IRL(R,U)8743PbF Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
Internatiom‘ I.2R Redifler 30V 3.1mQ 39nC Gate Dram Source Continuous Dram Current, V 5 @ 10V Continuous Dram Current, V 5 @ 10V u m urren axwmum ower \ssxpa won axwmum ower \ssxpa won Linear Deratm Factor Sotdenn Tem rature torto seconds 300 1 6mm tram case
www.irf.com 1
08/15/07
IRLR8743PbF
IRLU8743PbF
HEXFET® Power MOSFET
Notes through are on page 11
Applications
Benefits
lVery Low RDS(on) at 4.5V VGS
lUltra-Low Gate Impedance
lFully Characterized Avalanche Voltage
and Current
lHigh Frequency Synchronous Buck
Converters for Computer Processor Power
lHigh Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
lLead-Free
PD - 96123
VDSS RDS(on) max Qg
30V 3.1m 39nC
Absolute Maximum Ratings
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
ID @ TC = 10C Continuous Drain Current, VGS @ 10V A
IDM Pulsed Drain Current
PD @TC = 25°C Maximum Power Dissipation W
PD @TC = 100°C Maximum Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 1.11
RθJA Junction-to-Ambient (PCB Mount) ––– 50 °C/W
RθJA Junction-to-Ambient ––– 110
135
Max.
160
113
640
± 20
30
0.90
68
300 (1.6mm from case)
-55 to + 175
D-Pak
IRLR8743PbF
I-Pak
IRLU8743PbF
G
S
D
G
D
S
GDS
Gate Drain Source
mermmmo‘ n G) n uncuon mode,
IRLR/U8743PbF
2www.irf.com
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. T
y
p. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 30 ––– –– V
∆ΒVDSS
/
TJ Breakdown Voltage Temp. Coefficient –20–mV/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 2.4 3.1
––– 3.0 3.9
VGS(th) Gate Threshold Voltage 1.35 1.9 2.35 V
VGS(th)
/
TJGate Threshold Voltage Coefficient ––– -6.4 –– mVC
IDSS Drain-to-Source Leakage Current ––– ––– 1.0
––– ––– 150
IGSS Gate-to-Source Forward Leakage ––– ––– 100
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 89 ––– –– S
QgTotal Gate Charge ––– 39 59
Qgs1 Pre-Vth Gate-to-Source Charge –10–
Qgs2 Post-Vth Gate-to-Source Charge ––– 3.9 ––– nC
Qgd Gate-to-Drain Charge –13–
Qgodr Gate Charge Overdrive ––– 12 –– See Fig. 16
Qsw Switch Charge (Qgs2 + Qgd)–17–
Qoss Output Charge ––– 21 ––– nC
RGGate Resistance ––– 0.85 1.5
td(on) Turn-On Delay Time –19–
trRise Time –35–
td(off) Turn-Off Delay Time –21–
tfFall Time –17–
Ciss Input Capacitance ––– 4880 –––
Coss Output Capacitance ––– 950 –––
Crss Reverse Transfer Capacitance ––– 470 –––
Avalanche Characteristics
Parameter Units
EAS Single Pulse Avalanche Energy mJ
IAR Avalanche Current A
EAR Repetitive Avalanche Energy mJ
Diode Characteristics
Parameter Min. T
y
p. Max. Units
ISContinuous Source Current ––– –––
(Body Diode)
ISM Pulsed Source Current ––– –––
(Body Diode)
VSD Diode Forward Voltage ––– ––– 1.0 V
trr Reverse Recovery Time 1827ns
Qrr Reverse Recovery Charge ––– 32 48 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
MOSFET symbol
–––
VGS = 4.5V
Typ.
–––
–––
ID = 20A
VGS = 0V
VDS = 15V
RG = 1.8
TJ = 25°C, IF = 20A, VDD = 15V
di/dt = 300A/
µ
s
TJ = 25°C, IS = 20A, VGS = 0V
showing the
integral reverse
p-n junction diode.
VDS = 15V, ID = 20A
VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 20A
VDS = 15V
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 25A
VGS = 4.5V, ID = 20A
VGS = 20V
VGS = -20V
VDS = VGS, ID = 100µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
Conditions
13.5
See Fig. 14
Max.
250
20
ƒ = 1.0MHz
m
160
640
µA
nA
ns
pF
A
mermmmo‘ IEER Rec’Her
IRLR/U8743PbF
www.irf.com 3
Fig 4. Normalized On-Resistance
vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
02468
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 15V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 25A
VGS = 10V
mermmmo‘ PERATION W THIS Tc : 25’s n : 175%:
IRLR/U8743PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 5 10 15 20 25 30 35 40 45 50
QG, Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
ID= 20A VDS= 24V
VDS= 15V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
mermmmo‘ 22R Rec’Her ates. \NGLE PULSE 1, Duty Factor D : II/IZ
IRLR/U8743PbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
ID, Drain Current (A)
Limited By Package
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
VGS(th), Gate Threshold Voltage (V)
ID = 100µA
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4
Ri (°C/W) τi (sec)
0.02879 0.000017
0.25773 0.000143
0.48255 0.001411
0.34135 0.010617
mermmmo‘ IEZR R617 her
IRLR/U8743PbF
6www.irf.com
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 13. Gate Charge Test Circuit
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 2.7A
3.7A
BOTTOM 20A
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width 1 µs
Duty Factor 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
Fig 14a. Switching Time Test Circuit
Fig 14b. Switching Time Waveforms
International ISIR Rectifier (U l Ba 7 CL” ‘ , ‘ % (2: ®:$\\{ ,® , 23:21“ » ' w T T ‘3 ® ’7 v Re :L 23:15:,‘zzfl‘zizzfs m 55255“ ~ \sn cummHed by Dmy Facmv ‘D‘ , (4) . D u T WW W, W . Fig 15. Peak Diode Recovery dv/dt T HEXFET® Power M ngdr di 0952 09 Fig 16. Gake Charge Wave1orm www.irf.com
IRLR/U8743PbF
www.irf.com 7
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Fig 16. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
International IEBR Rectifier
IRLR/U8743PbF
8www.irf.com
Control FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.
Power losses in the control switch Q1 are given
by;
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
This can be expanded and approximated by;
P
loss =Irms
2×Rds(on )
()
+I×Qgd
ig
×Vin ×f
+I×Qgs 2
ig
×V
in ×f
+Qg×Vg×f
()
+Qoss
2×Vin ×f
This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain cur-
rent rises to Idmax at which time the drain voltage be-
gins to change. Minimizing Qgs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the out-
put capacitance of the MOSFET during every switch-
ing cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (non-
linear) capacitances Cds and Cdg when multiplied by
the power supply input buss voltage.
Synchronous FET
The power loss equation for Q2 is approximated
by;
P
loss =P
conduction +P
drive +P
output
*
P
loss =Irms
2×Rds(on)()
+Qg×Vg×f
()
+Qoss
2×Vin ×f
+Qrr ×Vin ×f
(
)
*dissipated primarily in Q1.
For the synchronous MOSFET Q2, Rds(on) is an im-
portant characteristic; however, once again the im-
portance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the con-
trol IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and re-
verse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions be-
tween ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is ca-
pacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Power MOSFET Selection for Non-Isolated DC/DC Converters
Figure A: Qoss Characteristic
International ISIR Rectifier v mmwnmm m wwmum m M mawm» :7 Dwmsmw m: mm W Wm; [Hummus] (k ml) thNSmN wmmouw w As A "mm m n n r .5 mm A Wm. Mnuwr mm m Mm m 5 :zcmw ( E ommgms my Va M ruv saw v M m azwxu nus mo ma l: v! m ans] rlwu m: m up A mm D A 5 no Mm wnunt m mu m: ruin mu Mm mm nus mum smr m: nwmsmu; m mm H m auwas' mm; ar w: mm Rev 13 www m a a APFHED vc BASE vzu aw fix nuw .\ a a we BIZ nxvznmm) n cum S L g a r C my my L we ‘75 055 am 37921ch N U 274534; ”Mr “W" u m , m m “K Em D-Pak (TO—252AA) Part Marking Information mm mmwrm WWWEER WW “SEW” \NTERNAT‘ONAL Lomoogm mm mom “swarm ON WW "1mm LOGO mm 1 m mgmwamww mm Nana 'P m axemb‘yhnaummun ASSEMELV UNEA Mam-marma- Lomoog nassamb‘y hm msnnn m was 'Lm‘rFma‘ (\mh'mmmnm «m mnsummx PART NuMEER on ‘Nggmgfiw among P = DES‘GNATES LEADVFREE LOGO PRODUCT (OPT‘ONALI E: DES‘GNATES LEADVFREE PRODUCTOUAUF‘EDTO THE ASSEMELV LOTCODE ODNSUMER LEVEL topnomu VEAR r = 2am WEEK us A = ASSEMELV 5er ooDE Note: For the most current drawing please refer m IR wehsue at Ilttpzllwwwjrfimm/Qackage/ www.irf.com 9
IRLR/U8743PbF
www.irf.com 9
D-Pak (TO-252AA) Part Marking Information
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
International IEBR Rectifier ‘7 WWW Mn 'mwmuw m m vuwrvay 27 mm a: 9mm m was ymmm, A 2%"; {mu m“ A mm PAD mm when m outwan m n. u k p A mnmmawuwzmulmwu 3: WWW u“ m, 53m um. um ,, MM Moms m m: am: mm» In. . wax: 57 Dawmmwmsm mt; s ; mm a ? um m w m E "A “ Z? 21.; 2:? 2:: “WM .3 m on m, . r we nu am up H [In w m m m 52? , 205 , A n A u 4 HM l-Pak (TO-251AA) Part Marklng EXAM grams? mm ASSEMELEDONWW19 2m1 LOGO VEAR‘ : 20m WEASSEMEWE- 333:9 W MODE OR m p m mmmw ASSEMBLY VF‘R‘ Z 2“ LOTCODE WEEK“? A = ASSEMBLY SITE CODE Note: For the most current draw 10
IRLR/U8743PbF
10 www.irf.com
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
International ISIR Rectifier wa¢¢>¢¢¢>fl \wwtm‘t @3 i ilw /©\ 9 9+ i.» International IEER Rectifier
IRLR/U8743PbF
www.irf.com 11
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, L = 1.252mH, RG = 25,
IAS = 20A.
Pulse width 400µs; duty cycle 2%.
Notes:
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 50A.
When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to
application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2007
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Products related to this Datasheet

MOSFET N-CH 30V 160A I-PAK
MOSFET N-CH 30V 160A DPAK
MOSFET N-CH 30V 160A DPAK
MOSFET N-CH 30V 160A DPAK
MOSFET N-CH 30V 160A DPAK
MOSFET N-CH 30V 160A DPAK