© 2014 IXYS CORPORATION, All Rights Reserved
Symbol Test Conditions Maximum Ratings
VCES TJ = 25°C to 150°C 3600 V
VCGR TJ = 25°C to 150°C, RGE = 1M 3600 V
VGES Continuous ± 20 V
VGEM Transient ± 30 V
IC25 TC = 25°C 70 A
IC110 TC = 110°C 20 A
ICM TC = 25°C, 1ms 220 A
SSOA VGE = 15V, TVJ = 125°C, RG = 10 ICM = 160 A
(RBSOA) Clamped Inductive Load VCES 1500 V
TSC VGE = 15V, TJ = 125°C,
(SCSOA) RG = 52, VCE = 1500V, Non-Repetitive 10 μs
PCTC = 25°C 430 W
TJ -55 ... +150 °C
TJM 150 °C
Tstg -55 ... +150 °C
TLMaximum Lead Temperature for Soldering 300 °C
TSOLD Plastic Body for 10s 260 °C
MdMounting Torque (TO-247HV) 1.13/10 Nm/lb.in
Weight TO-268HV 4 g
TO-247HV 6 g
DS100643(12/14)
IXBT20N360HV
IXBH20N360HV
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250μA, VGE = 0V 3600 V
VGE(th) IC = 250μA, VCE = VGE 3.0 5.0 V
ICES VCE = VCES, VGE = 0V 25 μA
TJ = 125°C 500 μA
IGES VCE = 0V, VGE = ± 20V ±100 nA
VCE(sat) IC = 20A, VGE = 15V, Note 1 2.9 3.4 V
TJ = 125°C 3.6 V
VCES = 3600V
IC110 = 20A
VCE(sat)
3.4V
Advance Technical Information
High Voltage, High Gain
BIMOSFETTM Monolithic
Bipolar MOS Transistor
Features
High Voltage Packages
High Blocking Voltage
High Peak Current Capability
Low Saturation Voltage
Advantages
Low Gate Drive Requirement
High Power Density
Applications
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
TO-268HV (IXBT)
G
C (Tab)
E
TO-247HV (IXBH)
C (Tab)
G
E
C
G = Gate C = Collector
E = Emitter Tab = Collector
L' IXYS Typ. : 10V, Nme 1 10 \NCHEG MILUMUER MIN 1 so ; 7D I‘ 02 Min. Typ.
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXBT20N360HV
IXBH20N360HV
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or more of the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience,
and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to
change limits, test conditions, and dimensions without notice.
Note: 1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
1
TO-268HV Outline
TO-247HV Outline
PINS:
1 - Gate 2 - Emitter
3, 4 - Collector
EE1
L2
D1
D3
A1
L4
D2
C2
b
2
1
A
H
C
3
D
2 1
ee
A2
L3
L
3
E
RA
QS
A3
e
D
cb
A1
L1
D3
D1
D2
E2
E3
3X
2X
4X
3X
A2
b1
0P
E1
0P1
4
31 2
e1
L
PINS:
1 - Gate 2 - Emitter
3 - Collector
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 20A, VCE = 10V, Note 1 10 17 S
Cies 2045 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 110 pF
Cres 50 pF
Qg(on) 110 nC
Qge IC = 20A, VGE = 15V, VCE = 1000V 13 nC
Qgc 43 nC
td(on) 18 ns
tri 14 ns
Eon 15.50 mJ
td(off) 238 ns
tfi 206 ns
Eoff 4.30 mJ
td(on) 20 ns
tri 22 ns
Eon 16.10 mJ
td(off) 247 ns
tfi 216 ns
Eoff 4.15 mJ
td(on) 30 ns
tr 325 ns
td(off) 165 ns
tf 1045 ns
td(on) 32 ns
tr 890 ns
td(off) 185 ns
tf 1100 ns
RthJC 0.29°C/W
RthCS TO-247HV 0.21 °C/W
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 1500V, RG = 10
Note 2
Inductive load, TJ = 125°C
IC = 20A, VGE = 15V
VCE = 1500V, RG = 10
Note 2
Reverse Diode
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max
VF IF = 20A, VGE = 0V, Note 1 3.5 V
trr 1.7 μs
IRM 35 A
QRM 30 μC
IF = 10A, VGE = 0V, -diF/dt = 100A/μs
VR = 100V, VGE = 0V
Resistive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 960V, RG = 10
Resistive load, TJ = 125°C
IC = 20A, VGE = 15V
VCE = 960V, RG = 10
I5 AAmperes nu5115225335545 VCEVVOHS Fig. 5. Collector-lo-Emiller Voltage vs. Gale-m-Eminer Voltage VEE -Vo\Is s 7 a 9 m M 12 13 VGE»VDILS 14 55 15 chn - Normahzed IL: A Amperes en 5n 4n 3n 2n m 35 ©2014|XYS CORPORA‘HON AH Rights Reserved
© 2014 IXYS CORPORATION, All Rights Reserved
IXBT20N360HV
IXBH20N360HV
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
2
3
4
5
6
7
8
6 7 8 9 10 11 12 13 14 15
VGE - Volts
VCE - Volts
I
C
= 40A
T
J
= 25ºC
20A
10A
Fig. 6. Input Admittance
0
10
20
30
40
50
60
3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
VGE - Volts
IC
-
Amperes
T
J
= 125ºC
25ºC
- 40ºC
Fig. 1. Output Characteristics @ T
J
= 25ºC
0
5
10
15
20
25
30
35
40
00.511.522.533.544.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 25V
19V
15V
13V
11V
7V
6V
9V
Fig. 2. Extended Output Characteristics @ T
J
= 25ºC
0
40
80
120
160
200
240
0 5 10 15 20 25 30
V
CE
- Volts
I
C
-
Amperes
V
GE
= 25V
21V
19V
13V
11V
9V
15V
7V
17V
Fig. 3. Output Characteristics @ T
J
= 125ºC
0
5
10
15
20
25
30
35
40
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 25V
21V
17V
15V
13V
11V
5V
7V
9V
6V
Fig. 4. Dependence of V
CE(sat)
on
Junction Temperature
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
-50 -25 0 25 50 75 100 125 150
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 40A
I
C
= 20A
I
C
= 10A
g '5 - Swemens n m 20 30 w 50 60 70 IC - Amperes I; A Amperes zoo mm mm mm mm) 2200 2mm veg-Vans vas Reserves the mgm Io Change Limns, Test Candmans and Dwmensuans. Ca pacwa nce A choFarads 14 12 w VerVoMs 1 000 um m
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXBT20N360HV
IXBH20N360HV
Fig. 7. Transconductance
0
5
10
15
20
25
30
0 10203040506070
I
C
- Amperes
g
f s
-
Siemens
T
J
= - 40ºC
25ºC
125ºC
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 102030405060708090100110
Q
G
- NanoCoulombs
V
GE
- Volts
V
CE
= 1000V
I
C
= 20A
I
G
= 10mA
Fig. 10. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarad
s
f
= 1 MH
z
Cies
Coes
Cres
Fig. 9. Forward Voltage Drop of Intrinsic Diode
0
10
20
30
40
50
60
0.511.522.533.54
V
F
- Volts
I
F
- Amperes
V
GE
= 0V
T
J
J
= 25ºC
125ºC
V
GE
= 15V
Fig. 11. Reverse-Bias Safe Operating Area
0
20
40
60
80
100
120
140
160
180
200 600 1000 1400 1800 2200 2600 3000 3400
V
CE
- Volts
I
C
- Amperes
TJ
= 125ºC
RG = 10
dv / dt < 10V / ns
Fig. 12. Maximum Transient Thermal Impedance
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
Pulse Width - Seconds
Z
(th)JC
- ºC / W
m TJ=150°C m Tc=25“C mms Smg‘eFu‘se DC ' moms um ‘ um < 10="" me="" mm="" mm="" 1="" vcfirvmxs="" «2="" 7="" vce="mm" hg="" 70th="" semor="" wl“"a="" 25="" 35="" 45="" 55="" 55="" 75="" 95="" tj="" ,="" degrees="" cenhgrade="" ms="" 11="" 10="" 42a="" zen="" ih-nanasecands="" mu="" mu="" ©2014|xys="" corpora‘hon="" ah="" rights="" reserved="">
© 2014 IXYS CORPORATION, All Rights Reserved
IXBT20N360HV
IXBH20N360HV
Fig. 13. Forward-Bias Safe Operating Area @ T
C
= 25ºC
0.01
0.1
1
10
100
1000
1 10 100 1,000 10,000
V
CE
- Volts
I
C
- Amperes
100µs
10ms
100ms
V
CE(sat)
Limi
t
T
J
= 15C
T
C
= 25ºC
Single Pulse DC
25µs
1ms
Fig. 14. Forward-Bias Safe Operating Area @ T
C
= 75ºC
0.01
0.1
1
10
100
1000
1 10 100 1,000 10,000
V
CE
- Volts
I
C
- Amperes
100µs
10ms
100ms
V
CE(sat)
Limi
t
T
J
= 150ºC
T
C
= 75ºC
Single Pulse
DC
25µs
1ms
Fig. 18. Inductive Turn-off Switching Times vs.
Gate Resistance
100
140
180
220
260
300
340
380
420
10 15 20 25 30 35 40 45 50
R
G
- Ohms
t
f i
- Nanosecond
s
100
200
300
400
500
600
700
800
900
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
T
J
= 125ºC,
V
GE
= 15V
V
CE
= 1500V
I
C
= 40A
I
C
= 20A
Fig. 15. Inductive Switching Energy Loss vs.
Gate Resistance
0
2
4
6
8
10
12
14
16
18
10 15 20 25 30 35 40 45 50
R
G
- Ohms
E
off
- MilliJoules
10
14
18
22
26
30
34
38
42
46
E
on
- MilliJoules
E
off
E
on - - - -
T
J
= 125ºC , V
GE
= 15V
V
CE
= 1500V
I
C
= 20A
I
C
= 40A
Fig. 16. Inductive Switching Energy Loss vs.
Collector Current
0
2
4
6
8
10
12
14
10 15 20 25 30 35 40
I
C
- Amperes
Eoff - MilliJoules
0
8
16
24
32
40
48
56
Eon - MilliJoules
E
off
E
on - - - -
T
J
= 125ºC , V
GE
= 15V
V
CE
= 1500V
T
J
= 25ºC
T
J
= 125ºC
Fig. 17. Inductive Switching Energy Loss vs.
Junction Temperature
0
2
4
6
8
10
12
14
16
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
Eoff - MilliJoules
8
12
16
20
24
28
32
36
40
Eon - MilliJoules
I
C
= 40A
I
C
= 20A
E
off
E
on - - - -
R
G
= 10 , V
GE
= 15V
V
CE
= 1500V
:I IXYS i i i i— i ,0 .... sea 7 i n M 270 360 R5400 vww 320 saw 260 a— 320 gm ‘ ‘ - . _ I WC 2503 g u ‘ - ' - 1‘ ‘ Q 5 - - . _ o 2 2 ~ . _ A g 2 240 L200 ' ~ _ ~ 230 3 ; : Ti 25%: . . _ _ a z . _ w 200 ieu ~ 220 120 210 ‘60 an 200 120 m is 2U 25 30 35 Au \E»Amperes Fig. 21. Inductive Turn-on Switching Times vs. em Resistance 12L) ‘ ‘ ‘ in so tii — taim-"- , 50 7 100 D =12?!) VGE =15V 6” v5 500v _ 3 ED ' ' 5mg g 40 § V. s . - g lc-AEIA_. z a ’ 0 so / g a 30 _ . c _ - a g - - 2 // __. a z ‘ _ . _ . L . - - 8 ': - - ' ' ' _. 4L) ‘ _ _ _ _ 3n é _ 2.: 20 2D 10 o in a in is 20 25 30 35 40 $5 50 m RB»Dhms 60 i ‘ u. 5° . E . a g 40 _ . E . g 30 _ _ _ _ - - - ' ' ' 20 in o 25 vas Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXBT20N360HV
IXBH20N360HV
IXYS REF: B_20N360(H7-B11)12-12-14-A
Fig. 22. Inductive Turn-on Switching Times vs.
Collector Current
0
10
20
30
40
50
60
10 15 20 25 30 35 40
I
C
- Amperes
t
r i
- Nanosecond
s
10
14
18
22
26
30
34
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
R
G
= 10
, V
GE
= 15V
V
CE
= 1500V
T
J
= 25ºC
T
J
= 125ºC
Fig. 21. Inductive Turn-on Switching Times vs.
Gate Resistance
0
20
40
60
80
100
120
10 15 20 25 30 35 40 45 50
R
G
- Ohms
t
r i
- Nanosecond
s
10
20
30
40
50
60
70
t
d
(
on
)
- Nanoseconds
t
r i
t
d(on)
- - - -
T
J
= 125ºC, V
GE
= 15V
V
CE
= 1500V
I
C
= 20A
I
C
= 40A
Fig. 19. Inductive Turn-off Switching Times vs.
Collector Current
80
120
160
200
240
280
320
360
400
10 15 20 25 30 35 40
I
C
- Amperes
t
f i
- Nanoseconds
200
210
220
230
240
250
260
270
280
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
R
G
= 10
, V
GE
= 15V
V
CE
= 1500V
T
J
= 125ºC
T
J
= 25ºC
Fig. 20. Inductive Turn-off Switching Times vs.
Junction Temperature
120
160
200
240
280
320
360
400
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
t
f i
- Nanoseconds
210
220
230
240
250
260
270
280
t
d(off)
- Nanoseconds
t
f i
t
d(off)
- - - -
R
G
= 10
, V
GE
= 15V
V
CE
= 1500V
I
C
= 20A
I
C
= 40A
I
C
= 40A
Fig. 23. Inductive Turn-on Switching Times vs.
Junction Temperature
0
10
20
30
40
50
60
70
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
t
r i
- Nanosecond
s
10
13
16
19
22
25
28
31
t
d(on)
- Nanoseconds
t
r i
t
d(on)
- - - -
R
G
= 10
, V
GE
= 15V
V
CE
= 1500V I
C
= 40A
I
C
= 20A
IXYS A Lillelluse Tecnnumgy
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.