L6385E Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
This is information on a product in full production.
September 2015 DocID13863 Rev 4 1/17
L6385E
High voltage high and low-side driver
Datasheet - production data
Features
High voltage rail up to 600 V
dV/dt immunity ± 50 V/nsec in full temperature
range
Driver current capability:
400 mA source
650 mA sink
Switching times 50/30 nsec rise/fall with 1 nF
load
CMOS/TTL Schmitt trigger inputs with
hysteresis and pull-down
Undervoltage lockout on lower and upper
driving section
Internal bootstrap diode
Outputs in phase with inputs
Applications
Home appliances
Induction heating
HVAC
Motor drivers
SR motors
DC, AC, PMDC and PMAC motors
Asymmetrical half-bridge topologies
Industrial applications and drives
Lighting applications
Factory automation
Power supply systems
Description
The L6385E is a simple and compact high voltage
gate driver, manufactured with the BCD™ “offline”
technology, and able to drive a half-bridge of
power MOSFET or IGBT devices. The high-side
(floating) section is able to work with voltage rail
up to 600 V. Both device outputs can
independently sink and source 650 mA and 400
mA respectively and can be simultaneously
driven high in order to drive asymmetrical half-
bridge configurations.
The L6385E device provides two input pins and
two output pins and guarantees the outputs toggle
in phase with inputs. The logic inputs are
CMOS/TTL compatible to ease the interfacing
with controlling devices.
The bootstrap diode is integrated inside the
device, allowing a more compact and reliable
solution.
The L6385E features the UVLO protection on
both lower and upper driving sections (VCC and
VBOOT), ensuring greater protection against
voltage drops on the supply lines.
The device is available in a DIP-8 tube and SO-8
tube, and tape and reel packaging options.
DIP-8 SO-8
www.st.com
Contents L6385E
2/17 DocID13863 Rev 4
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Typical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1 DIP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DocID13863 Rev 4 3/17
L6385E Block diagram
17
1 Block diagram
Figure 1. Block diagram
-0(*$
67
%&5&$5*0/
-&7&-
4)*'5&3
#005453"1%3*7&3
3
3
4
7$$
-7(
%3*7&3
7$$
)*/
-*/
)7(
%3*7&3 )7(
)7
50-0"%
065
-7(
(/%
%*/#
7#005
$#005
67
%&5&$5*0/
Electrical data L6385E
4/17 DocID13863 Rev 4
2 Electrical data
2.1 Absolute maximum ratings
2.2 Thermal data
2.3 Recommended operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
V
OUT
Output voltage -3 to VBOOT -18 V
V
CC
Supply voltage - 0.3 to +18 V
V
BOOT
Floating supply voltage -1 to 618 V
V
hvg
High-side gate output voltage -1 to VBOOT V
V
lvg
Low-side gate output voltage -0.3 to VCC +0.3 V
V
i
Logic input voltage -0.3 to VCC +0.3 V
dV
OUT
/dt Allowed output slew rate 50 V/ns
P
tot
Total power dissipation (T
J
= 85 °C) 750 mW
T
j
Junction temperature 150 °C
T
s
Storage temperature -50 to 150 °C
ESD Human body model 2 kV
Table 2. Thermal data
Symbol Parameter SO-8 DIP-8 Unit
R
th(JA)
Thermal resistance junction to ambient 150 100 °C/W
Table 3. Recommended operating conditions
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
V
OUT
6 Output voltage (1)
1. If the condition VBOOT - VOUT < 18 V is guaranteed, VOUT can range from -3 to 580 V.
580 V
V
BS
(2)
2. VBS = VBOOT - VOUT.
8 Floating supply voltage (1) 17 V
f
sw
Switching frequency HVG, LVG load C
L
= 1 nF 400 kHz
V
CC
3 Supply voltage 17 V
T
J
Junction temperature -45 125 °C
_l__l__|__l_ _L_L_I__L
DocID13863 Rev 4 5/17
L6385E Pin connection
17
3 Pin connection
Figure 2. Pin connection (top view)
Table 4. Pin description
No. Pin Type Function
1 LIN I Low-side driver logic input
2 HIN I High-side driver logic input
3 VCC P Low voltage power supply
4 GND P Ground
5 LVG(1)
1. The circuit guarantees 0.3 V maximum on the pin (at Isink = 10 mA). This allows to omit the “bleeder”
resistor connected between the gate and the source of the external MOSFET normally used to hold the pin
low.
O Low-side driver output
6 OUT P High-side driver floating reference
7 HVG(1) O High-side driver output
8 VBOOT P Bootstrap supply voltage
7$$
)*/
-*/
(/%
-7(
065
)7(
7#005
%*/"
CC J
Electrical characteristics L6385E
6/17 DocID13863 Rev 4
4 Electrical characteristics
4.1 AC operation
4.2 DC operation
Table 5. AC operation electrical characteristics (V
CC
= 15 V; T
J
= 25 °C)
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
t
on
1 vs. 5
2 vs. 7
High/low-side driver turn-on
propagation delay V
OUT
= 0 V 110 ns
t
off
1 vs. 5
2 vs. 7
High/low-side driver turn-off
propagation delay V
OUT
= 0 V 105 ns
t
r
5, 7 Rise time C
L
= 1000 pF 50 ns
t
f
5, 7 Fall time C
L
= 1000 pF 30 ns
Table 6. DC operation electrical characteristics (V
CC
= 15 V; T
J
= 25 °C)
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Low supply voltage section
VCC
3
Supply voltage 17 V
V
CCth1
VCC UV turn-on threshold 9.1 9.6 10.1 V
V
CCth2
VCC UV turn-off threshold 7.9 8.3 8.8 V
V
CChys
VCC UV hysteresis 1.3 V
I
QCCU
Undervoltage quiescent supply
current V
CC
9 V 150 220 A
I
QCC
Quiescent current V
IN
= 15 V 250 320 A
R
dson
Bootstrap driver on
resistance(1) V
CC
12.5 V 125
Bootstrapped supply voltage section
VBS
8
Bootstrap supply voltage 17 V
VBSth1 V
BS UV turn-on threshold 8.5 9.5 10.5 V
VBSth2 V
BS UV turn-off threshold 7.2 8.2 9.2 V
VBShys V
BS UV hysteresis 1.3 V
I
QBS
VBS quiescent current HVG ON 200 A
ILK High voltage leakage current Vhvg = VOUT = VBOOT = 600 V 10 A
High/low-side driver
I
so
5, 7
Source short-circuit current V
IN
= V
ih
(t
p
< 10 s) 300 400 mA
I
si
Sink short-circuit current V
IN
= V
il
(tp < 10 s) 450 650 mA
(Vcc J
DocID13863 Rev 4 7/17
L6385E Electrical characteristics
17
4.3 Timing diagram
Figure 3. Input/output timing diagram
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Logic inputs
V
il
1, 2
Low level logic threshold
voltage 1.5 V
V
ih
High level logic threshold voltage
3.6 V
I
ih
1, 2
High level logic input current V
IN
= 15 V 50 70 A
I
il
Low level logic input current V
IN
= 0 V 1 A
1. RDS(on) is tested in the following way:
where I
1
is pin 8 current when V
BOOT
= V
BOOT1
, I
2
when V
BOOT
= V
BOOT2
.
Table 6. DC operation electrical characteristics (V
CC
= 15 V; T
J
= 25 °C) (continued)
RDSON
VCC VBOOT1
VCC VBOOT2

I1VCC,VBOOT1
I2VCC,VBOOT2

-----------------------------------------------------------------------------------------------=
HIN
HVG
LVG
LIN
D99IN1053
Bootstrap driver L6385E
8/17 DocID13863 Rev 4
5 Bootstrap driver
A bootstrap circuitry is needed to supply the high voltage section. This function is normally
accomplished by a high voltage fast recovery diode (Figure 4 a). In the L6385E device
a patented integrated structure replaces the external diode. It is realized by a high voltage
DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as
shown in Figure 4 b. An internal charge pump (Figure 4 b) provides the DMOS driving
voltage. The diode connected in series to the DMOS has been added to avoid undesirable
turn-on.
CBOOT selection and charging
To choose the proper C
BOOT
value, the external MOSFET can be seen as an equivalent
capacitor. This capacitor C
EXT
is related to the MOSFET total gate charge:
Equation 1
The ratio between the capacitors C
EXT
and C
BOOT
is proportional to the cyclical voltage loss.
It has to be:
C
BOOT
>>>C
EXT
E.g.: if Q
gate
is 30nC and V
gate
is 10V, C
EXT
is 3nF. With C
BOOT
= 100nF the drop would be
300 mV.
If HVG has to be supplied for a long time, the C
BOOT
selection has to take into account also
the leakage losses.
E.g.: HVG steady state consumption is lower than 200 A, so if HVG T
ON
is 5 ms, C
BOOT
has to supply a maximum of 1 µC to C
EXT
. This charge on a 1mF capacitor means a voltage
drop of 1 V.
The internal bootstrap driver gives great advantages: the external fast recovery diode can
be avoided (it usually has a great leakage current).
This structure can work only if V
OUT
is close to GND (or lower) and in the meanwhile the
LVG is on. The charging time (T
charge
) of the C
BOOT
is the time in which both conditions are
fulfilled and it has to be long enough to charge the capacitor.
The bootstrap driver introduces a voltage drop due to the DMOS R
DSON
(typical value:
125 ). At low frequency this drop can be neglected. Anyway increasing the frequency it
must be taken in to account.
The following equation is useful to compute the drop on the bootstrap DMOS:
Equation 2
where Q
gate
is the gate charge of the external power MOSFET, R
dson
is the on resistance of
the bootstrap DMOS, and T
charge
is the charging time of the bootstrap capacitor.
CEXT
Qgate
Vgate
---------------=
Vdrop Ich earg Rdson Vdrop
Qgate
Tch earg
------------------- Rdson
==
DocID13863 Rev 4 9/17
L6385E Bootstrap driver
17
For example: using a power MOSFET with a total gate charge of 30 nC the drop on the
bootstrap DMOS is about 1 V, if the T
charge
is 5 ms. In fact:
Equation 3
V
drop
has to be taken into account when the voltage drop on C
BOOT
is calculated: if this drop
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode
can be used.
Figure 4. Bootstrap driver
Vdrop
30nC
5s
---------------1250.8V=
TO LOAD
D99IN1056
H.V.
HVG
ab
LVG
HVG
LVG
C
BOOT
TO LOAD
H.V.
C
BOOT
D
BOOT
V
BOOT
V
S
V
S
V
OUT
V
BOOT
V
OUT
Figure 5. Typical rise and fall times \\ \ Figure 6. Quiescent current vs. supply Figure 7. Turn-on time vs. temperature Figure 5. Turn-off time vs. temperature Figure 9. V UV turn-on threshold Figure 10. V (2 UV turn-off threshold
Typical characteristic L6385E
10/17 DocID13863 Rev 4
6 Typical characteristic
Figure 5. Typical rise and fall times
vs. load capacitance
Figure 6. Quiescent current vs. supply
voltage
Figure 7. Turn-on time vs. temperature Figure 8. Turn-off time vs. temperature
Figure 9. VBOOT UV turn-on threshold
vs. temperature
Figure 10. VCC UV turn-off threshold
vs. temperature
For both high and low side buffers @25˚C Tamb
0 1 2 3 4 5 C (nF)
0
50
100
150
200
250
time
(nsec)
Tr
D99IN1054
Tf
02 4 6 8 10121416V
S
(V)
10
10
2
10
3
10
4
Iq
(μA)
D99IN1055
-45 -25 0 25 50 75 100 125
0
50
100
150
200
250
Toff (ns)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
5
6
7
8
9
10
11
12
13
Vbth1 (V)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
6
7
8
9
10
11
Vccth2(V)
Tj (°C)
Typ.
Figure 11. V UV turn-off threshold Figure 12. Output source current Figure 13. V UV turn-on threshold Figure 14. Output sink current \
DocID13863 Rev 4 11/17
L6385E Typical characteristic
17
Figure 11. VBOOT UV turn-off threshold
vs. temperature
Figure 12. Output source current
vs. temperature
Figure 13. VCC UV turn-on threshold
vs. temperature
Figure 14. Output sink current
vs. temperature
-45 -25 0 25 50 75 100 125
6
7
8
9
10
11
12
13
14
Vbth2 (V)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
7
8
9
10
11
12
13
Vccth1(V)
Tj (°C)
Typ.
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (°C)
Typ.
@ Vcc = 15V
Package information L6385E
12/17 DocID13863 Rev 4
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
7.1 DIP-8 package information
Figure 15. DIP-8 package outline
DocID13863 Rev 4 13/17
L6385E Package information
17
Table 7. DIP-8 package mechanical data
Symbol
Dimensions (mm) Dimensions (inch)
Min. Typ. Max. Min. Typ. Max.
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e 2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 6.6 0.260
I 5.08 0.200
L 3.18 3.81 0.125 0.150
Z 1.52 0.060
ZV W L3 M45 y ail 0 SEAT‘NG PLANE fl 0,25 mm GAGE PLANE J x L T% *1
Package information L6385E
14/17 DocID13863 Rev 4
7.2 SO-8 package information
Figure 16. SO-8 package outline
$09
DocID13863 Rev 4 15/17
L6385E Package information
17
Table 8. SO-8 package mechanical data
Symbol
Dimensions (mm) Dimensions (inch)
Min. Typ. Max. Min. Typ. Max.
A 1.750 0.0689
A1 0.100 0.250 0.0039 0.0098
A2 1.250 0.0492
b 0.280 0.480 0.0110 0.0189
c 0.170 0.230 0.0067 0.0091
D(1)
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15 mm in total (both sides).
4.800 4.900 5.000 0.1890 0.1929 0.1969
E 5.800 6.000 6.200 0.2283 0.2362 0.2441
E1(2)
2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25 mm per side.
3.800 3.900 4.000 0.1496 0.1535 0.1575
e 1.270 0.0500
h 0.250 0.500 0.0098 0.0197
L 0.400 1.270 0.0157 0.0500
L1 1.040 0.0409
k0°8°0°8°
ccc 0.10 0.0039
Order codes L6385E
16/17 DocID13863 Rev 4
8 Order codes
9 Revision history
Table 9. Order codes
Order code Package Packaging
L6385E DIP-8 Tube
L6385ED SO-8 Tube
L6385ED013TR SO-8 Tape and reel
Table 10. Document revision history
Date Revision Changes
02-Oct-2007 1 First release
19-Jun-2014 2
Added Section : Applications on page 1.
Updated Section : Description on page 1 (replaced by new
description).
Updated Table 1: Device summary on page 1 (moved from page 15
to page 1, renamed title of Table 1).
Updated Figure 1: Block diagram on page 3 (moved from page 1 to
page 3, added Section 1: Block diagram on page 3).
Updated Section 2.1: Absolute maximum ratings on page 4
(removed note below Table 2: Absolute maximum ratings).
Updated Table 5: Pin description on page 5 (updated “Pin” and
“Type”).
Updated Section : CBOOT selection and charging on page 8 (updated
values of “E.g.: HVG”).
Numbered Equation 1 on page 8, Equation 2 on page 8 and
Equation 3 on page 9.
Updated Section 7: Package information on page 12 [updated/added
titles, reversed order of Figure 15 and Table 8, Figure 16 and Table 9
(numbered tables), removed 3D package figures, minor
modifications].
Minor modifications throughout document.
01-Dec-2014 3
Updated Section : Description on page 1.
Updated Table 6 on page 6 (corrected typo in units ofIso” and “Isi
parameters).
23-Sep-2015 4
Updated Table 1 on page 4 (added ESD parameter and value).
Updated note 1. below Table 6 on page 6 (replaced VCBOOTx by
VBOOTx).
Moved Table 9 on page 16 (moved from page 1 to page 16,
added/updated titles).
Minor modifications throughout document.
DocID13863 Rev 4 17/17
L6385E
17
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved

Products related to this Datasheet

IC GATE DRVR HALF-BRIDGE 8SO
IC GATE DRVR HALF-BRIDGE 8SO
IC GATE DRVR HALF-BRIDGE 8SO
IC GATE DRVR HALF-BRIDGE 8DIP
IC GATE DRVR HALF-BRIDGE 8SO