
M1 P CLKOUT period 2
2. CLKOUT is equal to the system clock, fSYS. If CLKSEL[PLLSEL] is set then fSYS is equal to fVCO (table Table 20,
K3); if it is clear then fSYS is equal to fOSC (table Table 19, J1a or J1b). Throughout this document, tCYC is used to
specify a unit of time equal to 1 ÷ CLKOUT (which is equal to tfsys).
tCYC 20 — ns
Control Inputs
M2a P Control input valid to CLKOUT high 3
3. The TA pin is the only control input on MAC7100 family devices.
tCVCH 13 — ns
M3a P CLKOUT high to control inputs invalid 3 tCHCII 0—ns
Data Inputs
M4 P Data input (DATA[15:0]) valid to CLKOUT high tDIVCH 9—ns
M5 P CLKOUT high to data input (DATA[15:0]) invalid tCHDII 0—ns
CLKOUT (50 MHz)
1.5 V 1.5 VValid InvalidInvalid
tSETUP tHOLD
Input Setup & Hold
Input Rise Time VH = VIH
VL = VIL
tRISE = 1.5 ns
Input Fall Time VH = VIH
VL = VIL
tFALL = 1.5 ns
CLKOUT
Inputs
1.5 V
M4 M5
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 21
3.9.1 Read and Write Bus Cycles
Table 25 lists processor bus output timings. Read/write bus timings listed in Table 25 are shown in
Figure 7 and Figure 8.
Table 25. External Bus Output Timing Specifications 1
NOTES:
1. Assumes CLKOUT, CSn, BSn, OE, AS, ADDR[21:0] and DATA[15:0] are configured for full drive strength (via the PIM).
Num C Rating Symbol Min Max Unit
Control Outputs
M6a P CLKOUT high 2 to chip selects (CS[2:0]) valid
2. The CSn, BSn, OE and AS signals are synchronous to the falling edge of CLKOUT. Therefore, changes on these
signals are triggered by the falling edge of CLKOUT, even though they are specified in relation to the rising edge.
tCHCV —0.5t
CYC + 10 ns
M6b P CLKOUT high 2 to byte selects (BS[1:0]) valid tCHBV —0.5t
CYC + 10 ns
M6c P CLKOUT high 2 to output select (OE) valid tCHOV —0.5t
CYC + 10 ns
M6d P CLKOUT high 2 to address strobe (AS) valid tCHASV —0.5t
CYC + 10 ns
M7a P CLKOUT high 2 to control output (BS[1:0], OE) invalid tCHCOI 0.5tCYC + 2 ns
M7b P CLKOUT high 2 to chip selects (CS[2:0]) invalid tCHCI 0.5tCYC + 2 ns
M7c P CLKOUT high 2 to address strobe (AS) invalid tCHASI 0.5tCYC + 2 ns
Address and Attribute Outputs
M8 P CLKOUT high to address (ADDR[21:0]) and control
(R/W) valid tCHAV —10ns
M9 P CLKOUT high to address (ADDR[21:0]) and control
(R/W) invalid tCHAI 2—ns
Data Outputs
M10 P CLKOUT high to data output (DATA[15:0]) valid tCHDOV —13ns
M11 P CLKOUT high to data output (DATA[15:0]) invalid tCHDOI 2—ns
M12 D
CLKOUT high to data output (DATA[15:0]) high impedance
tCHDOZ —9ns
F‘X, h \/ O
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor22
Figure 7. Read/Write Bus Cycles, Internal Termination
AS(1)
CLKOUT
CSn
ADDR[21:0]
OE
R/W
BS[1:0]
S0 S2S1 S3 S4 S5 S0 S1 S2 S3 S4 S5
DATA[15:0]
M6a M7b M6a M7b
M8 M8
M8
M9
M6c M7a M1
M9
M6b M6b
M7a M7a
M4
M5
M10 M11
M12
M6d M7c M7c
M6d
1. The TA / AS signals are multiplexed on a single pin, so only one function may be used during bus transactions.
TA(1)
‘\mvfi¥:fi %
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 23
Figure 8. Read Bus Cycle, External Termination
TA(1)
CLKOUT
CSn
ADDR[21:0]
OE
R/W
BS[1:0]
S0 S2S1 S3 S4 S5 S0
DATA[15:0]
S1
M6a M7b
M7a
M7a
M8 M9
M6c
M6b
M4 M5
M2a M3a
1. The TA / AS signals are multiplexed on a single pin, so AS is not available when external cycle termination is used.
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor24
3.10 Analog-to-Digital Converter
Table 26
and
Table 27
show conditions under which the ATD operates. The following constraints exist to
obtain full-scale, full range results: V
SS
A
V
RL
V
IN
V
RH
V
DD
A. This constraint exists because the
sample buffer amplifier cannot drive beyond the ATD power supply levels. If the input level goes outside of
this range it will effectively be clipped.
Table 26. ATD Operating Characteristics in 5.0 V Range
Conditions shown in Table 7 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
N1 D Reference Potential Low
High VRL
VRH
VSSA
VDDA ÷ 2
VDDA ÷ 2
VDDAV
V
N2 C Differential Reference Voltage 1
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.50 V
VRH – VRL 4.50 5.00 5.50 V
N3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
N4 D ATD 10-bit Conversion PeriodfATDCLK Cycles 2
@ 2.0MHz fATDCLK
2. Minimum time assumes a sample period of 2 ATD clocks; maximum time assumes a sample period of 16 ATD clocks.
NCONV10
TCONV10
14
7
28
14 Cycles
μs
N5 D ATD 8-bit Conversion PeriodfATDCLK Cycles 2
@ 2.0MHz fATDCLK
NCONV8
TCONV8
12
6
26
13 Cycles
μs
N6 D Stop Recovery Time (VDDA = 5.0 V) TREC ——20μs
N7 P Reference Supply current 1 ATD module on IREF 0.200 0.255 mA
N8 P Reference Supply current 2 ATD modules on IREF 0.400 0.510 mA
Table 27. ATD Operating Characteristics in 3.3 V Range
Conditions shown in Table 7, with VDDX = 3.3 V –5/+10% and a temperature maximum of +140°C unless otherwise
noted.
Num C Rating Symbol Min Typ Max Unit
P1 D Reference Potential Low
High VRL
VRH
VSSA
VDDA ÷ 2
VDDA ÷ 2
VDDAV
V
P2 C Differential Reference Voltage 1
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 3.15 V
VRH – VRL 3.15 3.3 3.6 V
P3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
P4 D ATD 10-bit Conversion PeriodfATDCLK Cycles 2
@ 2.0MHz fATDCLK
2. Minimum time assumes a sample period of 2 ATD clocks; maximum time assumes a sample period of 16 ATD clocks.
NCONV10
TCONV10
14
7
28
14 Cycles
μs
P5 D ATD 8-bit Conversion PeriodfATDC LK Cycles 2
@ 2.0MHz fATDCLK
NCONV8
TCONV8
12
6
26
13 Cycles
μs
P6 D Stop Recovery Time (VDDA = 3.3 V) TREC ——20μs
P7 P Reference Supply current 1 ATD module on IREF 0.130 0.170 mA
P8 P Reference Supply current 2 ATD modules on IREF 0.260 0.340 mA
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 25
3.10.1 Factors Influencing Accuracy
Three factors—source resistance, source capacitance and current injection—have an influence on the
accuracy of the ATD.
3.10.1.1 Source Resistance
Due to the input pin leakage current as specified in Table 8 in conjunction with the source resistance there
will be a voltage drop from the signal source to the ATD input. The maximum specified source resistance
RS, results in an error of less than 1/2 LSB (2.5 mV) at the maximum leakage current. If the device or
operating conditions are less than the worst case, or leakage-induced errors are acceptable, larger values
of source resistance are allowed.
3.10.1.2 Source Capacitance
When sampling, an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external capacitance and the pin capacitance. For a maximum sampling error of
the input voltage 1 LSB, then the external filter capacitor must be calculated as,
C
f
1024
×
(C
INS
C
INN
)
.
3.10.1.3 Current Injection
There are two cases to consider:
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of 0x3FF (0xFF in 8-bit mode) for analog inputs greater than VRH and 0x000 for values less
than VRL unless the current is higher than specified as disruptive condition.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the
accuracy of the conversion depending on the source resistance. The additional input voltage error
on the converted channel can be calculated as VERR = K × RS × IINJ, with IINJ being the sum of
the currents injected into the two pins adjacent to the converted channel.
Table 28. ATD Electrical Characteristics
Conditions are shown in Table 7 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
Q1 C Max input Source Resistance RS—— 1kΩ
Q2 C Total Input Capacitance
Non Sampling
Sampling CINN
CINS
10
22
pF
pF
Q3 C Disruptive Analog Input Current INA –2.5 2.5 mA
Q4 C Coupling Ratio positive current injection Kp——TBDA / A
Q5 C Coupling Ratio negative current injection Kn——TBDA / A
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor26
3.10.2 ATD Accuracy
Table 29 and Table 30 specify the ATD conversion performance excluding any errors due to current
injection, input capacitance and source resistance.
For the following definitions, see Figure 9.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps:
Eqn. 17
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
Eqn. 18
Table 29. ATD Conversion Performance in 5.0 V Range
Conditions shown in Table 7 except as noted here:
fATDCL K = 2.0 MHz, 4.5 V VDDA 5.5 V
Num C Rating Symbol Min Typ Max Unit
R1 P 10-bit Resolution LSB 5 1
NOTES:
1. Assumes VREF = VRH – VRL = 5.12 V, other VREF conditions result in different LSB resolutions.
—mV
R2 P 10-bit Differential Nonlinearity DNL 1 1 Counts
R3 P 10-bit Integral Nonlinearity INL –2.5 ±1.5 2.5 Counts
R4 P 10-bit Absolute Error 2
2. These values include the quantization error which is inherently ½ count for any A/D converter.
AE –3 ±2.0 3 Counts
R5 P 8-bit Resolution LSB 20 1 —mV
R6 P 8-bit Differential Nonlinearity DNL –0.5 0.5 Counts
R7 P 8-bit Integral Nonlinearity INL –1.0 ±0.5 1.0 Counts
R8 P 8-bit Absolute Error 2 AE –1.5 ±1.0 1.5 Counts
Table 30. ATD Conversion Performance in 3.3 V Range
Conditions shown in Table 7 except as noted here:
fATDCL K = 2.0 MHz, 3.15 V VDDA 3.6 V
Num C Rating Symbol Min Typ Max Unit
S1 P 10-bit Resolution LSB 3.25 1
NOTES:
1. Assumes VREF = VRH – VRL = 3.33 V, other VREF conditions result in different LSB resolutions.
—mV
S2 P 10-bit Differential Nonlinearity DNL –1.5 1.5 Counts
S3 P 10-bit Integral Nonlinearity INL –3.5 ±1.5 3.5 Counts
S4 P 10-bit Absolute Error 2
2. These values include the quantization error which is inherently ½ count for any A/D converter.
AE –5 ±2.0 5 Counts
S5 P 8-bit Resolution LSB 13 1 —mV
S6 P 8-bit Differential Nonlinearity DNL –0.5 0.5 Counts
S7 P 8-bit Integral Nonlinearity INL –1.5 ±1.0 1.5 Counts
S8 P 8-bit Absolute Error 2 AE –1.5 ±1.0 1.5 Counts
DNL i() ViVi1
1 LSB
---------------------- 1=
INL n() DNL i()
i1=
n
VnV0
1 LSB
-------------------n==
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 27
Figure 9. ATD Accuracy Definitions
NOTE
Figure 9
shows only definitions, for specification values refer to
Table 29
.
0x3FF
0x3FE
0x3FD
0x3FC
0x3FB
0x3FA
0x3F9
0x3F8
0x3F7
0x3F6
0x3F5
0x3F4
0x3F3
9
8
7
6
5
4
3
2
1
00 102030405050555065 5075 5085 5095 5105 5115
5060 5070 5080 5090 5100 5110 51205 152535
1
2
0xFD
0xFE
0xFF
10-bit Absolute Error Boundary
Ideal Transfer Curve
8-bit Transfer Curve
10-bit Transfer Curve
8-bit Absolute Error Boundary
10-bit Resolution
8-bit Resolution
LSB
DNL
VI–1 VI
VIN
mV
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor28
3.10.3 ATD Timing Specifications
Figure 10. ATD External Trigger Timing Diagram
Table 31. ATD External Trigger Timing Specifications
Num C Parameter Symbol Min Max Unit
T1 D ETRIG Period (Level-Sensitive Trigger Mode) TPERIOD 1 + NCONVn 1
NOTES:
1. NCONVn denotes 8- or 10-bit conversion time (refer to specifications N4, N5, P4 and P5). In order to achieve the
minimum period between conversions when using level-sensitive triggering, ETRIG must remain asserted this long.
fATDCLK Cycles
T2 D ETRIG Minimum Pulse Width
Edge-Sensitive Trigger Mode
Level-Sensitive Trigger Mode
tPW 1
2
fATDCLK Cycles
T3 D ETRIG Level Recovery 2
2. Time prior to the end of a conversion that ETRIG must be negated in order to prevent the start of another conversion.
tLR 1—fATDCLK Cycles
T4 D Conversion Start Delay tDLY —2fATDCLK Cycles
Level Sensitive
Low Active
Sequence
Conversion Activity
Complete Flag
Low Active
Sequence
Complete Flag
Conversion Activity
Level Sensitive
Falling Edge Active
Conversion Activity
Edge Sensitive
ETRIG
ANn_x
ETRIG
ASCIF
ANn_x
ETRIG
ASCIF
ANn_x
T2
T1
T4 T4
T2
T4 T4
T4
T3
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 29
3.11 Serial Peripheral Interface
3.11.1 Master Mode
Master mode timing values are shown in Table 32 and illustrated in Figure 11 and Figure 12.
3.11.2 Slave Mode
Slave mode timing values are shown in Table 33 and illustrated in Figure 13 and Figure 14.
Table 32. SPI Master Mode Timing Characteristics
Conditions are shown in Table 7 unless otherwise noted, CLOAD = 200 pF on all outputs
Num C Rating Symbol Min Typ Max Unit
U1a P Operating Frequency (baud rate) fOP 1
NOTES:
1. Refer to MAC7100 Microcontroller Family Reference Manual (MAC7100RM) Chapter 22 for all available baud rates.
½
2
2. On mask set L49P and L47W devices, U1a maximum = ¼ and U1b minimum = 4.
fIPS
U1b P SCK Period (tSCK = 1 ÷ fOP, tIPS = 1 ÷ fIPS)t
SCK 1 2 2 —7 × 32,768 tIPS
U2 D Enable Lead Time tlead ½—t
SCK
U3 D Enable Lag Time tlag ½—t
SCK
U4 D Clock (SCK) High or Low Time twsck tIPS 30 1024 tIPS ns
U5 D Data Setup Time (Inputs) tsu 25 — ns
U6 D Data Hold Time (Inputs) thi 0—ns
U9 D Data Valid (after Enable Edge) tv——25ns
U10 D Data Hold Time (Outputs) tho 0—ns
U11 D Rise Time Inputs and Outputs tr——25ns
U12 D Fall Time Inputs and Outputs tf——25ns
Table 33. SPI Slave Mode Timing Characteristics
Conditions are shown in Table 7 unless otherwise noted, CLOAD = 200 pF on all outputs
Num C Rating Symbol Min Typ Max Unit
V1a P Operating Frequency fOP ½
1
NOTES:
1. On mask set L49P and L47W devices, V1a maximum = ¼ and V1b minimum = 4.
fIPS
V1b P SCK Period (tSCK = 1 ÷ fOP, tIPS = 1 ÷ fIPS)t
SCK 2 1 —7 × 32,768 tIPS
V2 D Enable Lead Time tlead 1—t
IPS
V3 D Enable Lag Time tlag 1—t
IPS
V4 D Clock (SCK) High or Low Time twsck tIPS 30 ns
V5 D Data Setup Time (Inputs) tsu 25 — ns
V6 D Data Hold Time (Inputs) thi 25 — ns
V7 D Slave Access Time ta—— 1t
IPS
V8 D Slave SIN Disable Time tdis —— 1t
IPS
V9 D Data Valid (after SCK Edge) tv——25ns
V10 D Data Hold Time (Outputs) tho 0—ns
V11 D Rise Time Inputs and Outputs tr——25ns
V12 D Fall Time Inputs and Outputs tf——25ns
1
732678,×
-----------------------------
1
732678,×
-----------------------------
AWE 202 ’ O
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor30
Figure 11. SPI Master Timing (CPHA = 0)
Figure 12. SPI Master Timing (CPHA = 1)
MSB Out(2)
MSB In(2)
PCSx
SCK
(CPOL = 0)
(OUTPUT)
SCK
(CPOL = 1)
(OUTPUT)
(OUTPUT)
Bit 6 ... 1
SIN
(INPUT)
SOUT
(OUTPUT) LSB Out
LSB In
Bit 6 ... 1
U2 U1b U3
U4 U4 U12
U5 U6
U11
U9 U9 U10
1. If configured as output.
2. LSBFE = 0. For LSBFE = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
PCSx
SCK
(CPOL = 0)
(OUTPUT)
SCK
(CPOL = 1)
(OUTPUT)
(OUTPUT)
Bit 6 ... 1
SIN
(INPUT)
SOUT
(OUTPUT)
LSB In
Bit 6 ... 1
Port DataPort Data Master LSB Out
U10
U9
U6
U11
U12
U11
U5
U4 U4
U2 U1b U3
U12
MSB Out(2)
MSB In(2)
1. If configured as output.
2. LSBFE = 0. For LSBFE = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 31
Figure 13. SPI Slave Timing (CPHA = 0)
Figure 14. SPI Slave Timing (CPHA = 1)
SS
SCK
(CPOL = 0)
(INPUT)
SCK
(CPOL = 1)
(INPUT)
(INPUT)
SOUT
(OUTPUT)
SIN
(INPUT)
Slave MSB Out Bit 6 ... 1 Slave LSB Out
MSB In LSB In
Bit 6 ... 1
V2 V1b
V4 V4
V5 V6
V7 V8
V9 V10
V10
V12
V12
V11
V11 V3
SS
SCK
(CPOL = 0)
(INPUT)
SCK
(CPOL = 1)
(INPUT)
(INPUT)
Bit 6 ... 1
SOUT
(OUTPUT)
SIN
(INPUT)
Slave MSB Out Slave LSB Out
MSB In LSB In
Bit 6 ... 1
V2 V1b
V4 V4
V5 V6
V7 V8V9 V10
V12
V12
V11
V11 V3
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor32
3.12 FlexCAN Interface
3.13 Common Flash Module
NOTE
Unless otherwise noted the abbreviation NVM (Non-Volatile Memory) is
used for both program Flash and data Flash.
The time base for all program and data Flash operations, fNVMOP, is derived from the IPS bus clock, fIPS,
using the CFMCLKD register to control the divider ratio. Throughout this section, tIPS refers to 1 ÷ fIPS,
and tNVMOP refers to 1 ÷ fNVMOP. An fNVMOP frequency range limit is imposed for performing program
or erase operations. The CFM does not monitor the frequency and will not prevent program or erase
operation at frequencies above or below the following limits:
Eqn. 19
fNVMOP = 200 KHz gives the fastest program and erase performance. Setting CFMCLKD to a value such
that fNVMOP < 150 KHz should be avoided, as this can damage the Flash memory due to overstress. Setting
CFMCLKD to a value such that fNVMOP > 200 KHz can result in incomplete programming or erasure of
the Flash memory array cells.
3.13.1 Mass Erase Timing
The time required to erase the entire NVM array (both program and data) is calculated using the formula:
Eqn. 20
The setup time can be ignored for this operation.
3.13.2 Blank Check Timing
The time it takes to perform a blank check on the program or data Flash is dependant on the location of the
first non-blank word, starting from relative address zero. One fIPS cycle is required per word to be verified,
and the time required for the operation is calculated using the formula:
Eqn. 21
Table 34. FlexCAN Wake-up Pulse Characteristics
Conditions are shown in Table 7 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
W1 P FlexCAN Wake-up dominant pulse filtered tWUP —— 2μs
W2 P FlexCAN Wake-up dominant pulse passed tWUP 5—μs
150 KHz fNVMOP 200 KHz<
tmass 20000 tNVMOP
tcheck locations 15+()tIPS
=
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 33
3.13.3 Page Erase Timing
The time required to erase a 4 Kbyte program or 1 Kbyte data Flash logical page is calculated using the
formulas:
Eqn. 22
Eqn. 23
3.13.4 Page Erase Verify Timing
The time required to verify that a program Flash page is erased depends on the location of the first
non-blank word. The time required for the operation is calculated using the formula:
Eqn. 24
The time required to verify that a data Flash page is erased is calculated using the formula:
Eqn. 25
3.13.5 Programming Timing
Programming time is dependant on the fIPS and fNVMOP frequencies, and is calculated for a single word
using the formula:
Eqn. 26
Burst programming can be utilized with the program Flash, where up to 32 words in a row can be
programmed consecutively by keeping the command pipeline filled. The time to program a consecutive
word is calculated using the formula:
Eqn. 27
Therefore, the time to program a 32-word row is calculated using the formula:
Eqn. 28
Note that burst programming is more than 2 times faster than single word programming.
3.13.6 Data Signature Timing1
The time required to perform a data signature command is dependant on the number of words or
half-words compressed during the operation, and is calculated using the formula:
Eqn. 29
1. This feature is not available on mask set L49P and L47W devices.
terap 4096 tNVMOP
15+tIPS
=
terad 1024 tNVMOP
15+tIPS
=
tpevp 4 1024×
4
----------------------
⎝⎠
⎛⎞
15+tIPS
×=
tpevd 1 1024×
4
----------------------
⎝⎠
⎛⎞
15+tIPS
×=
tswpgm 9t
NVMOP
25 tIPS
+=
tbwpgm 4t
NVMOP
9t
IPS
+=
tbrpgm tswpgm 31 tbwpgm
+=
tdsig Words or Half-Words 15+()tIPS
=
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Electrical Characteristics
Freescale Semiconductor34
3.13.7 CFM Timing Specifications
Table 35 lists the time required to execute various operations described in the Section 3.13.1 through
Section 3.13.6. For operating conditions other than those assumed below, Equation 19 through
Equation 29 must be used to calculate the timing for specific commands under those conditions.
Table 35. CFM Timing Characteristics
Conditions are shown in Table 7 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
X1 D System Clock fNVMfsys 0.5 — 50 1
NOTES:
1. Subject to restrictions in Table 19 and Table 20 for operating characteristics of the oscillator and PLL.
MHz
X2 D Bus frequency for Programming or Erase Operations fNVMfips 1—MHz
X3 D Program/Erase Operating Frequency fNVMOP 150 200 kHz
X4 P Programming Time, 2
Single Word
2. Minimum erase and programming times are achieved with the indicated maximum fSYS (which is fIPS × 2, and subject to the
limits of Table 19 and Table 20) and corresponding maximum fNVMOP
. Maximum erase and programming times are
dependent on the combination of fNVMOP and fIPS; values shown are calculated for fIPS = 2 MHz and fNVMOP = 154 KHz.
fSYS = 50 MHz tswpgm 47.1 71.0 μs
fSYS = 40 MHz 48.1 71.0
X5 D Programming Time, 2
Consecutive Word Burst
fSYS = 50 MHz tbwpgm 20.8 30.5 μs
fSYS = 40 MHz 21.3 30.5
X6 D Programming Time, 2
32-word Row Burst fSYS = 50 MHz tbrpgm 693.1 1,016.5 μs
fSYS = 40 MHz 706.8 1,016.5
X7a P Page Erase Time, 2
Program Flash fSYS = 50 MHz terap 21.0 26.6 ms
fSYS = 40 MHz 21.3 26.6
X7b P Page Erase Time, 2
Data Flash
fSYS = 50 MHz terad 5.2 6.7 ms
fSYS = 40 MHz 5.3 6.7
X8 P Mass Erase Time 2 tmass 100 130 ms
X9a D Blank Check Time, 3
Program Flash per Block
3. Minimum blank check or page erase verify time assumes the first word in the array is blank and the second is not. Maximum
blank check or page erase verify time assumes the entire block or page is blank.
MAC71x1, MAC71x6t
bcheckp 16 131,087 tIPS
MAC71x21665,551
X9b D Blank Check Time, 3
Data Flash per Block tbcheckd 16 8,207 tIPS
X9c D Page Erase Verify Time 3 Program Flash tpevp 16 1,039 tIPS
Data Flash tpevd 16 — 271
X10 D Data Signature Time 4
4. Data signature timing is dependant on the number of words or half-words compressed for the program and data arrays,
respectively. Minimum time is for two words or half-words; maximum time is for the entire array.
MAC71x6, Program tdsig 17 262,159 tIPS
MAC71x1, Program 17 131,087
MAC71x2, Program 17 65,551
MAC71xx, Data 17 16,399
Electrical Characteristics
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 35
3.13.8 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase
cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is
incremented every time a sector or mass erase event is executed.
NOTE
All values shown in Table 36 are target values and subject to
characterization. For Flash cycling performance, each program operation
must be preceded by an erase.
Table 36. NVM Reliability Characteristics
Conditions shown in Table 7 unless otherwise noted.
Num C Rating Min Unit
X11 C Program/Data Flash Program/Erase endurance (–40C to +125C) 10,000 Cycles
X12 C Program/Data Flash Data Retention Lifetime 15 Years
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor36
4 Device Pin Assignments
The MAC7100 Family is available in 208-pin ball grid array (MAP BGA), 144-pin low profile quad flat
(LQFP), 112-pin LQFP, and 100-pin LQFP package options. The family of devices offer pin-compatible
packaged devices to assist with system development and accommodate a direct application enhancement
path. Refer to Table 2 for a comparison of the peripheral sets and package options for each device.
Most pins perform two or more functions, which are described in more detail in the MAC7100
Microcontroller Family Reference Manual (MAC7100RM). Table 37, Table 38 and Figure 15 through
Figure 22 show the pin assignments for various devices and packages.
Table 37. Signal Pin Assignments
Primary /
GPIO
Function
Peripheral
Function
1
External
Bus
Function
1
Debug
Function
1 Read on
Reset
Pin Number (by Device)
7101
7106 7111
7116 7112 7121
7126 7122 7131 7136 7141
7142
EXTAL 60 60 60 48 48 T10 T10 45
XTAL 61 61 61 49 49 T11 T11 46
XFC 58 58 58 46 46 T9 T9 43
RESET 48 48 48 36 36 T7 T7 33
TDI 128 128 128 102 102 A8 A8 93
TDO 129 129 129 103 103 B8 B8 94
TCK 130 130 130 104 104 A7 A7 95
TMS 131 131 131 105 105 B7 B7 96
——TA
/ AS 2 — 79———M14M14
PA0 — DATA0 3 MCKO 4 138 138 138 106 106 B5 B5
PA1 — DATA1 3 EVTO 137 137 137 C5 C5
PA2 — DATA2 3 EVTI 136 136 136 A5 A5
PA3 — DATA3 3 MDO0 135 135 135 C6 C6
PA4 — DATA4 3 MDO1 134 134 134 B6 B6
PA5 — DATA5 3 MSEO 133 133 133 A6 A6
PA6 — DATA6 3 RDY 132 132 132 C7 C7
PA7 — DATA7 3 98987474H15H15 65
PA8 — DATA8 3 97977373H13H13 64
PA9 — DATA9 3 96967272H14H14 63
PA10 — DATA10 3 — 95957171H16H16
PA11 — DATA11 3 — 94947070J15J15
PA12 — DATA12 3 — 93936969J14J14
PA13 — DATA13 3 67 67 67 53 53 R12 R12
PA14 — DATA14 3 —PS
3 66 66 66 52 52 T12 T12
PA15 — DATA15 3 —AA
3 65 65 65 51 51 P11 P11 48
PB0 SDA 15 15 15 11 11 G1 G1 8
PB1 SCL 16 16 16 12 12 H3 H3 9
PB2 SIN_A 17 17 17 13 13 H2 H2 10
PB3 SOUT_A 18 18 18 14 14 H1 H1 11
PB4 SCK_A 19 19 19 15 15 J3 J3 12
PB5 PCS0_A /
SS_A 20 20 20 16 16 J1 J1 13
PB6 PCS1_A 21 21 21 17 17 J2 J2 14
PB7 PCS2_A 22 22 22 18 18 K1 K1 15
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 37
PB8 PCS5_A /
PCSS_A 23 23 23 19 19 K2 K2 16
PB9 PCS0_B /
SS_B 72 72 72 56 56 T14 T14 51
PB10 PCS5_B /
PCSS_B — — — 73 73 73 57 5 57 R14 R14 52
PB11 PCS2_B — — — 74 74 74 5 —N14N14 53
PB12 PCS1_B 75 75 75 58 58 P15 P15 54
PB13 SCK_B 76 76 76 59 59 P16 P16 55
PB14 SOUT_B 77 77 77 60 60 N15 N15 56
PB15 SIN_B 78 78 78 61 61 N16 N16 57
PC0 ADDR0 3 — — 999F1F1
PC1 ADDR1 3 10 10 10 — F3 F3
PC2 ADDR2 3 11 11 11 — G2 G2
PC3 ADDR3 3 12 12 12 — G3 G3
PC4 ADDR4 3 28 28 28 L3 L3 —
PC5 ADDR5 3 29 29 29 — M2 M2
PC6 ADDR6 3 30 30 30 — M3 M3
PC7 ADDR7 3 31 31 31 — N3 N3
PC8 ADDR8 3 44 44 44 — P5 P5
PC9 ADDR9 3 45 45 45 — R6 R6
PC10 ADDR10 3 46 46 46 — P6 P6
PC11 ADDR11 3 47 47 47 — T6 T6
PC12 ADDR12 3 ——8888K14K14
PC13 ADDR13 3 ——8989K13K13
PC14 ADDR14 3 ——9090K15K15
PC15 ADDR15 3 — —91916767J16J16
PD0 — BS0 3 MODB 7070705454T13T13 49
PD1 — BS1 3 MODA 7171715555R13R13 50
PD2 6 —CLKOUT— XCLKS80 80 80 62 62 M16 M16 58
PD3 XIRQ 81 81 81 63 63 M15 M15 59
PD4 IRQ 82 82 82 64 64 L16 L16 60
PD5 ADDR16 3 — 92926868J13J13
PD6 ADDR17 3 119 119 95 95 C10 C10 86
PD7 ADDR18 3 120 120 96 96 D10 D10 87
PD8 ADDR19 3 121 121 97 97 D9 D9 88
PD9 ADDR20 3 122 122 98 98 B9 B9 89
PD10 ADDR21 3 123 123 99 99 D8 D8 90
PD11 — OE 3 68 68 68 — P12 P12
PD12 — CS2 3 69 69 69 — P13 P13
PD13 — CS1 3 83 83 83 — L13 L13
PD14 — CS0 3 84 84 84 — L14 L14
PD15 — R/W 3 85 85 85 — L15 L15
PE0 AN0_A MCKO' 89 99 99 75 75 G16 G16 66
PE1 AN1_A EVTO' 91 100 100 76 76 G15 G15 67
Table 37. Signal Pin Assignments (continued)
Primary /
GPIO
Function
Peripheral
Function
1
External
Bus
Function
1
Debug
Function
1 Read on
Reset
Pin Number (by Device)
7101
7106 7111
7116 7112 7121
7126 7122 7131 7136 7141
7142
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor38
PE2 AN2_A EVTI' 93 101 101 77 77 F13 F13 68
PE3 AN3_A MDO0' 95 102 102 78 78 F14 F14 69
PE4 AN4_A MDO1' 97 103 103 79 79 E13 E13 70
PE5 AN5_A MSEO' 99 104 104 80 80 E14 E14 71
PE6 AN6_A RDY' 101 105 105 81 81 D15 D15 72
PE7 AN7_A 103 106 106 82 82 C15 C15 73
PE8 AN8_A 105 107 107 83 83 C14 C14 74
PE9 AN9_A 107 108 108 84 84 D14 D14 75
PE10 AN10_A 113 113 113 89 89 B13 B13 80
PE11 AN11_A 115 114 114 90 90 C12 C12 81
PE12 AN12_A 117 115 115 91 91 A12 A12 82
PE13 AN13_A 119 116 116 92 92 B11 B11 83
PE14 AN14_A 121 117 117 93 93 A10 A10 84
PE15 AN15_A 123 118 118 94 94 A9 A9 85
PF0 eMIOS0 Debug Status 7 NEXPS 43 43 43 35 35 T5 T5 32
PF1 eMIOS1 Debug Status 7 NEXPR 42 42 42 34 34 R5 R5 31
PF2 eMIOS2 Debug Status 7 4141413333T4T4 30
PF3 eMIOS3 Debug Status 7 4040403232R4R4 29
PF4 eMIOS4 Debug Status 7 3939393131T3T3 28
PF5 eMIOS5 Debug Status 7 3838383030P4P4 27
PF6 eMIOS6 Debug Status 7 3737372929R3R3 26
PF7 eMIOS7 Debug Status 7 3636362828R1R1 25
PF8 eMIOS8 Debug Status 7 3535352727P2P2 24
PF9 eMIOS9 Debug Status 7 3434342626P1P1 23
PF10 eMIOS10 Debug Status 7 3333332525N2N2 22
PF11 eMIOS11 Debug Status 7 3232322424N1N1 21
PF12 eMIOS12 Debug Status 7 2727272323M1M1 20
PF13 eMIOS13 Debug Status 7 2626262222L2L2 19
PF14 eMIOS14 Debug Status 7 2525252121L1L1 18
PF15 eMIOS15 Debug Status 7 2424242020K3K3 17
PG0 RXD_B 141 141 141 109 109 A3 A3 97
PG1 TXD_B 142 142 142 110 110 C4 C4 98
PG2 RXD_A 143 143 143 111 111 B3 B3 99
PG3 TXD_A 144 144 144 112 112 C2 C2 100
PG4 CNTX_A 1 1 1 1 1 D3 D3 1
PG5 CNRX_A — — — 22222C1C1 2
PG6 CNTX_B 7 7 7 7 7 E1 E1 3
PG7 CNRX_B — — — 88888F2F2 4
PG8 CNTX_C 8 — — — 33333D2D2
PG9 CNRX_C 8 — — — 44444D1D1
PG10 CNTX_D 8 — — — 55555E3E3
PG11 CNRX_D 8 — — — 66666E2E2
PG12 RXD_D 8 51 51 51 39 39 R7 R7 36
PG13 TXD_D 8 52 52 52 40 40 R8 R8 37
Table 37. Signal Pin Assignments (continued)
Primary /
GPIO
Function
Peripheral
Function
1
External
Bus
Function
1
Debug
Function
1 Read on
Reset
Pin Number (by Device)
7101
7106 7111
7116 7112 7121
7126 7122 7131 7136 7141
7142
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 39
PG14 RXD_C 139 139 139 107 107 A4 A4
PG15 TXD_C 140 140 140 108 108 B4 B4
PH0 AN0_B 88 — — — — G13 G13
PH1 AN1_B 90 — — — — G14 G14
PH2 AN2_B 92 — — — — F16 F16
PH3 AN3_B 94 — — — — F15 F15
PH4 AN4_B 96 — — — — E16 E16
PH5 AN5_B 98 — — — — E15 E15
PH6 AN6_B 100 — — — — D16 D16
PH7 AN7_B 102 — — — — C16 C16
PH8 AN8_B 104 — — — — B16 B16
PH9 AN9_B 106 — — — — B14 B14
PH10 AN10_B 108 — — — — D13 D13
PH11 AN11_B 114 — — — — A13 A13
PH12 AN12_B 116 — — — — B12 B12
PH13 AN13_B 118 — — — — C11 C11
PH14 AN14_B 120 — — — — A11 A11
PH15 AN15_B 122 — — — — B10 B10
PI0 PCS3_A — — — ——————C3
PI1 PCS4_A — — — ——————D5
PI2 PCS6_A — — — ——————D4
PI3 PCS7_A — — — ——————E4
PI4 PCS3_B — — — ——————G4
PI5 PCS4_B — — — ——————J4
PI6 PCS6_B — — — ——————K4
PI7 PCS7_B — — — ——————L4
PI8 — — — — ——————N4
PI9 — — — — ——————P3
PI10 — — — — ——————R2
PI11 — — — — ——————R15
PI12 — — — — ——————N11
PI13 — — — — ——————N12
PI14 — — — — ——————N13
PI15 — — — — ——————P14
NOTES:
1. The MAC7100 family maximum peripheral configurations are listed in these columns. Some family members do not implement the full
complement of ATD, CAN, DSPI and eSCI peripherals. Refer to Table 2 on page 3 for availability of peripheral functions on various devices.
2. AS function not available on mask set L49P devices.
3. MAC7111, MAC7116, MAC7131 and MAC7136 only.
4. The MCKO function cannot be used on MAC7121 devices (the alternate Nexus port must be used).
5. On MAC7121 mask set L49P devices, PB11 / PCS2_B is bonded out on pin 57.
6. PD2 function not available on mask set L49P devices.
7. Optional debug status port not available on mask set L49P devices.
8. CAN C, CAN D and eSCI D not available on MAC7112, MAC7122 and MAC7142 devices.
Table 37. Signal Pin Assignments (continued)
Primary /
GPIO
Function
Peripheral
Function
1
External
Bus
Function
1
Debug
Function
1 Read on
Reset
Pin Number (by Device)
7101
7106 7111
7116 7112 7121
7126 7122 7131 7136 7141
7142
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor40
Table 38. Power Supply, Voltage Regulator and Reference Pin Assignments
Pin Name
Pin Number (by Device)
7101 / 7106 /
7111 / 7112 / 7116 7121 / 7122 / 7126 7131 / 7136 7141 / 7142
VDDX 14, 50, 64, 87, 124 10, 38, 66 C9, H4, K16, P7, P10 6, 35, 62
VSSX 13, 49, 63, 86, 125
7101 / 7106 / 7112 only:
79
9, 37, 65 A1, A2, B1, B2, F4, G7,
G8, G9, G10, H7, H8, H9,
H10, J7, J8, J9, J10, K7,
K8, K9, K10, M4, M13,
R9, R10, R16, T1, T2,
T15, T16
7131 only:
C3, D4, D5, E4, G4, J4,
K4, L4, N4, N11, N12,
N13, P3, P14, R9, R10
5, 34, 61
VDDR56 44 P9 41
VSSR 55 43 N5, N6 40
VDD2.5 53, 127 41, 101 C8, P8 38, 92
VSS2.5 54, 126 42, 100 D6, D7, N7, N8 39, 91
VDDPLL 57 45 T8 42
VSSPLL 59 47 N9, N10 44
VDDA 109 85 A16, B15, C13 76
VSSA 112 88 D11, D12 79
VRH 110 86 A15 77
VRL 111 87 A14 78
TEST 1
NOTES:
1. This pin is reserved for Freescale factory testing, and must be tied to system ground in all applications.
62 50 R11 47
N/C——— 7
HHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUU o m o 1 z a 2 3 P655
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 41
4.1 MAC7141 Pin Diagram
Figure 15. Pin Assignments for MAC7141 in 100-pin LQFP
PG4
PG5
PG6
PG7
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PF11
PF10
PF9
PF8
PF7
PB11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
MAC7141
100 LQFP
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PE9
PE8
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PA7
PA8
PA9
VDDX
VSSX
PD4
PD3
PB15
PB14
PB13
PB10
PB9
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PG3
PG2
PG1
PG0
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
PD10
PD9
PD8
PD7
PD6
PE15
PE14
PE13
PE12
PE11
PE10
VSSA
VRL
VRH
VDDA
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PF6
PF5
PF4
PF3
PF2
PF1
PF0
RESET
VSSX
VDDX
PG12
PG13
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
PA15
PD0
PD1
PB12
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
SS_A
PCSS_A
VSSX
VDDX
N/C
/
/
CNTX_A
CNRX_A
CNTX_B
CNRX_B
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0_A
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
/
/
/
/
/
/
/
/
/
/
/
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
RXD_D
TXD_D
MODB
MODA
NEXPR
NEXPS /
/
/ PCS2_B
/ AN9_A
/ AN8_A
/ AN7_A
/ AN6_A
/ AN5_A
/ AN4_A
/ AN3_A
/ AN2_A
/ AN1_A
/ AN0_A
/ IRQ
/ XIRQ
/ CLKOUT
/ SIN_B
/ SOUT_B
/ SCK_B
/ PCS5_B
/ PCS0_B
/ PCS1_B
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
/ SS_B
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ AN15_A
/ AN14_A
/ AN13_A
/ AN12_A
/ AN11_A
/ AN10_A
1. PD2 function not available on L49P mask set devices.
PD2(1)
HHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUU o m o 1 z a 2 3 P655
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor42
4.2 MAC7142 Pin Diagram
Figure 16. Pin Assignments for MAC7142 in 100-pin LQFP
PG4
PG5
PG6
PG7
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PF11
PF10
PF9
PF8
PF7
PB11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
MAC7142
100 LQFP
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PE9
PE8
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PA7
PA8
PA9
VDDX
VSSX
PD4
PD3
PD2
PB15
PB14
PB13
PB10
PB9
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PG3
PG2
PG1
PG0
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
PD10
PD9
PD8
PD7
PD6
PE15
PE14
PE13
PE12
PE11
PE10
VSSA
VRL
VRH
VDDA
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PF6
PF5
PF4
PF3
PF2
PF1
PF0
RESET
VSSX
VDDX
PG12
PG13
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
PA15
PD0
PD1
PB12
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
SS_A
PCSS_A
VSSX
VDDX
N/C
/
/
CNTX_A
CNRX_A
CNTX_B
CNRX_B
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0_A
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
/
/
/
/
/
/
/
/
/
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
MODB
MODA
NEXPR
NEXPS /
/
/ PCS2_B
/ AN9_A
/ AN8_A
/ AN7_A
/ AN6_A
/ AN5_A
/ AN4_A
/ AN3_A
/ AN2_A
/ AN1_A
/ AN0_A
/ IRQ
/ XIRQ
/ CLKOUT
/ SIN_B
/ SOUT_B
/ SCK_B
/ PCS5_B
/ PCS0_B
/ PCS1_B
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
/ SS_B
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ AN15_A
/ AN14_A
/ AN13_A
/ AN12_A
/ AN11_A
/ AN10_A
HHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUU o :7 a g MDOn EVTI'
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 43
4.3 MAC7121 / MAC7126 Pin Diagram
Figure 17. Pin Assignments for MAC7121 / MAC7126 in 112-pin LQFP
MAC7121 / MAC7126
(2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
PG4
PG5
PG8
PG9
PG10
PG11
PG6
PG7
VSSX
VDDX
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PF11
PF10
PF9
PF8
112 LQFP
28
PF7
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
PE9
PE8
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PA7
PA8
PA9
PA10
PA11
PA12
PD5
PC15
VDDX
VSSX
PD4
PD3
PB15
PB14
PB13
PB12
57 PB10
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
PG3
PG2
PG1
PG0
PG15
PG14
PA0
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
PD10
PD9
PD8
PD7
PD6
PE15
PE14
PE13
PE12
PE11
PE10
VSSA
VRL
VRH
85 VDDA
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
PF6
PF5
PF4
PF3
PF2
PF1
PF0
RESET
VSSX
VDDX
PG12
PG13
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
PA15
PA14
PA13
PD0
PD1 56
PB9
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
CNTX_A
CNRX_A
CNTX_C
CNRX_C
CNTX_D
CNRX_D
CNTX_B
CNRX_B
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
SS_A
PCSS_A
/
/
/
/
/
/
/
/
/
/
/
/
/
/
NEXPR
NEXPS
SS_B
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
RXD_D
TXD_D
MODB
MODA
PCS0_B
/
/
/
AN9_A
AN8_A
AN7_A
AN6_A
AN5_A
AN4_A
AN3_A
AN2_A
AN1_A
AN0_A
IRQ
XIRQ
CLKOUT
SIN_B
SOUT_B
SCK_B
PCS1_B
PCS5_B
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ TXD_C
/ RXD_C
/ AN15_A
/ AN14_A
/ AN13_A
/ AN12_A
/ AN11_A
/ AN10_A
1. PD2 function not available on L49P mask set devices.
2 On L49P mask set devices, PB11 / PCS2_B is bonded out on pin 57.
PD2(1)
HHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUU o :7 a g MDOn EVTI'
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor44
4.4 MAC7122 Pin Diagram
Figure 18. Pin Assignments for MAC7122 in 112-pin LQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
PG4
PG5
PG8
PG9
PG10
PG11
PG6
PG7
VSSX
VDDX
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PF11
PF10
PF9
PF8
MAC7122
112 LQFP
28
PF7
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
PE9
PE8
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PA7
PA8
PA9
PA10
PA11
PA12
PD5
PC15
VDDX
VSSX
PD4
PD3
PD2
PB15
PB14
PB13
PB12
57 PB10
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
PG3
PG2
PG1
PG0
PG15
PG14
PA0
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
PD10
PD9
PD8
PD7
PD6
PE15
PE14
PE13
PE12
PE11
PE10
VSSA
VRL
VRH
85 VDDA
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
PF6
PF5
PF4
PF3
PF2
PF1
PF0
RESET
VSSX
VDDX
PG12
PG13
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
PA15
PA14
PA13
PD0
PD1 56
PB9
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
CNTX_A
CNRX_A
CNTX_B
CNRX_B
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0_A
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
SS_A
PCSS_A
/
/
/
/
/
/
/
/
/
/
/
/
NEXPR
NEXPS
SS_B
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
MODB
MODA
PCS0_B
/
/
/
AN9_A
AN8_A
AN7_A
AN6_A
AN5_A
AN4_A
AN3_A
AN2_A
AN1_A
AN0_A
IRQ
XIRQ
SIN_B
SOUT_B
SCK_B
PCS1_B
PCS5_B
/
/
/
/
/
/
/
/
/
/
/
/
/ CLKOUT
/
/
/
/
/
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ TXD_C
/ RXD_C
/ AN15_A
/ AN14_A
/ AN13_A
/ AN12_A
/ AN11_A
/ AN10_A
5““ am :4 END MCKO HHflHNHHNHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUHUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU i o
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 45
4.5 MAC7101 / MAC7106 Pin Diagram
Figure 19. Pin Assignments for MAC7101 / MAC7106 in 144-pin LQFP
MAC7101 / MAC7106
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PG4
PG5
PG8
PG9
PG10
PG11
PG6
PG7
PC0
PC1
PC2
PC3
VSSX
VDDX
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PC4
PC5
PC6
PC7
PF11
PF10
PF9
PF8
PF7
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
144 LQFP
CNTX_A
CNRX_A
CNTX_C
CNRX_C
CNTX_D
CNRX_D
CNTX_B
CNRX_B
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0_A
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
SS_A
PCSS_A
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
PF6
PF5
PF4
PF3
PF2
PF1
PF0
PC8
PC9
PC10
PC11
PG12
PG13
PA15
PA14
PA13
PD11
PD12
PD0
PD1
PB9
RESET
VSSX
VDDX
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
VSSX
VDDX
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
RXD_D
TXD_D
MODB
MODA
PCS0_B
NEXPR
NEXPS
SS_B
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
PH10
PE9
PH9
PE8
PH8
PE7
PH7
PE6
PH6
PE5
PH5
PE4
PH4
PE3
PH3
PE2
PH2
PE1
PH1
PE0
PH0
VDDX
VSSX
PD15
PD14
PD13
PD4
PD3
VSSX
PB15
PB14
PB13
PB12
PB11
PB10
/ AN10_B
/ AN9_A
/ AN9_B
/ AN8_A
/ AN8_B
/ AN7_A
/ AN7_B
/ AN6_A
/ AN6_B
/ AN5_A
/ AN5_B
/ AN4_A
/ AN4_B
/ AN3_A
/ AN3_B
/ AN2_A
/ AN2_B
/ AN1_A
/ AN1_B
/ AN0_A
/ AN0_B
/ IRQ
/ XIRQ
/ CLKOUT
/ SIN_B
/ SOUT_B
/ SCK_B
/ PCS1_B
/ PCS2_B
/ PCS5_B
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ TXD_C
/ RXD_C
/ MCKO
/ EVTO
/ EVTI
/ MDO0
/ MDO1
/ MSEO
/ RDY
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
VSSX
VDDX/ AN15_A
/ AN15_B
/ AN14_A
/ AN14_B
/ AN13_A
/ AN13_B
/ AN12_A
/ AN12_B
/ AN11_A
/ AN11_B
/ AN10_A
VSSA
VRL
VRH
VDDA
PG3
PG2
PG1
PG0
PG15
PG14
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PE15
PH15
PE14
PH14
PE13
PH13
PE12
PH12
PE11
PH11
PE10
1. PD2 function not available on L49P mask set devices.
PD2(1)
oo — On: my ‘5 s‘s‘ Em HHHHHHHHflHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUULHJUUUUUUUUUUUUUUUUUUUUUUUU 5\8\§\§\ MODA flag 5 o
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor46
4.6 MAC7111 / MAC7116 Pin Diagram
Figure 20. Pin Assignments for MAC7111 / MAC7116 in 144-pin LQFP
MAC7111 / MAC7116
PF6
PF5
PF4
PF3
PF2
PF1
PF0
PC8
PC9
PC10
PC11
PG12
PG13
PA15
PA14
PA13
PD11
PD12
PD0
PD1
PB9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PE9
PE8
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PA7
PA8
PA9
PA10
PA11
PA12
PD5
PC15
PC14
PC13
PC12
VDDX
VSSX
PD15
PD14
PD13
PD4
PD3
TA
/
AS
PB15
PB14
PB13
PB12
PB11
PB10
PG4
PG5
PG8
PG9
PG10
PG11
PG6
PG7
PC0
PC1
PC2
PC3
VSSX
VDDX
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PC4
PC5
PC6
PC7
PF11
PF10
PF9
PF8
PF7
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
RESET
VSSX
VDDX
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
VSSX
VDDX
144 LQFP
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ TXD_C
/ RXD_C
/ DATA0
/ DATA1
/ DATA2
/ DATA3
/ DATA4
/ DATA5
/ DATA6
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
VSSX
VDDX/ ADDR21
/ ADDR20
/ ADDR19
/ ADDR18
/ ADDR17
/ AN15_A
/ AN14_A
/ AN13_A
/ AN12_A
/ AN11_A
/ AN10_A
VSSA
VRL
VRH
VDDA
CNTX_A
CNRX_A
CNTX_C
CNRX_C
CNTX_D
CNRX_D
CNTX_B
CNRX_B
ADDR0
ADDR1
ADDR2
ADDR3
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0_A
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
ADDR4
ADDR5
ADDR6
ADDR7
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
SS_A
PCSS_A
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
ADDR8
ADDR9
ADDR10
ADDR11
RXD_D
TXD_D
DATA15
DATA14
DATA13
OE
CS2
BS0
BS1
PCS0_B
NEXPR
NEXPS
MODB
MODA
SS_B
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/ AN9_A
/ AN8_A
/ AN7_A
/ AN6_A
/ AN5_A
/ AN4_A
/ AN3_A
/ AN2_A
/ AN1_A
/ AN0_A
/ DATA7
/ DATA8
/ DATA9
/ DATA10
/ DATA11
/ DATA12
/ ADDR16
/ ADDR15
/ ADDR14
/ ADDR13
/ ADDR12
/ R/W
/ CS0
/ CS1
/ IRQ
/ XIRQ
/ CLKOUT
/ SIN_B
/ SOUT_B
/ SCK_B
/ PCS1_B
/ PCS2_B
/ PCS5_B
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
PG3
PG2
PG1
PG0
PG15
PG14
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PD10
PD9
PD8
PD7
PD6
PE15
PE14
PE13
PE12
PE11
PE10
/ MCKO
/ EVTO
/ EVTI
/ MDO0
/ MDO1
/ MSEO
/ RDY
1. PD2 function not available on L49P mask set devices.
PD2(1)
go 05‘ 8:,“ Eu 2 HHHHHHHHflHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH O UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU i o
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 47
4.7 MAC7112 Pin Diagram
Figure 21. Pin Assignments for MAC7112 in 144-pin LQFP
PF6
PF5
PF4
PF3
PF2
PF1
PF0
PC8
PC9
PC10
PC11
PG12
PG13
PA15
PA14
PA13
PD11
PD12
PD0
PD1
PB9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PE9
PE8
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PA7
PA8
PA9
PA10
PA11
PA12
PD5
PC15
PC14
PC13
PC12
VDDX
VSSX
PD15
PD14
PD13
PD4
PD3
PD2
VSSX
PB15
PB14
PB13
PB12
PB11
PB10
PG4
PG5
PG8
PG9
PG10
PG11
PG6
PG7
PC0
PC1
PC2
PC3
VSSX
VDDX
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PF15
PF14
PF13
PF12
PC4
PC5
PC6
PC7
PF11
PF10
PF9
PF8
PF7
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
RESET
VSSX
VDDX
VDD2.5
VSS2.5
VSSR
VDDR
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
VSSX
VDDX
MAC7112
144 LQFP
/ TXD_A
/ RXD_A
/ TXD_B
/ RXD_B
/ TXD_C
/ RXD_C
/ MCKO
/ EVTO
/ EVTI
/ MDO0
/ MDO1
/ MSEO
/ RDY
TMS
TCK
TDO
TDI
VDD2.5
VSS2.5
VSSX
VDDX
/ AN15_A
/ AN14_A
/ AN13_A
/ AN12_A
/ AN11_A
/ AN10_A
VSSA
VRL
VRH
VDDA
CNTX_A
CNRX_A
CNTX_B
CNRX_B
SDA
SCL
SIN_A
SOUT_A
SCK_A
PCS0_A
PCS1_A
PCS2_A
PCS5_A
eMIOS15
eMIOS14
eMIOS13
eMIOS12
eMIOS11
eMIOS10
eMIOS9
eMIOS8
eMIOS7
SS_A
PCSS_A
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
eMIOS6
eMIOS5
eMIOS4
eMIOS3
eMIOS2
eMIOS1
eMIOS0
MODB
MODA
PCS0_B
NEXPR
NEXPS
SS_B
/
/
/
/
/
/
/
/
/
/
/
/
/
/ AN9_A
/ AN8_A
/ AN7_A
/ AN6_A
/ AN5_A
/ AN4_A
/ AN3_A
/ AN2_A
/ AN1_A
/ AN0_A
/ IRQ
/ XIRQ
/ CLKOUT
/ SIN_B
/ SOUT_B
/ SCK_B
/ PCS1_B
/ PCS2_B
/ PCS5_B
/ RDY'
/ MSEO'
/ MDO1'
/ MDO0'
/ EVTI'
/ EVTO'
/ MCKO'
/ XCLKS
/ PCSS_B
PG3
PG2
PG1
PG0
PG15
PG14
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PD10
PD9
PD8
PD7
PD6
PE15
PE14
PE13
PE12
PE11
PE10
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Device Pin Assignments
Freescale Semiconductor48
4.8 MAC7131 Pin Diagram
12345678910111213141516
AVSSXV
SSX PG0 PG14 PA2 PA5 TCK TDI PE15 PE14 PH14 PE12 PH11 VRL VRH VDDA
BVSSXV
SSX PG2 PG15 PA0 PA4 TMS TDO PD9 PH15 PE13 PH12 PE10 PH9 VDDAPH8
CPG5 PG3 VSSX PG1 PA1 PA3 PA6 VDD2.5 VDDX PD6 PH13 PE11 VDDA PE8 PE7 PH7
DPG9 PG8 PG4 VSSXV
SSXV
SS2.5 VSS2.5 PD10 PD8 PD7 VSSAV
SSA PH10 PE9 PE6 PH6
EPG6 PG11 PG10 VSSX PE4 PE5 PH5 PH4
FPC0 PG7 PC1 VSSX PE2 PE3 PH3 PH2
GPB0 PC2 PC3 VSSXV
SSXV
SSXV
SSXV
SSX PH0 PH1 PE1 PE0
HPB3 PB2 PB1 VDDXV
SSXV
SSXV
SSXV
SSX PA8 PA9 PA7 PA10
JPB5 PB6 PB4 VSSXV
SSXV
SSXV
SSXV
SSX PD5 PA12 PA11 PC15
KPB7 PB8 PF15 VSSXV
SSXV
SSXV
SSXV
SSX PC13 PC12 PC14 VDDX
LPF14 PF13 PC4 VSSX PD13 PD14 PD15 PD4
MPF12 PC5 PC6 VSSXV
SSX
TA/AS
(1) PD3 PD2(1)
NPF11 PF10 PC7 VSSXV
SSRV
SSRV
SS2.5 VSS2.5 VSSPLL VSSPLL VSSXV
SSXV
SSX PB11 PB14 PB15
PPF9 PF8 VSSXPF5 PC8PC10V
DDXV
DD2.5 VDDRV
DDX PA15 PD11 PD12 VSSX PB12 PB13
RPF7 VSSX PF6 PF3 PF1 PC9 PG12 PG13 VSSXV
SSX TEST PA13 PD1 PB10 VSSXV
SSX
TVSSXV
SSX PF4 PF2 PF0 PC11 RESET VDDPLL XFC EXTAL XTAL PA14 PD0 PB9 VSSXV
SSX
1. AS and PD2 functions not available on L49P mask set devices.
Figure 22. Pin Assignments for MAC7131 in 208-pin MAP BGA
Device Pin Assignments
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 49
4.9 MAC7136 Pin Diagram
12345678910111213141516
AVSSXV
SSX PG0 PG14 PA2 PA5 TCK TDI PE15 PE14 PH14 PE12 PH11 VRL VRH VDDA
BVSSXV
SSX PG2 PG15 PA0 PA4 TMS TDO PD9 PH15 PE13 PH12 PE10 PH9 VDDAPH8
CPG5 PG3 PI0 PG1 PA1 PA3 PA6 VDD2.5 VDDX PD6 PH13 PE11 VDDA PE8 PE7 PH7
DPG9 PG8 PG4 PI2 PI1 VSS2.5 VSS2.5 PD10 PD8 PD7 VSSAV
SSA PH10 PE9 PE6 PH6
EPG6 PG11 PG10 PI3 PE4 PE5 PH5 PH4
FPC0 PG7 PC1 VSSX PE2 PE3 PH3 PH2
GPB0 PC2 PC3 PI4 VSSXV
SSXV
SSXV
SSX PH0 PH1 PE1 PE0
HPB3 PB2 PB1 VDDXV
SSXV
SSXV
SSXV
SSX PA8 PA9 PA7 PA10
JPB5 PB6 PB4 PI5 VSSXV
SSXV
SSXV
SSX PD5 PA12 PA11 PC15
KPB7 PB8 PF15 PI6 VSSXV
SSXV
SSXV
SSX PC13 PC12 PC14 VDDX
LPF14 PF13 PC4 PI7 PD13 PD14 PD15 PD4
MPF12 PC5 PC6 VSSXV
SSXTA / AS PD3 PD2
NPF11 PF10 PC7 PI8 VSSRV
SSRV
SS2.5 VSS2.5 VSSPLL VSSPLL PI12 PI13 PI14 PB11 PB14 PB15
PPF9 PF8 PI9 PF5 PC8 PC10 VDDXV
DD2.5 VDDRV
DDX PA15 PD11 PD12 PI15 PB12 PB13
RPF7 PI10 PF6 PF3 PF1 PC9 PG12 PG13 VSSXV
SSX TEST PA13 PD1 PB10 PI11 VSSX
TVSSXV
SSX PF4 PF2 PF0 PC11 RESET VDDPLL XFC EXTAL XTAL PA14 PD0 PB9 VSSXV
SSX
Figure 23. Pin Assignments for MAC7136 in 208-pin MAP BGA
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Mechanical Information
Freescale Semiconductor50
5 Mechanical Information
As indicated in Table 2, MAC7100 Family devices are available in several packages. Please refer to the
freescale.com web site for the most up-to-date package availability and mechanical information. The table
below lists available package identifiers and Freescale document numbers for reference.
Table 39. Package Identifiers and Mechanical Specifications
Package Type Case Identifier Mechanical Specification
Document
100-lead LQFP 983-02 98ASS23308W
112-lead LQFP 987-02 98ASS23330W
144-lead LQFP 918-03 98ASS23177W
208-lead MAP BGA 1159A-01 98ARS23882W
5 DV 1/0 Characteristits TabteB D1a Tabte 15 F1 3 3V 1/0 Characteristits Tabteq E1a Tabte 16 61 Settinn 3 6, ‘F tiwer Dissipation and Tnermat Ciraracterislics” Tabte10tn Tabte 7 to MAC71xl/6 Device Suppty Cunentcnaracteristics - 40 MHz Tabte 15 F1 Tabte 12 Dla MAC71Xl/6 Device Supp/y Currentcnaracterisiics - 50 MHz Tab/e16 61 VREG Operating Conditions Tabte 17 H1 Tabte 13 E1 VREG Recommended Load Capatitances Tabte 18 Tabte 14 OsciHatorCharactenstics Tabte19 ]1a Tabte 17 Hla PLL Characteristits Tabte 20 K1 Tabte18 ]1 Crystat MonitprTime-Oiits Tabte 21 Tabte 19 CRG Maximum Ctmk Qiianty (neck Timings Tabte 22 Tabte 20 CRG Stamianaracterislics Tabte 23 L1 Tabte 21 K1 Externat Bus InpiitTiming Spetifitatipns Tabte 24 M1 Tabte 22 L1 Externat Bus OutputTiming Specifications Tabte 25 M6a Tabte 23 L6a ATD Operating Charactenstits in 5.0 v Range Tabte 26 N1 Tabte 24 M1 ATD Operating Charactenstits In 3.3 V Range Tabte 27 P1 Tabte 25 N1 ATD Etettricat Cnaracterislics Tabte 28 01 Tabte 26 P1 ATD Conversion Performance in 5 DV Range Tabte 29 R1 Tabte 27 01 ATD Conversion Performance in 3 3 V Range Tabte 30 S1 Tabte 28 R1 ATD E/ectrica/ Characteristics (Operating) Table 29 51 ATD Performance Specifications Table 30 T1 ATD Timing Specifications Table 31 U1 ATD Externat TriggerTiming Spetifitatipns Tabte 31 T1 Tabte 32 V1 SPI Master Mode Timing Characteristits Tabte 32 Ula Tabte 33 W1a SPI Stave Mode Timing Characterisflcs Tabte 33 V1a Tabte 3A X1a FlexCAN Wake-up Putse Characterisflcs Tabte 34 W1 Tabte 35 Y1 CFM Timing Cnaracteristits Tabte 35 X1 Tabte 36 21 NVM Retiability Characteristics Tabte 36 X9!) Tabte 37 210
Mechanical Information
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 51
Revision History
Revision History
Version No.
Release Date Description of Changes Page
Numbers
v0.1
29-Oct-03 First public customer release (preliminary).
v1.0
14-Sep-04 General
Converted to Freescale identity, with blue cross-reference highlights for enhanced PDF
navigation, and miscellaneous updates for presentation consistency.
The order of Section 3.5 and Section 3.6 were reversed for better content flow. This has
caused specification numbering to change as detailed below.
Note: Content consolidation and reorganization has resulted in the following table and
specification number changes (the first spec number of each table is shown):
7, 8
Section 2, “Ordering Information”
Added Table 1, mask set information
Updated Table 2 with expanded port pin counts, MAC71x2 and MAC71x6 family members
Pin assignment changes for mask set L47W devices:
—In Table 37, PB10 / PCS5_B / PCSS_B changed to pin 57, footnote for L49P
2
3
36
Table Title Rev. 1.0 Rev. 0.1
5.0 V I/O Characteristics Table 8 D1a Table 15 F1
3.3 V I/O Characteristics Table 9 E1a Table 16 G1
Section 3.6, “Power Dissipation and Thermal Characteristics” Table 10 to
Table 14 Table 7 to
Table 11
MAC71x1/6 Device Supply Current Characteristics – 40 MHz Table 15 F1 Table 12 D1a
MAC71x1/6 Device Supply Current Characteristics – 50 MHz Table 16 G1 N/A
VREG Operating Conditions Table 17 H1 Table 13 E1
VREG Recommended Load Capacitances Table 18 Table 14
Oscillator Characteristics Table 19 J1a Table 17 H1a
PLL Characteristics Table 20 K1 Table 18 J1
Crystal Monitor Time-Outs Table 21 Table 19
CRG Maximum Clock Quality Check Timings Table 22 Table 20
CRG Startup Characteristics Table 23 L1 Table 21 K1
External Bus Input Timing Specifications Table 24 M1 Table 22 L1
External Bus Output Timing Specifications Table 25 M6a Table 23 L6a
ATD Operating Characteristics in 5.0 V Range Table 26 N1 Table 24 M1
ATD Operating Characteristics in 3.3 V Range Table 27 P1 Table 25 N1
ATD Electrical Characteristics Table 28 Q1 Table 26 P1
ATD Conversion Performance in 5.0 V Range Table 29 R1 Table 27 Q1
ATD Conversion Performance in 3.3 V Range Table 30 S1 Table 28 R1
ATD Electrical Characteristics (Operating) N/A Table 29 S1
ATD Performance Specifications N/A Table 30 T1
ATD Timing Specifications N/A Table 31 U1
ATD External Trigger Timing Specifications Table 31 T1 Table 32 V1
SPI Master Mode Timing Characteristics Table 32 U1a Table 33 W1a
SPI Slave Mode Timing Characteristics Table 33 V1a Table 34 X1a
FlexCAN Wake-up Pulse Characteristics Table 34 W1 Table 35 Y1
CFM Timing Characteristics Table 35 X1 Table 36 Z1
NVM Reliability Characteristics Table 36 X9b Table 37 Z10
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Mechanical Information
Freescale Semiconductor52
v1.0
14-Sep-04
(continued)
Section 3, “Electrical Characteristics”
Section 3.2, “Absolute Maximum Ratings”
A1a renamed to VDDX
A4 “rating” changed to Analog (from ATD)
A9 minimum changed to –0.3
A12 maximum value removed, footnote reference added
Table 8, Table 9 footnotes added regarding VDD5/VSS5
Section 3.4, “Operating Conditions”
C1 renamed to VDDX
C4 added (C5 to C11b renumbered)
C8 maximum changed from 40 MHz to 50 MHz
Section 3.5, “Input/Output Characteristics”
Table 8 spec D4 updated (from TBD)
Table 9 spec E4 changed to 1 μA to match D4
Section 3.6, “Power Dissipation and Thermal Characteristics”
Reworked Equation 1 through Equation 4 and supporting text
Section 3.6.1 and Table 10 name changed from “Power Dissipation...
Section 3.7, “Power Supply”
Added MAC71x1 designation and footnotes to Table 15 / Table 16
Table 15 designated for 40 MHz, and
Numerous TBD entries replaced with values
Run Supply Current collapsed from fifteen spec items to one
Removed separate Core/Regulator/Pins specs for Run/Pseudo Stop/Stop modes
F1 and F3 descriptions changed
F1, F2, F3 and F4 values updated
Table 16 added for 50 MHz specifications
Table 17, deleted IREG spec (Regulator Current in Reduced Power, Shutdown Modes)
Table 18, VDD2.5 load capacitance typical changed, with clarification footnote
Section 3.8, “Clock and Reset Generator”
Table 19 updates
Changed specs J1b and J6 maximum from 40 MHz to 50 MHz
Reversed polarity of XCLKS reference in footnote (3)
J1b maximum changed to 40 MHz
–V
DCBIAS removed
Added footnote to define tfsys as 1 ÷ fSYS for use elsewhere in the document
Updated Section 3.8.2, “PLL Filter Characteristics”
Table 20 updates
Changed spec K3 maximum from 40 MHz to 50 MHz
Added footnote to define tfsys as 1 ÷ fSYS for use elsewhere in the document
Table 23 updates
–Removed V
PORR and VPORA, as they duplicated H6
–Removed t
WRS
Section 3.9, “External Bus Timing”
Table 24 updates
M1 minimum changed from 25 ns to 20 ns (Figure 6 also updated)
Reworded footnote (1)
Added footnote (2) to define tCYC as 1 ÷ CLKOUT
Table 25 updates
Added footnote (1)
Consolidated previous NOTES into footnote (2), (Figure 7, Figure 8 also updated)
4
4
5
5
7, 8
6
6
6
7
8
9
10
12
12
13
14
15
16
18
19
20
21
Revision History (continued)
Version No.
Release Date Description of Changes Page
Numbers
Mechanical Information
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Freescale Semiconductor 53
v1.0
14-Sep-04
(continued)
Section 3, “Electrical Characteristics” (continued)
Section 3.10, “Analog-to-Digital Converter”
Rev. 0.1 redundant and superfluous content deleted
Section 3.10.3, “ATD Electrical Specifications,” (included Table 29 and Table 30)
Table 31, “ATD Performance Specifications” (redundant with v0.1 Table 27 and
Table 28, now Table 29 and Table 30)
Table 26 updates
Deleted previous spec M6
Changed spec N7 and N8 values
Table 27 updates
Deleted previous spec N6
Changed spec P7 and P8 values
Changed spec P2 and footnote (1) to specify 3.15 V
Table 28 updates
Changed spec Q2 parameter classification from T to C and 10 pF and 22 pF values
moved from maximum to typical
Table 29 updates
Operating conditions VDDA minimum changed to 4.5 V
–V
REF description moved from “conditions” header to new footnote (1)
Table 30 updates
Operating conditions VDDA minimum changed to 3.15 V
–V
REF description moved from “conditions” header to new footnote (1)
Table 31 updates
Spec T1 description clarified, max removed, min added with footnote
Spec T2 modified to show both edge- and level-sensitive modes
Figure 10 modified to remove “Max Frequency” label and clearly separate edge- and
level-sensitive mode timing examples
Section 3.11, “Serial Peripheral Interface”
Table 32 updates
Changed specs U1a, U1b and U4 to use fIPS and tIPS for clarity and consistency with
MAC7100RM
Changed U1a max to ½ and U1b min to 2 to account for the DBR bit
Table 33 updates
Changed specs V1a, V1b, V2, V3, V4, V7, V8 to use fIPS and tIPS for clarity and
consistency with MAC7100RM
Changed V1a max to ½ and V1b min to 2 to account for the DBR bit
Section 3.13, “Common Flash Module”
Significant rework to match MAC7100RM clock naming, references and timing
calculations for clarity and consistency
Changed X1 maximum from 40 MHz to 50 MHz (Table 35)
24
24
24
25
26
26
28
28
29
29
32 to 35
34
Revision History (continued)
Version No.
Release Date Description of Changes Page
Numbers
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary
Mechanical Information
Freescale Semiconductor54
v1.0
14-Sep-04
(continued)
Section 4, “Device Pin Assignments
Table 37 and Table 38 added
Added PD2 label / footnote to Figure 15, Figure 17, Figure 19, Figure 20 and Figure 22
Section 4.2, “MAC7142 Pin Diagram” / Figure 16 added
Section 4.3, “MAC7121 / MAC7126 Pin Diagram” / Figure 17 updated
PB10 / PCS5_B / PCSS_B bonded out on pin 57, footnote for L49P
Added MAC71x6 device information
Section 4.4, “MAC7122 Pin Diagram” / Figure 18 added
Section 4.5, “MAC7101 / MAC7106 Pin Diagram” / Figure 19 updated
Added MAC71x6 device information
Section 4.6, “MAC7111 / MAC7116 Pin Diagram” / Figure 20 updated
Added AS to TA pin
Added MAC71x6 device information
Section 4.7, “MAC7112 Pin Diagram” / Figure 21 added
Section 4.8, “MAC7131 Pin Diagram” / Figure 22 corrected, updated
Changed pins C8 & P8 from VSS2.5 to VDD2.5
Changed pin T8 from VSSPLL to VDDPLL
Added AS to TA pin
Section 4.9, “MAC7136 Pin Diagram” / Figure 23 added
36, 40
41, 43, 45, 46, 48
42
43
44
45
46
47
48
49
v1.1
1-Dec-04 Section 3, “Electrical Characteristics”
Section 3.7, “Power Supply”
Table 15 spec F4 –40° C and 25° C max value changed
Table 16 spec G4 –40° C and 25° C max value changed
Section 3.8, “Clock and Reset Generator”
Table 19 spec J3 typical TBD entry replaced with value
Table 20 specs K15 and K16 maximum TBD entries replaced with values
12
12
15
18
v1.1.1
3-Dec-04 Section 3, “Electrical Characteristics”
Section 3.7, “Power Supply”
Table 15 spec F3 –40° C, 25° C and 125° C typ and max values and unit changed
Table 16 spec G3 –40° C, 25° C and 125° C typ and max value and unit changed 12
12
v1.2
10-Feb--06 Section 1, “Overview”
Moved 71x6 device numbers from footnote to “covered” list
Section 2, “Ordering Information”
Added AF, AG and VM package identifiers to Figure 1
Added 1L38Y to Table 1
Section 3, “Electrical Characteristics”
Replaced TBD values in Table 15 and Table 16 with final qualification data, changed table
titles and footnotes to reflect 71x6 inclusion.
Section 5, “Mechanical Information”
Removed obsolete package diagrams, replaced with document IDs available on web site.
1
2
2
12
50
Revision History (continued)
Version No.
Release Date Description of Changes Page
Numbers
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2
Preliminary Freescale Semiconductor55
This page intentionally left blank.
0,. 5' freescalew semiconductor
MAC7100EC
Rev. 1.2, 02/2006
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is
a trademark of ARM Limited. All other product or service names are the property of their
respective owners.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see www.freescale.com or contact your Freescale
sales representative.
For information on Freescale’s Environmental Products program, go to www.freescale.com/epp.
© Freescale Semiconductor, Inc. 2004-2006. All rights reserved.

Products related to this Datasheet

IC MCU 32BIT 544KB FLASH 144LQFP
IC MCU 32BIT 544KB FLASH 144LQFP
IC MCU 32BIT 544KB FLASH 112LQFP
IC MCU 32BIT 544KB FLASH 208BGA