MCP1711 Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
Mlcgcmp MCP1711
2015-2016 Microchip Technology Inc. DS20005415D-page 1
MCP1711
Features
Low Quiescent Current: 600 nA
Input Voltage Range: 1.4V to 6.0V
Standard Output Voltages: 1.2V, 1.8V, 1.9V, 2.0V,
2.2V, 2.5V, 3.0V, 3.3V, 5.0V
Output Accuracy: ±20 mV for 1.2V and 1.8V
Options and ±1% for VR2.0V
Temperature Stability: ±50 ppm/°C
Maximum Output Current: 150 mA
Low ON Resistance: 3.3 @ VR = 3.0V
Standby Current: 10 nA
Protection Circuits: Current Limiter, Short Circuit,
Foldback
• SHDN Pin Function: ON/OFF Logic = Enable
High
•C
OUT Discharge Circuit when SHDN Function is
Active
Output Capacitor: Low Equivalent Series
Resistance (ESR) Ceramic, Capacitorless
Compatible
Operating Temperature: -40°C to +85°C
(Industrial)
Available Packages:
- 4-Lead 1 x 1 mm UQFN
- 5-Lead SOT-23
Environmentally Friendly: EU RoHS Compliant,
Lead-Free
Applications
Energy Harvesting
Long-Life, Battery-Powered Applications
Portable Electronics
Ultra-Low Consumption “Green” Products
Mobile Devices/Terminals
Wireless LAN
Modules (Wireless, Cameras)
Related Literature
AN765, Using Microchips Micropower LDOs
(DS00765), Microchip Technology Inc.
AN766, Pin-Compatible CMOS Upgrades to Bipolar
LDOs (DS00766), Microchip Technology Inc.
AN792, A Method to Determine How Much Power
a SOT23 Can Dissipate in an Application
(DS00792), Microchip Technology Inc.
General Description
The MCP1711 is a highly accurate CMOS low dropout
(LDO) voltage regulator that can deliver up to 150 mA
of current while consuming only 0.6 µA of quiescent
current (typical). The input operating range is specified
from 1.4V to 6.0V, making it an ideal choice for mobile
applications and one-cell Li-Ion powered applications.
The MCP1711 is capable of delivering 150 mA output
current with only 0.32V (typical) for VR = 5.0V, and
1.41V (typical) for VR = 1.2V of input-to-output voltages
differential. The output voltage accuracy of the
MCP1711 is typically ± 0.02V for VR < 2.0V and ±1% for
VR2.0V at +25°C. The temperature stability is
approximately ±50 ppm/°C. Line regulation is
±0.01%/V typical at +25°C.
The output voltages available for the MCP1711 range
from 1.2V to 5.0V. The LDO output is stable even if an
output capacitor is not connected, due to an excellent
internal phase compensation. However, for better tran-
sient responses, the output capacitor should be added.
The MCP1711 is compatible with low ESR ceramic
output capacitors.
Overcurrent limit and short-circuit protection embed-
ded into the device provide a robust solution for any
application.
The MCP1711 has a true current foldback feature.
When the load decreases beyond the MCP1711 load
rating, the output current and output voltage will
foldback toward 80 mA (typical) at approximately 0V
output. When the load impedance increases and
returns to the rated load, the MCP1711 will follow the
same foldback curve as the device comes out of
current foldback.
If the device is in Shutdown mode, by inputting a
low-level signal to the SHDN pin, the current
consumption is reduced to less than 0.1 µA (typically
0.01 µA). In Shutdown mode, if the output capacitor is
used, it will be discharged via the internal dedicated
switch and, as a result, the output voltage quickly
returns to 0V.
The package options for the MCP1711 are the 4-lead
1 x 1 mm UQFN and the 5-lead SOT-23, which make
the device ideal for small and compact applications.
150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
E fig
MCP1711
DS20005415D-page 2 2015-2016 Microchip Technology Inc.
Package Types Typical Application Circuit
Functional Block Diagram
21
3
4
VIN
VOUT GND
GND
NC
123
VOUT
VIN
SHDN
SHDN
MCP1711
1x1 UQFN*
Top View
EP
5
* Includes Exposed Thermal Pad (EP);
see Table 3-1
MCP1711
SOT-23
Top View
54
V
IN
SHDN
GND
V
OUT
VIN
CIN
ON
OFF
C
OUT
V
OUT
MCP1711
0.1 µF
Ceramic
MCP1711
1x1 UQFN and SOT-23
Limit
Ref
+
Err Amp
R1
R2
Current
SHDN ON/OFF
Control
VOUT
VIN
RDCHG
SHDN to each block
Discharge transistor (DT)
DT
PMOS
IN VR
2015-2016 Microchip Technology Inc. DS20005415D-page 3
MCP1711
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Input Voltage, VIN.....................................................................................................................................................+6.5V
VIN, SHDN.................................................................................................................................................. -0.3V to +6.5V
Output Current, IOUT (1).........................................................................................................................................470 mA
Output Voltage, VOUT (2)....................................................................................................... -0.3V to VIN + 0.3V or +6.5V
Power Dissipation
5-Lead SOT-23 ..................................................... 600 mW (JEDEC 51-7 FR-4 board with thermal vias) or 250 mW (3)
4-Lead 1 x 1 mm UQFN........................................ 550 mW (JEDEC 51-7 FR-4 board with thermal vias) or 100 mW (3)
Storage Temperature .............................................................................................................................. -55°C to +125°C
Operating Ambient Temperature............................................................................................................... -40°C to +85°C
ESD Protection on all pins ...........................................................................................................±1 kV HBM, ±200V MM
Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Note 1: Provided that the device is used in the range of IOUT PD/(VIN - VOUT).
2: The maximum rating corresponds to the lowest value between VIN + 0.3V or +6.5V.
3: The device is mounted on one layer PCB with minimal copper that does not provide any additional cooling.
DC CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, VSHDN = VIN, IOUT = 1 mA, CIN = COUT = 0 µF, VIN = 3.5V for
VR < 2.5V and VIN = VR + 1V for VR 2.5V, TA = +25°C
Parameters Sym. Min. Typ. Max. Units Conditions
Input-Output Characteristics
Input Voltage VIN 1.4 6.0 V IOUT = 1 µA
Output Voltage VOUT VR - 0.02 VRVR + 0.02 V VR < 2.0V
VR x 0.99 VRVR x 1.01 VR 2.0V
Maximum Output Current IOUT 150 — mA
Load Regulation VOUT -16 ±3 +16 mV 1 µA IOUT 1 mA
-50 ±17 +50 1 mA IOUT 150 mA
Dropout Voltage (1)VDROPOUT1 —V
DROP1 (2)VI
OUT = 50 mA
VDROPOUT2 —V
DROP2 (2)IOUT = 150 mA
Input Quiescent Current Iq—0.601.27 µAV
R < 1.9V
0.65 1.50 1.9V VR < 4.0V
—0.801.80 V
R 4.0V
Input Quiescent Current
for SHDN mode ISHDN —0.010.10 µAV
IN = 6.0V
VSHDN = VIN
Line Regulation VOUT/
(VIN x VOUT)-0.13 ±0.01 +0.13 %/V IOUT = 1 µA
VR + 0.5V VIN 6.0V
-0.19 ±0.01 +0.19 IOUT = 1 mA
VR 1.2V,VR + 0.5V VIN
6.0V
Note 1: The dropout voltage is defined as the input to output differential at which the output voltage drops 2%
below the output voltage value that was measured with an applied input voltage of VIN = VR + 1V.
2: VDROP1, VDROP2: Dropout Voltage (Refer to the DC Characteristics Voltage Table).
LIMIT OUT VOUT VR
MCP1711
DS20005415D-page 4 2015-2016 Microchip Technology Inc.
Output Voltage
Temperature Stability
VOUT/
(T x VOUT)—±50 —ppm/°CI
OUT = 10 mA
-40°C TA +85°C
Current Limit ILIMIT 150 270 mA VOUT = 0.95 x VR
Output Short-Circuit
Foldback Current IOUT_SC —80 — mAV
OUT = GND
COUT Auto-Discharge
Resistance RDCHG 280 450 640 SHDN = GND
VOUT = VR
Noise en 30 µV(rms) CIN = COUT = 1 µF, IOUT = 50
mA, f = 10 Hz to 100 kHz
Shutdown Input
SHDN Logic High Input
Voltage VSHDN-HIGH 0.91 — 6.00 V
SHDN Logic Low Input
Voltage VSHDN-LOW 0 — 0.38 V
SHDN High-Level Current ISHDN-HIGH -0.1 +0.1 µA VIN = 6.0V
SHDN Low-Level Current ISHDN-LOW -0.1 +0.1 µA VIN = 6.0V
SHDN = GND
DC CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, VSHDN = VIN, IOUT = 1 mA, CIN = COUT = 0 µF, VIN = 3.5V for
VR < 2.5V and VIN = VR + 1V for VR 2.5V, TA = +25°C
Parameters Sym. Min. Typ. Max. Units Conditions
Note 1: The dropout voltage is defined as the input to output differential at which the output voltage drops 2%
below the output voltage value that was measured with an applied input voltage of VIN = VR + 1V.
2: VDROP1, VDROP2: Dropout Voltage (Refer to the DC Characteristics Voltage Table).
DC CHARACTERISTICS VOLTAGE TABLE
Nominal
Output
Voltage
Output Voltage (V) Dropout Voltage (V)
VOUT VDROP1 VDROP1 VDROP2 VDROP2
VR (V) Min. Max. Typ. Max. Typ. Max.
1.2 1.1800 1.2200 0.87 1.23 1.41 1.93
1.8 1.7800 1.8200 0.47 0.72 0.99 1.40
1.9 1.8800 1.9200 0.42 0.64 0.92 1.29
2.0 1.9800 2.0200 0.37 0.58 0.86 1.20
2.2 2.1780 2.2220 0.31 0.47 0.75 1.05
2.5 2.4750 2.5250 0.26 0.40 0.67 0.92
3.0 2.9700 3.0300 0.17 0.26 0.50 0.67
3.3 3.2670 3.3330 0.17 0.26 0.50 0.67
5.0 4.9500 5.0500 0.10 0.16 0.32 0.43
2015-2016 Microchip Technology Inc. DS20005415D-page 5
MCP1711
TEMPERATURE SPECIFICATIONS (Note 1)
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Operating Ambient Temperature Range TA-40 +85 °C
Junction Operating Temperature TJ-40 +125 °C
Storage Temperature Range TA-55 +125 °C
Package Thermal Resistances
Thermal Resistance, 1 x 1 UQFN-4Ld JA 181.82 °C/W JEDEC 51-7 FR4 board with
thermal vias
JA 1000 °C/W Note 2
JC —15°C/W
Thermal Resistance, SOT-23-5Ld JA 166.67 °C/W JEDEC 51-7 FR4 board with
thermal vias
JA —400°C/WNote 2
JC —81°C/W
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature, and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the max-
imum allowable power dissipation will cause the device operating junction temperature to exceed the
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
2: The device is mounted on one layer PCB with minimal copper that does not provide any additional cooling.
W \
MCP1711
DS20005415D-page 6 2015-2016 Microchip Technology Inc.
2.0 TYPICAL PERFORMANCE CURVES
NOTE: Unless otherwise indicated, VIN =3.5V for V
R < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-1: Quiescent Current vs. Input
Voltage.
FIGURE 2-2: Quiescent Current vs. Input
Voltage.
FIGURE 2-3: Quiescent Current vs. Input
Voltage.
FIGURE 2-4: Quiescent Current vs. Input
Voltage.
FIGURE 2-5: Ground Current vs. Load
Current.
FIGURE 2-6: Ground Current vs. Load
Current.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
0.00
0.20
0.40
0.60
0.80
1.00
1.20
0123456
Quiescent Current (µA)
Input Voltage (V)
TA= +25°C TA= +85°C
VR= 1.2V
T
A
= -40°C
0
0.2
0.4
0.6
0.8
1
1.2
0123456
Quiescent Current (µA)
Input Voltage (V)
TA= -40°C
TA= +25°C
TA= +85°C
VR= 1.8V
0.00
0.20
0.40
0.60
0.80
1.00
1.20
0123456
Quiescent Current (µA)
Input Voltage (V)
VR= 3.3V
TA= -40°C
TA= +25°C
TA= +85°C
0.00
0.20
0.40
0.60
0.80
1.00
1.20
0123456
Quiescent Current (µA)
Input Voltage (V)
TA= -40°C
TA= +25°C
TA= +85°C
VR= 5.0V
0
5
10
15
20
25
30
35
40
45
0 306090120150
Ground Current (µA)
Load Current (mA)
VR= 1.2V
0
5
10
15
20
25
30
35
40
45
0 306090120150
Ground Current (µA)
Load Current (mA)
VR= 1.8V
2015-2016 Microchip Technology Inc. DS20005415D-page 7
MCP1711
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-7: Ground Current vs. Load
Current.
FIGURE 2-8: Ground Current vs. Load
Current.
FIGURE 2-9: Start-Up from VIN.
.
FIGURE 2-10: Start-Up from VIN.
FIGURE 2-11: Start-Up from VIN.
FIGURE 2-12: Start-Up from VIN.
0
5
10
15
20
25
30
35
40
030 60 90 120 150
Ground Current (µA)
Load Current (mA)
VR= 3.3V
0
5
10
15
20
25
30
35
40
45
0 30 60 90 120 150
Ground Current (µA)
Load Current (mA)
VR= 5.0V
0V
3.5V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 0.5V/Div)
VR = 1.2V
IOUT = 1 µA
IOUT = 10 mA IOUT = 150 mA
VIN
VOUT
0V
3.5V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 1V/Div)
VR = 1.8V
IOUT = 1 µA
IOUT = 10 mA IOUT = 150 mA
VIN
VOUT
0V
4.3V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 1V/Div)
VR = 3.3V
IOUT = 1 µA
IOUT = 10 mA IOUT = 150 mA
VIN
VOUT
0V
6.0 V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 2V/Div)
VR = 5.0V
IOUT = 1 µA
IOUT = 10 mA IOUT = 150 mA
VIN
VOUT
MCP1711
DS20005415D-page 8 2015-2016 Microchip Technology Inc.
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-13: Start-Up from VIN.
FIGURE 2-14: Start-Up from VIN.
FIGURE 2-15: Start-Up from VIN.
FIGURE 2-16: Start-Up from VIN.
FIGURE 2-17: Start-Up from SHDN.
FIGURE 2-18: Start-Up from SHDN.
0V
3.5V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 0.5V/Div)
IOUT = 10 mA
IOUT = 100 mA
IOUT = 150 mA VR = 1.2V
CIN = COUT =1 µF
VIN
VOUT
0V
3.5V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 1V/Div)
IOUT = 10 mA
IOUT = 100 mA
IOUT = 150 mA VR = 1.8V
CIN = COUT =1 µF
VIN
VOUT
0V
4.3V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 1V/Div)
IOUT = 10 mA
IOUT = 100 mA
IOUT = 150 mA VR = 3.3V
CIN = COUT =1 µF
VIN
VOUT
0V
6.0 V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 2V/Div)
IOUT = 10 mA
IOUT = 100 mA
IOUT = 150 mA VR = 5.0V
CIN = COUT =1 µF
VIN
IOUT
0V
3.5V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 0.5V/Div)
VR = 1.2V
IOUT = 1 µA
IOUT = 10 mA
IOUT = 150 mA
EN
VOUT
0V
3.5V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 1V/Div)
VR = 1.8V
IOUT = 1 µA
IOUT = 10 mA IOUT = 150 mA
SHDN
VOUT
Ill /
2015-2016 Microchip Technology Inc. DS20005415D-page 9
MCP1711
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-19: Start-Up from SHDN.
FIGURE 2-20: Start-Up from SHDN.
FIGURE 2-21: Output Voltage vs. Output
Current.
FIGURE 2-22: Output Voltage vs. Output
Current.
FIGURE 2-23: Output Voltage vs. Output
Current.
FIGURE 2-24: Output Voltage vs. Output
Current.
0V
4.3V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 1V/Div)
VR = 3.3V
IOUT = 1 µA
IOUT = 10 mA
IOUT = 150 mA
SHDN
VOUT
0V
6.0 V
tr = 5 µs
Time = 80 µs/Div
VOUT (DC Coupled, 2V/Div)
VR = 5.0V
IOUT = 1 µA
IOUT = 10 mA
IOUT = 150 mA
SHDN
VOUT
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
0 50 100 150 200 250
Output Voltage (V)
Output Current (mA)
VIN = 2.5V
VIN = 3.5V
VIN = 4.5V
VIN = 6.0V
VR= 1.2V
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
0 50 100 150 200 250 300
Output Voltage (V)
Output Current (mA)
V
R
= 1.8V
VIN = 2.5V
VIN = 3.5V
VIN = 4.5V
VIN = 6.0V
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
0 50 100 150 200 250 300 350
Output Voltage (V)
Output Current (mA)
VIN = 5.0V
VIN = 4.3V
VIN = 3.6V
VIN = 6.0V
VR= 3.3V
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
0 50 100 150 200 250 300 350 400
Output Voltage (V)
Output Current (mA)
VIN = 5.5V
VIN = 6.0V
VR= 5.0V
VIN = 5.5V
VIN = 6.0V
VR= 5.0V
VIN = 5.5V
VIN = 6.0V
VR= 5.0V
VIN = 5.5V
VIN = 5.2V
VIN = 6.0V
VR= 5.0V
// l/k //7 I/// 7’ "'77 4 77 ’//~ 4
MCP1711
DS20005415D-page 10 2015-2016 Microchip Technology Inc.
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-25: Output Voltage vs. Output
Current.
FIGURE 2-26: Output Voltage vs. Output
Current.
FIGURE 2-27: Output Voltage vs. Output
Current.
FIGURE 2-28: Output Voltage vs. Output
Current.
FIGURE 2-29: Output Voltage vs. Input
Voltage.
FIGURE 2-30: Output Voltage vs. Input
Voltage.
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
0 50 100 150 200 250
Output Voltage (V)
Output Current (mA)
VR= 1.2V
TA= -40°C
TA= +85°C
TA= +25°C
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
0 50 100 150 200 250 300
Output Voltage (V)
Output Current (mA)
VR= 1.8V
TA= +85°C
TA= +25°C
TA= -40°C
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
0 50 100 150 200 250 300 350
Output Voltage (V)
Output Current (mA)
VR= 3.3V
TA= +85°C
TA= +25°C
VR= 3.3V
TA= +85°C
TA= +25°C
VR= 3.3V
TA= +85°C
TA= +25°C
VR= 3.3V
TA= +85°C
TA= +25°C
VR= 3.3V
TA= +85°C
TA= +25°C
VR= 3.3V
TA= -40°C
TA= +85°C
TA= +25°C
VR= 3.3V
TA= +85°C
TA= +25°C
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
0 50 100 150 200 250 300 350
Output Voltage (V)
Output Current (mA)
TA= +85°C
TA= +25°C
TA= +85°C
TA= +25°C
TA= +85°C
TA= +25°C
VR= 5.0V
TA= +85°C
TA= +25°C
TA= +85°C
TA= +25°C
TA= +85°C
TA= +25°C
TA= +85°C
TA= +25°C
T
A
= -40°C
TA= +85°C
TA= +25°C
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
0123456
Output Voltage (V)
Input Voltage (V)
VR= 1.2V
IOUT = 1 µA
IOUT = 1 mA
IOUT = 10 mA
IOUT = 100 mA
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
0123456
Output Voltage (V)
Input Voltage (V)
VR= 1.8V
IOUT = 100 mA
IOUT = 1 µA
IOUT = 1 mA
IOUT = 10 mA
2015-2016 Microchip Technology Inc. DS20005415D-page 11
MCP1711
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-31: Output Voltage vs. Input
Voltage.
FIGURE 2-32: Output Voltage vs. Input
Voltage.
FIGURE 2-33: Output Voltage vs. Ambient
Temperature.
FIGURE 2-34: Output Voltage vs. Ambient
Temperature.
FIGURE 2-35: Output Voltage vs. Ambient
Temperature.
FIGURE 2-36: Output Voltage vs. Ambient
Temperature.
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
0123456
Output Voltage (V)
Input Voltage (V)
VR= 3.3V
IOUT = 100 mA
IOUT = 1 µA
IOUT = 1 mA
IOUT = 10 mA
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
0123456
Output Voltage (V)
Input Voltage (V)
VR= 5.0V
VR= 5.0V
IOUT = 100 mA
IOUT = 1 µA
IOUT = 1 mA
IOUT = 10 mA
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
-40 -15 10 35 60 85
Output Voltage (V)
Ambient Temperature (°C)
VR= 1.2V
IOUT = 100 mA IOUT = 10 mA
IOUT = 1 mA IOUT = 1 µA
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
-40 -15 10 35 60 85
Output Voltage (V)
Ambient Temperature (°C)
VR= 1.8V
IOUT = 100 mA
IOUT = 1 µA
IOUT = 1 mA IOUT = 10 mA
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
-40 -15 10 35 60 85
Output Voltage (V)
Ambient Temperature (°C)
VR= 3.3V
IOUT = 100 mA
IOUT = 10 mA
IOUT = 1 mA
IOUT = 1 µA
4.80
4.85
4.90
4.95
5.00
5.05
5.10
5.15
5.20
-40 -15 10 35 60 85
Output Voltage (V)
Ambient Temperature (°C)
VR= 5.0V
IOUT = 100 mA
IOUT = 10 mA
IOUT = 1 mA
IOUT = 1 µA
-.§ \ ¥ fi n g Q / g
MCP1711
DS20005415D-page 12 2015-2016 Microchip Technology Inc.
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-37: Dropout Voltage vs. Output
Current.
FIGURE 2-38: Dropout Voltage vs. Output
Current.
FIGURE 2-39: Dropout Voltage vs. Output
Current.
FIGURE 2-40: Dropout Voltage vs. Output
Current.
FIGURE 2-41: Shutdown Threshold
Voltage vs. Ambient Temperature.
FIGURE 2-42: Dynamic Line Response.
0
200
400
600
800
1000
1200
1400
1600
1800
0 25 50 75 100 125 150
Dropout Voltage (mV)
Output Current (mA)
VR= 1.2V
TA= +85°C
TA= +25°C
TA= -40°C
0
200
400
600
800
1000
1200
1400
0 255075100125150
Dropout Voltage (mV)
Output Current (mA)
VR= 1.8V
TA= +85°C
TA= +25°C
TA= -40°C
0
50
100
150
200
250
300
350
400
450
500
0 25 50 75 100 125 150
Dropout Voltage (mV)
Load Current (mA)
VR= 3.3V TA= +85°C
TA= +25°C
TA= -40°C
0
50
100
150
200
250
300
350
400
450
0 25 50 75 100 125 150
Dropout Voltage (mV)
Load Current (mA)
VR= 5.0V
TA= +85°C
TA= +25°C
TA= -40°C
0.00
0.20
0.40
0.60
0.80
1.00
-40-1510356085
SHDN Threshold Voltage (V)
Ambient Temperature (°C)
VR= 1.2V to 5.0V
SHDN High Level
SHDN Low Level
3.5V
4.5V
tr = 5 µs tf = 5 µs
VOUT (AC Coupled, 500 mV/Div)
VR = 1.2V
VIN = 3.5V to 4.5V
IOUT = 10 mA Time = 80 µs/Div
VIN
VOUT
2015-2016 Microchip Technology Inc. DS20005415D-page 13
MCP1711
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-43: Dynamic Line Response.
FIGURE 2-44: Dynamic Line Response.
FIGURE 2-45: Dynamic Line Response.
FIGURE 2-46: Dynamic Line Response.
FIGURE 2-47: Dynamic Line Response.
FIGURE 2-48: Dynamic Line Response.
3.5V
4.5V
tr = 5 µs tf = 5 µs
VOUT (AC Coupled, 500 mV/Div)
VR = 1.2V
VIN = 3.5V to 4.5V
IOUT = 100 mA Time = 80 µs/Div
VIN
VOUT
3.5V
4.5V
tr = 5 µs tf = 5 µs
VOUT (AC Coupled, 500 mV/Div)
VR = 1.8V
VIN = 3.5V to 4.5V
IOUT = 10 mA Time = 80 µs/Div
VIN
VOUT
3.5V
4.5V
tr = 5 µs tf = 5 µs
VOUT (AC Coupled, 500 mV/Div)
VR = 1.8V
VIN = 3.5V to 4.5V
IOUT = 100 mA Time = 80 µs/Div
VIN
VOUT
VR = 3.3V
VIN = 4.3V to 5.3V
IOUT = 10 mA Time = 80 µs/Div
VOUT (AC Coupled, 500 mV/Div)
5.3V
tr = 5 µs
4.3V tf = 5 µs
VIN
VOUT
VR = 3.3V
VIN = 4.3V to 5.3V
IOUT = 100 mA Time = 80 µs/Div
VOUT (AC Coupled, 500 mV/Div)
5.3V
tr = 5 µs
4.3V tf = 5 µs
VIN
VOUT
5.2V
6.0V
tr = 5 µs tf = 5 µs
VOUT (AC Coupled, 500 mV/Div)
VR = 5.0V
VIN = 5.2V to 6.0V
IOUT = 10 mA Time = 80 µs/Div
VIN
VOUT
MCP1711
DS20005415D-page 14 2015-2016 Microchip Technology Inc.
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-49: Dynamic Line Response.
FIGURE 2-50: Dynamic Load Response.
FIGURE 2-51: Dynamic Load Response.
FIGURE 2-52: Dynamic Load Response.
FIGURE 2-53: Dynamic Load Response.
FIGURE 2-54: Dynamic Load Response.
5.5V 6.0V
tr = 5 µs tf = 5 µs
VOUT (AC Coupled, 500 mV/Div)
VR = 5.0V
VIN = 5.5V to 6.0V
IOUT = 100 mA Time = 80 µs/Div
6.0V
VIN
VOUT
1 µA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 1.2V
VIN = 3.5V
IOUT = 1 µA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
IOUT
VOUT
IOUT
VOUT
1 µA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 1.2V
VIN = 3.5V
IOUT = 1 µA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
1 mA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 1.2V
VIN = 3.5V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
VOUT
IOUT
IOUT
VOUT
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
Time = 200 µs/Div
1 tr set time = 5 µs
VR = 1.2V
VIN = 3.5V
IOUT = 1 mA to 150 mA
CIN = COUT = 1 µF
1 µA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 1.8V
VIN = 3.5V
IOUT = 1 µA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
VOUT
IOUT
2015-2016 Microchip Technology Inc. DS20005415D-page 15
MCP1711
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-55: Dynamic Load Response.
FIGURE 2-56: Dynamic Load Response.
FIGURE 2-57: Dynamic Load Response.
FIGURE 2-58: Dynamic Load Response.
FIGURE 2-59: Dynamic Load Response.
FIGURE 2-60: Dynamic Load Response.
IOUT
VOUT
1 µA
150 mA
tr1
tf = 5 µs
VOUT (AC Coupled, 1V/Div)
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
VR = 1.8V
VIN = 3.5V
IOUT = 1 µA to 150 mA
1 mA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 1.8V
VIN = 3.5V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
IOUT
VOUT
IOUT
VOUT
1 mA
150 mA
tr1tf = 5 µs
VR = 1.8V
VIN = 3.5V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
1 µA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 3.3V
VIN = 4.3V
IOUT = 1 µA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
IOUT
VOUT
IOUT
VOUT
1 µA
150 mA
tr1
tf = 5 µs
VOUT (AC Coupled, 1V/Div)
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
VR = 3.3V
VIN = 4.3V
IOUT = 1 µA to 150 mA
1 mA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 3.3V
VIN = 4.3V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
IOUT
VOUT
MCP1711
DS20005415D-page 16 2015-2016 Microchip Technology Inc.
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-61: Dynamic Load Response.
FIGURE 2-62: Dynamic Load Response.
FIGURE 2-63: Dynamic Load Response.
FIGURE 2-64: Dynamic Load Response.
FIGURE 2-65: Dynamic Load Response.
FIGURE 2-66: Output Noise vs. Frequency.
IOUT
VOUT
1 mA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 3.3V
VIN = 4.3V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
1 µA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
Time = 200 µs/Div
1 tr set time = 5 µs
IOUT
VOUT
VR = 5.0V
VIN = 6.0V
IOUT = 1 µA to 150 mA
IOUT
VOUT
1 µA
150 mA
tr1
tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 5.0V
VIN = 6.0V
IOUT = 1 µA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
1 mA
150 mA
tr1tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 5.0V
VIN = 6.0V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
IOUT
VOUT
IOUT
VOUT
1 mA
150 mA
tr1
tf = 5 µs
VOUT (AC Coupled, 1V/Div)
VR = 5.0V
VIN = 6.0V
IOUT = 1 mA to 150 mA
Time = 200 µs/Div
1 tr set time = 5 µs
CIN = COUT = 1 µF
0.001
0.01
0.1
1
10
100
0.01 0.1 1 10 100 1000
Output Noise (μV/¥Hz)
Frequency (kHz)
VR= 3.3V
VIN = 4.3V
VR= 5.0V
VIN = 6.0V
VR= 1.8V
VIN = 3.5V
CIN = 1 μF, COUT = 1 μF, IOUT = 50 mA
\H
2015-2016 Microchip Technology Inc. DS20005415D-page 17
MCP1711
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-67: Power Supply Ripple
Rejection vs. Frequency.
FIGURE 2-68: Power Supply Ripple
Rejection vs. Frequency.
FIGURE 2-69: Power Supply Ripple
Rejection vs. Frequency.
FIGURE 2-70: Power Supply Ripple
Rejection vs. Frequency.
FIGURE 2-71: Power Supply Ripple
Rejection vs. Frequency.
FIGURE 2-72: Power Supply Ripple
Rejection vs. Frequency.
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
VR= 1.2V
VIN = 3.5V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 0 µF
IOUT = 10 mA
IOUT = 150 mA
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
IOUT = 150 mA
IOUT = 10 mA VR= 1.2V
VIN = 3.5V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 1 µF
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
IOUT = 150 mA
VR= 1.8V
VIN = 3.5V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 0 µF
IOUT = 10 mA
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
VR= 1.8V
VIN = 3.5V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 1 µF
IOUT = 10 mA
IOUT = 150 mA
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
VR= 3.3V
VIN = 4.3V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 0 µF
IOUT = 10 mA
IOUT = 150 mA
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
VR= 3.3V
VIN = 4.3V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 1 µF
IOUT = 10 mA
IOUT = 150 mA
\< @="">
MCP1711
DS20005415D-page 18 2015-2016 Microchip Technology Inc.
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,
CIN =C
OUT =0µF, V
SHDN = VIN, TA = +25°C.
FIGURE 2-73: Power Supply Ripple
Rejection vs. Frequency.
FIGURE 2-74: Power Supply Ripple
Rejection vs. Frequency.
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
VR= 5.0V
VIN = 5.75V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 0 µF
IOUT = 10 mA
IOUT = 150 mA
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.1 1 10 100 1000
PSRR (dB)
Frequency (kHz)
VR= 5.0V
VIN = 5.75V
VINAC = 0.5Vpk-pk
CIN = 0 µF
COUT = 1 µF
IOUT = 10 mA
IOUT = 150 mA
2015-2016 Microchip Technology Inc. DS20005415D-page 19
MCP1711
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
3.1 Unregulated Input Voltage (VIN)
Connect the VIN pin to the output of the unregulated
source voltage. Like all low dropout linear regulators,
low-source impedance is necessary for ensuring stable
operation of the LDO. The amount of capacitance
required to ensure low-source impedance will depend
on the proximity of the input source capacitors or bat-
tery type. For most applications, 0.1 µF of capacitance
will ensure stable operation of the LDO circuit. If the
output capacitor is used, the input capacitor should
have a capacitance value equal to or greater than the
output capacitor for performance applications.
The input capacitor will supply the load current during
transients and improve performance. For applications
that have low load currents, the input capacitance
requirement can be lowered.
The type of capacitor used may be ceramic, tantalum or
aluminum electrolytic. The low ESR characteristics of
the ceramic will yield better noise and Power Supply
Rejection Ratio (PSRR) performance at high
frequency.
3.2 Ground Terminal (GND)
This is the regulator ground. Tie GND to the negative
side of the output capacitor (if used) and to the negative
side of the input capacitor. Only the LDO bias current
flows out of this pin, so there is no high current. The
LDO output regulation is referenced to this pin.
Minimize voltage drops between this pin and the
negative side of the load. If a PCB ground plane is not
used, minimize the length of the trace between the
GND pin and the ground line.
3.3 Shutdown Input (SHDN)
The SHDN input is used to turn the LDO output voltage
on and off.
When the SHDN input is at logic High level, the LDO
output voltage is enabled. When the SHDN pin is pulled
to a logic Low level, the LDO output voltage is disabled.
When the SHDN pin is pulled low, the VOUT pin is
pulled down to the ground level via, parallel to the feed-
back resistors (R1 and R2), and the COUT discharge
resistance (RDCHG).
The output voltage becomes unstable when the SHDN
pin is left floating.
3.4 Not Connected Pin (NC)
The SOT-23 package has a pin that is not
connected.This pin should be either left floating or tied
to the ground plane.
3.5 Regulated Output Voltage (VOUT)
Connect the VOUT pin to the positive side of the load
and to the positive side of the output capacitor (if used).
The positive side of the output capacitor should be
physically located as close as possible to the LDO
VOUT pin. The current flowing out of this pin is equal to
the DC load current.
3.6 Exposed Thermal Pad (EP)
The 4-lead 1 x 1 UQFN package has an exposed metal
pad on the bottom of the package. The exposed metal
pad gives the device better thermal characteristics by
providing a good thermal path to either a PCB isolated
plane or a PCB ground plane. The exposed pad of the
package is not internally connected to GND.
TABLE 3-1: PIN FUNCTION TABLE
MCP1711
1X1 UQFN MCP1711
SOT-23 Symbol Description
41V
IN Unregulated Input Supply Voltage
2 2 GND Ground Terminal
33SHDN
Shutdown Input
4 NC Not Connected (SOT-23 only)
15V
OUT Regulated Voltage Output
5 EP Exposed Thermal Pad (1x1 UQFN only)
MCP1711
DS20005415D-page 20 2015-2016 Microchip Technology Inc.
4.0 DEVICE OVERVIEW
The MCP1711 device is a 150 mA output current,
low-dropout (LDO) voltage regulator. The low dropout
voltage at high current makes it ideal for battery-pow-
ered applications. The input voltage ranges from 1.4V
to 6.0V. Unlike other high output current LDOs, the
MCP1711 typically draws only 600 nA quiescent cur-
rent and maximum 45 µA ground current at 150 mA
load. MCP1711 has a shutdown control input pin
(SHDN). The output voltage options are fixed.
4.1 LDO Output Voltage
The MCP1711 LDO has a fixed output voltage. The
output voltage range is 1.2V to 5.0V.
4.2 Output Current and Current
Limiting
The MCP1711 is tested and ensured to supply a
maximum of 150 mA of output current. The device can
provide a highly accurate output voltage even if the
output current is only 1 µA (very light load).
The MCP1711 also features a true output current fold-
back. If an excessive load, due to a low impedance
short-circuit condition at the output load, is detected,
the output current and voltage will fold back towards
80 mA and 0V, respectively. The output voltage and
current will resume normal levels when the excessive
load is removed. If the overload condition is a soft over-
load, the MCP1711 will supply higher load currents of
up to 270 mA typical. This allows for device usage in
applications that have pulsed load currents having an
average output current value of 150 mA or less.
4.3 Output Capacitor
The MCP1711 can provide a stable output voltage even
without an additional output capacitor due to its excel-
lent internal phase compensation, so that a minimum
output capacitance is not required. In order to improve
the load step response and PSRR, an output capacitor
can be added. A value in the range of 0.1 µF to 1.0 µF
is recommended for most applications. The capacitor
should be placed as close as possible to the VOUT pin
and the GND pin. The device is compatible with low
ESR ceramic capacitors. Ceramic materials like X7R
and X5R have low temperature coefficients and are
well within the acceptable ESR range required. A
typical 1 µF X7R 0805 capacitor has an ESR of 50 m.
4.4 Input Capacitor
Low-input source impedance is necessary for the LDO
output to operate properly. When operating from batter-
ies, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 0.1 µF to 1.0 µF is recommended for most applica-
tions. For applications that have output step load
requirements, the input capacitance of the LDO is very
important. The input capacitance provides the LDO
with a good local low-impedance source to pull the
transient current from, so it responds quickly to the out-
put load step. For good step response performance,
the input capacitor should be of an equivalent or higher
value than the output capacitor. The capacitor should
be placed as close to the input of the LDO as is practi-
cal. Larger input capacitors will also help reduce any
high-frequency noise on the input and output of the
LDO as well as reduce the effects of any inductance
that exists between the input source voltage and the
input capacitance of the LDO.
2015-2016 Microchip Technology Inc. DS20005415D-page 21
MCP1711
4.5 Shutdown Input (SHDN)
The MCP1711 internal circuitry can be shut down via
the signal from the SHDN pin. The SHDN input is an
active-low input signal that turns the LDO on and off.
The shutdown threshold is a fixed voltage level. The
minimum value of this shutdown threshold required to
turn the output on is 0.91V. The maximum value
required to turn the output off is 0.38V.
In Shutdown mode, the VOUT pin will be pulled down to
the ground level via, parallel to feedback resistors and
COUT discharge resistance RDCHG. In this state, the
application is protected from a glitch operation caused
by the electric charge at the output capacitor. More-
over, the discharge time of the output capacitor is set by
the COUT auto-discharge resistance (RDCHG) and the
output capacitor COUT. By setting the time constant of a
COUT auto-discharge resistance value (RDCHG) and the
output capacitor value (COUT) as =C
OUT x RDCHG,
the output voltage after discharge via the internal
switch is calculated using Equation 4-1:
EQUATION 4-1:
4.6 Dropout Voltage
Dropout Voltage is defined as the input-to-output
voltage differential at which the output voltage drops
2% below the nominal value that was measured with a
VR+ 1.0V differential applied. See Section 1.0
“Electrical Characteristics”, for minimum and
maximum voltage specifications.
Note: The RDCHG depends on VIN; when VIN is
high the RDCHG is low.
VOUT t VOUT et

=
Where:
VOUT(t) = The output voltage during discharging
VOUT = The initial output voltage
t=Discharge time
=C
OUT x RDCHG
or
t
ln
VOUT VOUT t
=
MCP1711
DS20005415D-page 22 2015-2016 Microchip Technology Inc.
5.0 APPLICATION CIRCUITS AND
ISSUES
5.1 Typical Application
The MCP1711 is most commonly used as a voltage
regulator. Its low quiescent current and low dropout
voltage make it ideal for a multitude of battery-powered
applications.
FIGURE 5-1: Typical Application Circuit.
5.2 Power Calculations
5.2.1 POWER DISSIPATION
The internal power dissipation of the MCP1711 is a
function of input voltage, output voltage and output
current. The power dissipation, as a result of the
quiescent current draw, is so low that it is insignificant
(0.6 µA x VIN). To calculate the internal power
dissipation of the LDO use Equation 5-1:
EQUATION 5-1:
The maximum continuous operating junction
temperature specified for the MCP1711 is +125°C. To
estimate the internal junction temperature of the
MCP1711, the total internal power dissipation is
multiplied by the thermal resistance from
junction-to-ambient (RJA).
The thermal resistance from junction-to-ambient for the
5-Lead SOT-23 package is estimated at:
166.67°C with JEDEC 51-7 FR-4 board with
thermal vias and
400 °C/W when the device is not mounted on the
PCB, or is mounted on the one layer PCB with
minimal copper that doesn't provide any
additional cooling.
EQUATION 5-2:
The maximum power dissipation capability for a
package can be calculated if given the
junction-to-ambient thermal resistance (RJA) and the
maximum ambient temperature for the application.
Equations 5-3 to 5-5 can be used to determine the
package maximum internal power dissipation:
EQUATION 5-3:
EQUATION 5-4:
VIN
SHDN
GND
VOUT
VIN
CIN COUT
MCP1711 IOUT = 50 mA
Application Input conditions
Package Type = 5-Lead SOT-23
Input Voltage Range = 3.5V to 4.8V
VIN maximum = 4.8V
VOUT typical = 1.8V
IOUT = 50 mA maximum
3.6V to 4.8V
VOUT = 1.8V
Where:
PLDO = LDO pass device internal power
dissipation
VIN(MAX) = Maximum input voltage
VOUT(MIN) = LDO minimum output voltage,
including the line and load
regulations
PLDO VIN(MAXVOUT(MINIOUT MAX
=
TJMAX
PTOTAL R
JA
TAMAX
+=
Where:
TJ(MAX) = Maximum continuous junction
temperature
PTOTAL = Total device power dissipation
RJA = Thermal resistance from junction to
ambient
TA(MAX) = Maximum ambient temperature
PDMAX
TJMAX
TAMAX

R
JA
--------------------------------------------------=
Where:
PD(MAX) = Maximum device power dissipation
TJ(MAX) = Maximum continuous junction
temperature
TA(MAX) = Maximum ambient temperature
RJA = Thermal resistance from junction to
ambient
TJRISE
PDMAX
R
JA
=
Where:
TJ(RISE) = Rise in device junction temperature
over the ambient temperature
PD(MAX) = Maximum device power dissipation
RJA = Thermal resistance from junction to
ambient
W H
2015-2016 Microchip Technology Inc. DS20005415D-page 23
MCP1711
EQUATION 5-5:
5.3 Voltage Regulator
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation, as a result of ground current, is small
enough to be neglected.
5.3.1 POWER DISSIPATION EXAMPLE
EXAMPLE 5-1: POWER DISSIPATION
5.3.1.1 Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction to ambient for the application. The ther-
mal resistance from junction to ambient (RJA) is
derived from an EIA/JEDEC standard for measuring
thermal resistance for small surface mount packages.
The EIA/JEDEC specification is JESD51-7, High
Effective Thermal Conductivity Test Board for Leaded
Surface Mount Packages. The standard describes the
test method and board specifications for measuring the
thermal resistance from junction to ambient. The actual
thermal resistance for a particular application can vary
depending on many factors, such as copper area and
thickness. Refer to AN792 – A Method to Determine
How Much Power a SOT-23 Can Dissipate in an
Application (DS00792), for more information regarding
this subject.
EXAMPLE 5-2:
5.3.1.2 Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated:
EXAMPLE 5-3:
5.3.1.3 Maximum Package
Power Dissipation Example
at +40°C Ambient Temperature
EXAMPLE 5-4:
Package
Package Type = SOT-23
Input Voltage
VIN = 3.5V to 4.8V
LDO Output Voltages and Currents
VOUT = 1.8V
IOUT =50mA
Maximum Ambient Temperature
TA(MAX) =+40°C
Internal Power Dissipation
Internal Power dissipation is the product of the LDO
output current times the voltage across the LDO
(VIN to VOUT).
PLDO(MAX) =(V
IN(MAX) - VOUT(MIN)) x
IOUT(MAX)
VOUT(MIN) = 1.78V - 0.05V = 1.73V, where
1.78V is the minimum output
voltage due to accuracy, and
0.05V is the load regulation; due
to very small input voltage range,
the line regulation is neglected
PLDO = (4.8V - 1.73V) x 50 mA
PLDO = 153.5 mW
TJTJRISE
TA
+=
Where:
TJ= Junction temperature
TJ(RISE) = Rise in device junction temperature
over the ambient temperature
TA= Ambient temperature
TJ(RISE) =P
TOTAL x RJA
TJRISE = 153.5 mW x 400.0°C/W
TJRISE =61.4°C
TJ =T
JRISE + TA(MAX)
TJ = 61.4°C + 40°C = 101.4°C
SOT-23 (400.0 °C/W = RJA)
PD(MAX) = (125°C - 40°C)/400°C/W
PD(MAX) =212 mW
HF >—0—‘
MCP1711
DS20005415D-page 24 2015-2016 Microchip Technology Inc.
5.4 Voltage Reference
The MCP1711 can be used not only as a regulator, but
also as a low quiescent current voltage reference. In
many microcontroller applications, the initial accuracy
of the reference can be calibrated using production test
equipment or by using a ratio measurement. When the
initial accuracy is calibrated, the thermal stability and
line regulation tolerance are the only errors introduced
by the MCP1711 LDO. The low cost, low quiescent cur-
rent and small ceramic output capacitor are all
advantages when using the MCP1711 as a voltage
reference.
FIGURE 5-2: Using the MCP1711 as a Voltage Reference.
5.5 Pulsed Load Applications
For some applications, there are pulsed load current
events that may exceed the specified 150 mA
maximum specification of the MCP1711. The internal
current limit of the MCP1711 will prevent high
peak-load demands from causing nonrecoverable
damage. The 150 mA rating is a maximum average
continuous rating. As long as the average current does
not exceed 150 mA, higher pulsed load currents can be
applied to the MCP1711. The typical current limit for the
MCP1711 is 270 mA (TA = +25°C).
PIC®
MCP1711
GND
VIN
CIN
0.1µF
COUT
0.1µF
Bridge Sensor
VOUT VREF
ADO
AD1
Ratio Metric Reference
0.6 µA Bias
Microcontroller
2015-2016 Microchip Technology Inc. DS20005415D-page 25
MCP1711
6.0 PACKAGING INFORMATION
6.1 Package Marking Information
4-Lead UQFN (1x1x0.6 mm) Example
5-Lead SOT-23 Example
Device Code
MCP1711T-12I/OT 9A2xx
MCP1711T-18I/OT 9A8xx
MCP1711T-19I/OT 9A9xx
MCP1711T-22I/OT 9ACxx
MCP1711T-25I/OT 9AFxx
MCP1711T-30I/OT 9ANxx
MCP1711T-33I/OT 9ASxx
MCP1711T-50I/OT 9BAxx
Device Code
MCP1711T-12I/5X P2NN
MCP1711T-18I/5X P8NN
MCP1711T-20I/5X PANN
MCP1711T-22I/5X PCNN
MCP1711T-25I/5X PFNN
MCP1711T-30I/5X PNNN
MCP1711T-33I/5X PSNN
XX
NN P2
56
9A802
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
MCP1711
DS20005415D-page 26 2015-2016 Microchip Technology Inc.
B
A
0.05 C
0.05 C
C
SEATING
PLANE
2X
TOP VIEW
SIDE VIEW
BOTTOM VIEW
N3
Microchip Technology Drawing C04-393B Sheet 1 of 2
2X
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
4-Lead Plastic Ultra Thin Quad Flatpack No-Leads (5X) - 1x1x0.6mm [UQFN]
D
E
A
L1
L2
e
4X b
D2
E2
3X CH
(DATUM A)
(DATUM B)
12
N3
12
L3
3X CH
(Formerly USPQ-4B04)
2015-2016 Microchip Technology Inc. DS20005415D-page 27
MCP1711
Microchip Technology Drawing C04-393B Sheet 2 of 2
Number of Terminals
Overall Height
Terminal Width
Overall Width
Overall Length
Terminal Length
Exposed Pad Width
Exposed Pad Length
Pitch
Units
Dimension Limits
A
b
D
E2
D2
e
L1
E
N
0.65 BSC
0.43
0.20
-
0.25
0.48
-
1.00 BSC
MILLIMETERS
MIN NOM
4
0.53
0.30
0.60
MAX
CH 0.18--
REF: Reference Dimension, usually without tolerance, for information purposes only.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
1.
2.
3.
Notes:
Pin 1 visual index feature may vary, but must be located within the hatched area.
Package is saw singulated
Dimensioning and tolerancing per ASME Y14.5M
Terminal Chamfer
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
Terminal Length L2 0.27 0.32 0.37
L3 0.02 0.07 0.12
0.43 0.48
1.00 BSC
0.53
0.20 0.25 0.30
-
4-Lead Plastic Ultra Thin Quad Flatpack No-Leads (5X) - 1x1x0.6mm [UQFN]
(Formerly USPQ-4B04)
/o_ F 4 4
MCP1711
DS20005415D-page 28 2015-2016 Microchip Technology Inc.
RECOMMENDED LAND PATTERN
Dimension Limits
Units
Y1
X2
X1
0.18
0.25
MILLIMETERS
0.65 BSC
MIN
E
MAX
0.40
Y3
Y2
0.22
0.47
Microchip Technology Drawing C04-2393B
NOM
12
4
X4 0.48
Y4 0.48
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Notes:
Dimensioning and tolerancing per ASME Y14.5M1.
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
E
4X X1
Y2
Y4
3X Y1
4X Y3
3X X2
X4
SILK SCREEN
4-Lead Plastic Ultra Thin Quad Flatpack No-Leads (5X) - 1x1x0.6mm [UQFN]
(Formerly USPQ-4B04)
2015-2016 Microchip Technology Inc. DS20005415D-page 29
MCP1711


 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
 )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
/HDG3LWFK H %6&
2XWVLGH/HDG3LWFK H %6&
2YHUDOO+HLJKW $  ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± 
6WDQGRII $  ± 
2YHUDOO:LGWK (  ± 
0ROGHG3DFNDJH:LGWK (  ± 
2YHUDOO/HQJWK '  ± 
)RRW/HQJWK /  ± 
)RRWSULQW /  ± 
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
φ
N
b
E
E1
D
123
e
e1
A
A1
A2 c
L
L1
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
5-Lead Plastic Small Outline Transistor (0T) [SOT-23] SlLK— SCREEN <—gx e="" recommended="" land="" pattern="" urllls="" mlllimeters="" dlrnenslon="" llnnts="" mn="" |="" nom="" |="" max="" contact="" pllch="" e="" o="" 95="" esc="" contact="" pad="" spaclng="" c="" 2="" so="" contact="" pad="" wldtn="" (x5)="" x="" 0="" so="" contact="" pad="" lengtn="" (x5)="" v="" 1="" 10="" dlstance="" between="" pads="" g="" 1.70="" dlslance="" between="" pads="" gx="" 0.35="" overall="" wow="" 2="" 3="" 90="" notes="" 1="" dlmenslonlng="" and="" loleranclng="" per="" asme="" y1a="" sm="" bsc="" 53le="" dlmensiun="" theoretically="" exact="" value="" shown="" wllhuul="" loleranoes="" mlcrochip="" technology="" drawing="" no="" coavzoqia="">
MCP1711
DS20005415D-page 30 2015-2016 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2015-2016 Microchip Technology Inc. DS20005415D-page 31
MCP1711
APPENDIX A: REVISION HISTORY
Revision D (October 2016)
The following is the list of modifications:
Added the 2.0V output voltage option (for the
UQFN package) and related information
throughout the document
Minor typographical corrections.
Revision C (March 2016)
Minor typographical corrections.
Revision B (October 2015)
The following is the list of modifications:
Updated thermal resistances in Section 1.0,
Electrical Characteristics.
Updated Section 2.0, Typical Performance
Curves with new load step screen-shots.
Revision A (June 2015)
Original release of this document.
MCP1711
DS20005415D-page 32 2015-2016 Microchip Technology Inc.
NOTES:
PART NO. [2([1 X /X)( J *4
2015-2016 Microchip Technology Inc. DS20005415D-page 33
MCP1711
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.
Examples:
a) MCP1711T-12I/OT: Tape and Reel,
1.2V Output Voltage,
Industrial temperature,
5LD SOT-23
b) MCP1711T-18I/OT: Tape and Reel,
1.8V Output Voltage,
Industrial temperature,
5LD SOT-23
c) MCP1711T-19I/OT: Tape and Reel,
1.9V Output Voltage,
Industrial temperature,
5LD SOT-23
d) MCP1711T-22I/OT: Tape and Reel,
2.2V Output Voltage,
Industrial temperature,
5LD SOT-23
e) MCP1711T-25I/OT: Tape and Reel,
2.5V Output Voltage,
Industrial temperature,
5LD SOT-23
f) MCP1711T-30I/OT: Tape and Reel,
3.0V Output Voltage,
Industrial temperature,
5LD SOT-23
g) MCP1711T-33I/OT: Tape and Reel,
3.3V Output Voltage,
Industrial temperature,
5LD SOT-23
h) MCP1711T-50I/OT: Tape and Reel,
5.0V Output Voltage,
Industrial temperature,
5LD SOT-23
a) MCP1711T-12I/5X: Tape and Reel,
1.2V Output Voltage,
Industrial temperature,
4LD UQFN
b) MCP1711T-18I/5X: Tape and Reel,
1.8V Output Voltage,
Industrial temperature,
4LD UQFN
c) MCP1711T-20I/5X: Tape and Reel,
2.0V Output Voltage,
Industrial temperature,
4LD UQFN
d) MCP1711T-22I/5X: Tape and Reel,
2.2V Output Voltage,
Industrial temperature,
4LD UQFN
e) MCP1711T-25I/5X: Tape and Reel,
2.5V Output Voltage,
Industrial temperature,
4LD UQFN
f) MCP1711T-30I/5X: Tape and Reel,
3.0V Output Voltage,
Industrial temperature,
4LD UQFN
PART NO. /XX
Package
Device
Device: MCP1711: 150 mA Ultra-Low Quiescent Current,
Capacitorless LDO Regulator
Output Voltage: 12 = 1.2V
18 = 1.8V
19 = 1.9V
20 = 2.0V
22 = 2.2V
25 = 2.5V
30 = 3.0V
33 = 3.3V
50 = 5.0V
Temperature
Range: I = -40°C to +85°C (Industrial)
Packages: OT = Plastic Small Outline Transistor, 5-Lead SOT-23
5X = Plastic Ultra Thin Quad Flatpack No-Leads,
4-Lead 1x1 UQFN
[X](1)
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This identifier is
used for ordering purposes and is not printed on
the device package. Check with your Microchip
Sales Office for package availability with the
Tape and Reel option.
-X
Output
Voltage
X
Temperature
Range
Tape and Reel
Option
MCP1711
DS20005415D-page 34 2015-2016 Microchip Technology Inc.
NOTES:
YSTEM
2015-2016 Microchip Technology Inc. DS20005415D-page 35
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O
are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company,
ETHERSYNCH, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2015-2016, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-1009-6
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITY MANAGEMENT S
YSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
6‘ ‘MICRDCHIP
DS20005415D-page 36 2015-2016 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
06/23/16

Products related to this Datasheet

IC REG LINEAR 1.2V 150MA SOT23-5
IC REG LINEAR 2.5V 150MA SOT23-5
IC REG LINEAR 2.5V 150MA 4UQFN
IC REG LINEAR 2.2V 150MA 4UQFN
IC REG LINEAR 1.8V 150MA 4UQFN
IC REG LINEAR 5V 150MA 4UQFN
IC REG LINEAR 3.3V 150MA SOT23-5
IC REG LINEAR 2.2V 150MA SOT23-5
IC REG LINEAR 1.8V 150MA SOT23-5
IC REG LINEAR 5V 150MA SOT23-5
IC REG LINEAR 3V 150MA SOT23-5
IC REG LINEAR 3.3V 150MA 4UQFN
IC REG LINEAR 1.2V 150MA 4UQFN
IC REG LINEAR 1.2V 150MA SOT23-5
IC REG LINEAR 1.8V 150MA 4UQFN
IC REG LINEAR 1.8V 150MA SOT23-5
IC REG LINEAR 2.2V 150MA 4UQFN
IC REG LINEAR 2.2V 150MA SOT23-5
IC REG LINEAR 2.5V 150MA 4UQFN
IC REG LINEAR 2.5V 150MA SOT23-5
IC REG LINEAR 3V 150MA 4UQFN
IC REG LINEAR 3V 150MA SOT23-5
IC REG LINEAR 3.3V 150MA 4UQFN
IC REG LINEAR 3.3V 150MA SOT23-5
IC REG LINEAR 5V 150MA 4UQFN
IC REG LINEAR 5V 150MA SOT23-5
IC REG LINEAR 1.2V 150MA 4UQFN
IC REG LINEAR 3V 150MA 4UQFN
IC REG LINEAR 1.2V 150MA 4UQFN
IC REG LINEAR 1.2V 150MA SOT23-5