STEVAL-IHM034V2 User Manual Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
‘ ’l hie.ougmemed Amasw
December 2013 DocID023347 Rev 2 1/52
UM1553
User manual
STEVAL-IHM034V2 dual motor control and PFC demonstration
board featuring the STM32F103RC and STGIPS20C60
Introduction
The STEVAL-IHM034V2 is a complete motor control kit solution, for the evaluation of
STMicroelectronics wide product portfolio targeted at applications where it is necessary to
simultaneously drive two motors in sensorless field oriented control (FOC) and perform
active power factor correction (PFC) through digital control of a single-stage boost DC-DC
converter. Typical application is in room air conditioners (RACs), where this solution can
drive the compressor, the outdoor fan, and the PFC.
The microcontroller unit is the STMicroelectronics ARM™ Cortex-M3 core-based
STM32F103RC, which is able to simultaneously carry out all the above mentioned tasks.
The board is compatible for use with the STM32F2 series, and with the ARM™ Cortex-M4
core-based STM32F4 series.
Motor 1 is powered by the onboard SLLIMM™ (small low-loss intelligent molded module)
STGIPS20C60; motor 2 can be powered by an external STMicroelectronics power stage,
such as those that can be evaluated by means of the STEVAL-IHM021V2, STEVAL-
IHM024V1, STEVAL-IHM032V1, or STEVAL-IHM035V2.
Simultaneously, the same microcontroller unit drives the onboard boost PFC stage,
designed with the STGW35HF60W ultrafast IGBT and the STTH15R06 Turbo2 ultrafast
diode.
The STEVAL-IHM034V2 can be used together with the STM32 permanent magnet
synchronous motors (PMSM) single/dual FOC software development kit (SDK) v3.2, and
successive versions, and its compatible PFC firmware v1.0 plug-in, and successive
versions. This user manual provides information on using the STEVAL-IHM034V2 board
and its hardware features.
Figure 1. Image
www.st.com
Contents UM1553
2/52 DocID023347 Rev 2
Contents
1 System introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Target application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Safety and operating instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Demonstration board intended use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Demonstration board installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Microcontroller programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Connector placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Description of jumpers, test pins and connectors . . . . . . . . . . . . . . . . 18
6 STM32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Configuration for STM32F2 and STM32F4 series . . . . . . . . . . . . . . . . . . 22
7 Hardware settings / configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1 Motor 1, phase current amplification network . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Motor 1, overcurrent protection network . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 PFC stage, mains current amplification network . . . . . . . . . . . . . . . . . . . 25
7.4 PFC stage, overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.5 Single motor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6 Dual motor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7 Dual motor and PFC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8 PFC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8 Firmware configuration for STM32 PMSM FOC SDK . . . . . . . . . . . . . . 32
9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DocID023347 Rev 2 3/52
UM1553 Contents
52
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
List of figures UM1553
4/52 DocID023347 Rev 2
List of figures
Figure 1. Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Board architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Schematic (1 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Schematic (2 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Schematic (3 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Schematic (4 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Schematic (5 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Schematic (6 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Schematic (7 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. Schematic (8 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Schematic (9 of 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 12. Connector placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 13. Motor current measurement, amplification network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 14. Motor 1 overcurrent protection network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 15. PFC current measurement amplification network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 16. PFC overcurrent protection network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 17. Technical sheet of PFC inductor (page 1 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 18. Technical sheet of PFC inductor (page 2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DocID023347 Rev 2 5/52
UM1553 System introduction
52
1 System introduction
Nominal power: 1300 W, max. power 1700 W
Digital PFC section:
Single-stage boost converter
STGW35HF60WD ultrafast IGBT in TO-247 package; it may be replaced with an
STGW35HF60W if a free-wheeling diode (like the STTH2L06) is soldered on
between its collector and emitter
Turbo2 ultrafast diode STTH15R06D in TO-220AC package
AC mains current sensing (shunt resistor and amplification, using rail-to-rail
input/output 8 MHz TSV914)
DC bus voltage sensing
Hardware overcurrent protection
Hardware overvoltage protection
AC mains voltage zero crossing detection
Rectified AC mains voltage sensing
External boost inductor
Inverter section (motor 1 drive):
IGBT intelligent power module STGIPS20C60 in SDIP 25L molded package
3-shunt or DC link motor current sensing (shunt resistor and amplification, using
rail-to-rail input/output 8 MHz TSV914)
Hardware overcurrent protection
Heatsink temperature measurement
Overcurrent protection disabling network
Control section:
Centralized dual motor control and PFC drive, using STM32F103RCT6
MC connector to drive the second motor power stage (a compatible power board,
such as STEVAL-IHM021V2, STEVAL-IHM024V1, or STEVAL-IHM032V1, can be
plugged here)
SWD programming and debugging
JTAG programming (DC +5 V supply only, see Section 2.4)
USART communication using ST3232C, insulated with optocouplers;
Other functions: user key, reset, potentiometer, user LED, NTC relay, test points
Power supply:
+15 V, +3.3 V power supply based on VIPER16, L78L33AC, LD1117S33TR.
1.1 Target application
Air conditioning motor drive (compressor, outdoor fan) and PFC.
Safety and operating instructions UM1553
6/52 DocID023347 Rev 2
2 Safety and operating instructions
Warning: During assembly, testing, and normal operation, the
demonstration board poses several inherent hazards,
including bare wires, moving or rotating parts, and hot
surfaces. There is a danger of serious personal injury and
damage to property if the kit or components are improperly
used or installed incorrectly. The kit is not electrically
isolated from the AC/DC input. The demonstration board is
directly linked to the mains voltage. No insulation is ensured
between the accessible parts and the high voltage. All
measuring equipment must be isolated from the mains
before powering the board. When using an oscilloscope with
the demo, it must be isolated from the AC line. This prevents
shock from occurring as a result of touching any single point
in the circuit, but does NOT prevent shock when touching
two or more points in the circuit. Do not touch the
demonstration board after disconnection from the voltage
supply; several parts and power terminals, which contain
energized capacitors, must be allowed to discharge.
All operations involving transportation, installation and use, as well as maintenance, are to
be carried out by skilled technical personnel (national accident prevention rules must be
observed). For the purpose of these basic safety instructions, “skilled technical personnel”
are considered as suitably qualified people who are familiar with the installation, use, and
maintenance of power electronic systems.
2.1 Demonstration board intended use
The STEVAL-IHM034V2 demonstration board is designed for demonstration purposes only
and must not be used in final applications. The technical data, as well as information
concerning the power supply conditions, must only be taken from the relevant
documentation and must be strictly observed.
2.2 Demonstration board installation
The installation and cooling of the demonstration board must be done in accordance with
the specifications and the targeted application.
The motor drive converters are protected against excessive strain. In particular, no
components are to be bent or isolating distances altered during the course of
transportation or handling.
No contact must be made with other electronic components and contacts.
The boards contain electrostatically sensitive components that are prone to damage
through improper use. Electrical components must not be mechanically damaged or
destroyed.
DocID023347 Rev 2 7/52
UM1553 Safety and operating instructions
52
2.3 Electrical connections
Applicable national accident prevention rules must be followed when working on the main
power supply. The electrical installation must be carried out in accordance with the
appropriate requirements.
A system architecture which supplies power to the demonstration board must be equipped
with additional control and protective devices in accordance with the applicable safety
requirements (e.g. compliance with technical equipment and accident prevention rules).
2.4 Microcontroller programming
Only when an opto-isolated SWD dongle (such as the ST-LINK/V2-ISOL) or an isolated
laptop is available, can the application be programmed and debugged in SWD mode being
powered by the AC mains.
On the contrary, it can be programmed in SWD or JTAG mode while J14 is being supplied
from an external +5 V DC source. The external +5 V DC source must always be removed
before plugging AC mains terminals.
It is recommended that the firmware takes over heatsink temperature measurement and
related actions when the heatsink is overheating, and to close, after a certain time, the in-
rush current limiter.
Board description UM1553
8/52 DocID023347 Rev 2
3 Board description
3.1 System architecture
Figure 2 shows the board architecture. It is made up of:
Converter stage: single phase AC-DC rectifier, microcontroller-driven DC-DC boost for
power factor correction functionality and related protection, signals and conditioning
Inverter stage: microcontroller-driven DC-AC three-phase inverter and related
protection, signals and conditioning
Power supply: provides +15 V, +3.3 V
Control: the onboard programmable microcontroller is able to receive commands and
send measurements using an opto-isolated RS232 channel. It controls power devices
(inverter, PFC, optional second motor power stage) and senses signals related to
motor currents, mains current, bus voltage, heatsink temperature, and mains
frequency.
Figure 2. Board architecture
$0Y
02725FRPSUHVVRU
IHHGFRQQHFWRU
$&VLQJOHSKDVH
)LOWHULQJ
5HFWLILFDWLRQ
%RRVW3)&
9
9
3RZHU
6XSSO\
0LFUR
&RQWUROOHU
&XUUHQWVHQVLQJVKXQW
'&9ROWDJHVHQVLQJ
3:0FRPPDQG
$&YROWDJHVHQVLQJ
IUHTXHQF\DPSOLWXGH]HUR
SKDVH,30LQYHUWHU
&XUUHQWVHQVLQJVKXQWV
3:0FRPPDQGV
+HDWVLQNWHPSHUDWXUHVHQVLQJ
$&0$,16,1387
0&&RQQHFWRUWRSRZHUVWDJHPRWRU
&XUUHQWVHQVLQJVKXQWVKXQWV
3:0FRPPDQGV
+HDWVLQNWHPSHUDWXUHVHQVLQJ
6:'FRQQHFWRU
SURJUDPPLQJ
GHEXJJLQJ
56
FRPPXQLFDWLRQ
3&FRQWURO
WXQLQJ
7UDQVFHLYHU
2SWRLVRODWRUV
'&%XVRXWSXW
'&%XV
H[WHUQDOLQGXFWRU
FRQQHFWRU -
-
-
25,55
DocID023347 Rev 2 9/52
UM1553 Board description
52
3.2 Board schematic
Figure 3. Schematic (1 of 9)
$0Y
9
*1'
VLJQ
6,*1$/
93)&
*1'
9
3)&B6+817
3)&B6'
0B6'
0B6+817
3)&B=G
3)&B,D
3)&B6'G
0B6'G
0B6+817B9D
0B6+817B:D
0B6+8178D
0B6+817B9
0B6+817B:
0B6+817B8
9B%86D
9
9$ &D
9$&UHFW
9$ &B
9$ &B
SRZ
32:(56833/<
9'&
*1'
9
9
FRQY
&219(57(5
93)&
*1'
9'&
9
3)&B3:0
9
3)&B,D
3)&B6'
3)&B6+817
5HOD\
9$&UHFW
9$ &B
9$ &B
FRP
&20081,&$7,21
63,B026,
*1'
9
86$57B7;,&B6&/
86$57B5;,&B6'$
63,B6&.
63,B0,62
LQY
,19(57(5
93)&
9
9
*1'
0B/B8
0B+B8
0B/B9
0B+B9
0B/B:
0B+B:
0B6'
0B6+817
0B6+817B:
0B6+817B8
0B6+817B9
0B+($7D
2&3RII
FQWUO0&
&21752/
*1'
9
3)&B3:0
0B+B8
0B+B9
0B+B:
0B/B8
0B/B9
0B/B:
63,B026,
0B+($7D
0B6'G
3)&B6'G
0B6+817B9D
0B6+817B:D
3)&B,D
0B6+8178D
3)&B=G
5HOD\
86$57B7;,&B6&/
86$57B5;,&B6'$
63,B6&.
9B%86D
2&3RII
9$ &D
63,B0,62
Board description UM1553
10/52 DocID023347 Rev 2
Figure 4. Schematic (2 of 9)
3%
5%
%53
4(
354
5[B,QVXODWHG
7[B,QVXODWHG
86$57B7;,&B6&/
63,B026,
63,B6&.
*1'
9
86$57B5;,&B6'$
63,B0,62
9
9
9
9
9
9
9B,62/
9B,62/
9B,62/
9B,62/
9
9
9
576
'75
576
'75
9
8
67&75
5,1 
5,1
7,1 
7,1 
&
&
&
&
9
9
5287 
5287
7287 
7287
9&& 
*1' 
&
Q)
8
6)+7
56
5
&
Q)
'
//
8
6)+7
56
 
5
8
//$&875
,
2
*1'
5
N
&
Q)
&
Q)
3
'%)HPDOH
5

&
X)
9
5
N
'
//
&
Q)
5

&
Q)
-
+($'(5
$0Y
DJ D1: I +1“- {Mal %>—IM- A I W 5 I. <—g&——l>—HI-
DocID023347 Rev 2 11/52
UM1553 Board description
52
Figure 5. Schematic (3 of 9)
$0Y
QHDUWRPLFUR
9
*1'
9
9
9
9
9
0B+B8
0B+B9
0B+B:
0B6'G
0B6+817B8D
/('B5(' .(<
0B/B8
0B/B9
0B/B:
0B+($7D
327
0B6+8179D
0B6+817B:D
'
UHG
'
UHG
-
0B0&B&211(&725
-
0B0&B&211(&725
 
 
 
 

 
 
 




 
 
 
 
 




5
N
5
N
%
86(5
%
86(5
 
5
.
5
.
&
Q)
&
Q)
-3-3
5
1&
5
1&
5
N
5
N
51& 5
&
Q)
&
Q)
-3-3
5
1& 5
1&
&
Q)
&
Q) &
Q)9
&
Q)9
&
1&
&
1&
5
 5

Board description UM1553
12/52 DocID023347 Rev 2
Figure 6. Schematic (4 of 9)
$0Y
6:2
6:&/.
6:',2
5(6(7
5(6(7
6:',2
6:&/.
6:2
5(6(7
-7',
-7',
*1'
9
3)&B3:0
86$57B5;,&B6'$
0B+B8
0B+B9
0B+B:
0B/B8
0B/B9
0B/B:
63,B6&.
63,B026,
86$57B7;,&B6&/
0B+($7D
0B6'G
3)&B6'G
0B6+817B9D
0B6+817B:D
3)&B,D
9B%86D
0B6+8178D
3)&B=G
3)&B=G
0B6+817B9D
0B6+817B:D
3)&B,D
9B%86D
0B6+8178D
3)&B6'G
0B6'G 5HOD\
2&3RII
9$ &D
63,B0,62
3)&B3:0
0B/B:
0B/B9
0B/B8
9
9
9
9
9
9
9
0B+B9
0B+B:
0B6+817B8D
0B+B8
/('B5('
.(<
0B/B9
0B/B:
327
0B+($7D
0B6+8179D
0B6+817B:D
0B6'G
0B/B8
7LWOH
7LWOH7LWOH
5 1&5 1&
7373
&
Q)
&
Q)
3%3%
&
Q)
&
Q)
3$ 3$ 
3&3&
&
Q)
&
Q)
7373
7373
3%3%
55
3&3&
3$ 3$ 
7373
&
Q)
&
Q)
3&3&
&
Q)
&
Q)
&
Q)
&
Q)
3&3&
7373
7373
7373
7373
&
Q)
&
Q)
&
Q)
&
Q)
;
0+]ZLWKVRFNHWDVFORVHDVSRVVLEOHWRX&SLQV
;
0+]ZLWKVRFNHWDVFORVHDVSRVVLEOHWRX&SLQV
7373
5
5
3%3%
3%3%
7373
7373
&
X)
&
X)
8
670B/4)3
8
670B/4)3
3$ : . 83

3$ 

3$ 

3$  
3$ 
3$  
3$  
3$  
3$  
3$  
3$  
3$  
3$  
3$  
3$ 
3$ 
3%
3% 
3% 
3%
3% 
3%
3% 
3% 
3% 
3% 
3%
3%
3%
3%
3%
3%
3&
3&
3'26&,1
3'26&287
1567
%227

9%$7
966$

966B 
966B 
966B
9''$

9''B 
9''B 
9''B

3&7$0357&
3&
3&
3&

3&

966B 
9''B 
3& 
3& 
3& 
3& 
3& 
3& 
3&
3&
3&
3'

&
S)
&
S)
-
6:'
-
6:'
 
 
 
 
 
 




3%3%
&
X)
&
X)
5
N
5
N
7373
/
%($'
/
%($'
3%3%
&
S)
&
S)
5
5
7373
7373
3$ 3$ 
5
N
5
N
3&3&
7373
5

5

%
5(6(7
%
5(6(7
DocID023347 Rev 2 13/52
UM1553 Board description
52
Figure 7. Schematic (5 of 9)
$0Y
6LQJOHJURXQGSRLQWRQWKHERDUG
6LQJOHJURXQG
SRLQWRQWKH
ERDUG
5(/$<B%
5(/$<B$
5(/$<B$
5(/$<B%
93)&
*1'
9'&
3)&B3:0
3)&B,D
3)&B6'
3)&B6+817
5HOD\
99
9$ &B
9$ &UHFW
9$ &B
9
9
9
9
9
5
N
5
N
&
X)
9
17&
RKP
17&
RKP
/6
),1'(5
/6
),1'(5
&
%
(
4
%&
&
%
(
4
%&
5
N
5
N
'
*)0
5 :
-
3)&B287
-
3)&B287
-
3)&%2267,1'8&725
 
8
/
8
/
/,1
6'2'
+,1
9&&
'7
1&
*1'
&3
&3
/9* 
1& 
287 
+9* 
%227 
&
X)
9
5

5

' 1
&
Q)<
&
Q)<
5

5

5 :
5
N
5
N
-
$&0$,16
-

'
$9

5

5

&
Q)
&
Q)
&
X)
9
5
N
5
N
'
677+5'
'
'
//
'
//
&
X)56
&
&
X)
9
&
X)
9
'
//
'
//
&
Q)
&
Q)
&
Q)
&
Q)
4
67*:+):'
&
Q)<
&
Q)<
) )XVH$) )XVH$
Board description UM1553
14/52 DocID023347 Rev 2
Figure 8. Schematic (6 of 9)
56 PRGHO &
3ODFHG RQ WKH ,30 KHDWVLQN
93)&
9
9
*1'
0B/B8
0B+B8
0B/B9
0B+B9
0B/B:
0B+B:
0B6'
0B6+817
0B6+817B:
0B6+817B8
0B6+817B9
0B+($7D
2&3RII
8B/ 9B/ :B/
8B+ 9B+ :B+
8B/
8B+
9B/
9B+
:B/
:B+
93)&
93)&
99
9
9
&
X)9
&
X)
5
N
&
X)
5
1&
&
S
-
&21
51&
5
N
17&
17&N
&
S
&
Q
5 1&
5:
5
N
8
67*,36&
2878
9%2278
/,18
+,18
9&&
2879
9%2279
*1'
/,19
+,19

287:

9%227:

/,1:

+,1:

6'2'

&,1

1: 
:
3
19 
9
3
18 
8
3
5
N
5

&
S
5 1&
5
:
5
N
'
%$7=),/0
&
S
&
X)
5 1&
&
Q)
-
02725
5
N
5
:
&
X)
&
S
&
Q)
5:
5
1&
&
X)
5
N
&
X)
&
S
$0Y
H 5”
DocID023347 Rev 2 15/52
UM1553 Board description
52
Figure 9. Schematic (7 of 9)
9'&
*1'
9
9
9'&
9
9
9'&
9
9
5
N
&
X)
9
'
1:7
'
677+/$
&
X)
9
9,3(5/'
8
*1'B
*1'B
1&B
1$
9''
/,0
)%
&203
1&B
1&B
 1&B
 1&B
 '5$,1B
 '5$,1B
 '5$,1B
 '5$,1B

'
60$-$75
5
N
5
N
5
'
*5((1/('60'
'
677+/$
'
677+/$
5

5
N
5
N
&
X)
9
5
7
P+
&
X)
9
&
Q)
9
&
Q)
9
8 /' 675
9RXW
*1'
9LQ
-
9'&BB(;7
$0Y
fl 5:: 0
Board description UM1553
16/52 DocID023347 Rev 2
Figure 10. Schematic (8 of 9)
$0Y
SODFH
ILOWHU
FORVHWR
PLFUR
SODFH
ILOWHU
FORVHWR
PLFUR
SODFH
ILOWHU
FORVHWR
PLFUR
SODFH
ILOWHU
FORVHWR
PLFUR
93)&
*1'
9
3)&B6+817
0B6+817
9B%86D
3)&B,D
0B6+817B9D
0B6+817B:D
0B6+8178D
0B6+817
0B6+817
0B6+817B9
0B6+817B:
0B6+817B8
9
9
9
9
9
9
9
9
9
9B%86B293
5
N
5
N
4
7/9&'%=5
4
7/9&'%=5
&
S
&
S
&
S
&
S
8&
769
8&
769


&
Q) &
Q)
5
N
5
N
&
1&
&
1&
5 N5 N
8%
769
8%
769

&
X)9
&
X)9
5
N
5
N
5
N
5
N
&
X)9
&
X)9
&
1&
&
1&
5
N
5
N
&
S)
&
S)
5 N5 N
5
N
5
N
&
1&
&
1&
5
N
5
N
5
5
'
%$7=
'
%$7=
&
Q)
&
Q)
5
N
5
N
&
Q)
&
Q)
5N 5N
&
Q) &
Q)
8'
769
8'
769




5 N5 N
5
1&
5
1&
&
1&
&
1&
&
S)
&
S)
5
N
5
N
&Q) &Q)
5
N
5
N
5
N
5
N
5
N
5
N
&
S)
&
S)
&
S
&
S
5
N
5
N
5
N
5
N
&
S
&
S
5 N5 N
&
S)
&
S)
5
N
5
N
&
Q)
&
Q)
5

5

5
N
5
N
5
N
5
N
5 N5 N
-3-3
5
N
5
N
8$
769
8$
769

&
1&
&
1&
5
N
5
N
5 N5 N
-3-3
5
N
5
N
5
N
5
N
DocID023347 Rev 2 17/52
UM1553 Board description
52
Figure 11. Schematic (9 of 9)
$0Y
9
9
*1'
3)&B6'
0B6'
3)&B6'G
0B6'G
9$ &UHFW
9$ &D
3)&B=G
9$ &B
9$ &B
9
9
9
9
9
9
9
9
9
9
9B%86B293
'
%$7=
'
%$7=
&
Q)
&
Q)
5N 5N
&
Q)
&
Q)
5
N
5
N
5
N
5
N
&
Q)
&
Q)
5
N 5
N
5
N
5
N
&
Q)
&
Q)
5
N
5
N
&
Q)
&
Q)
5

5

5
N
5
N
5

5

&
Q)
&
Q)
8$
/062
8$
/062
5
N
5
N
5
N
5
N
'
//
'
//
-3-3
'
//
'
//
5
N
5
N
5
N
5
N
&
Q)
&
Q)
&
Q)
&
Q)
&
Q)
&
Q)
8%
/062
8%
/062
5
N
5
N
-3-3
5
N
5
N
5
N
5
N
5
N
5
N
&
X)9
&
X)9
Connector placement UM1553
18/52 DocID023347 Rev 2
4 Connector placement
A basic description of the placement of the most important connectors and jumpers on the
board is represented in Figure 12.
Figure 12. Connector placement
AM12461v1
J10: AC MAINS
J13: SWD
programmer/debugger
J2: 2nd MC power stage
JP1, JP2:
3shunt (default) /
1shunt selector
J12: motor1,
phases U,V,W
J9: PFC inductor
J11: PFC
DC bus output
JP6,JP7:
HW overvoltage
protection selector
J14: +5V DC input
(AC MAINS J10
unplugged!)
P1: RS232 serial
Key, Led,
Potentiometer,
mcu Reset
J15: PFC-IPM link
DocID023347 Rev 2 19/52
UM1553 Description of jumpers, test pins and connectors
52
5 Description of jumpers, test pins and connectors
Table 1, 2 and 3 give a detailed description of the jumpers, test pins, and pinout of the
connectors used.
Table 1. Jumper description
Jumper Selection Description
JP1, JP2
JP1 and JP2 both default
position (as silk screen) 3-shunt current sensing
JP1 and JP2 both contrary
position (as silk screen) 1-shunt (DC bus link) current sensing
JP5 JP5 present (default) +3.3 V linked with 2nd motor power stage (if present)
JP5 NOT present +3.3 V NOT linked with 2nd motor power stage (if present)
JP6
JP6 present (default)
Hardware overvoltage protection (and PFC overcurrent
protection, according to JP7) OR-ed with motor overcurrent
protection, therefore acting at the same time on the STM32
BKIN pin and STGIPS20C60 !SD/OD pin
JP6 NOT present Hardware overvoltage protection (and PFC overcurrent
protection, according to JP7) NOT OR-ed with motor
overcurrent protection
JP7
JP7 present (default) Hardware overvoltage protection OR-ed with PFC
overcurrent protection, therefore acting at the same time on
the STM32 TIM3_ETR pin and L6391 !SD/OD pin
JP7 NOT present Hardware overvoltage protection NOT OR-ed with PFC
overcurrent protection (not recommended)
JP6 & JP7 JP6 and JP7 present
Hardware overvoltage protection, motor overcurrent
protection and PFC overcurrent protection OR-ed and
acting at the same time on the STM32 TIM3_ETR, BKIN
pins, L6391 !SD/OD pin, STGIPS20C60 !SD/OD pin
JP6 and JP7 NOT present Overvoltage protection disabled (not recommended)
JP8
JP8 present (default) Heatsink temperature from motor 2 power stage can be
measured by STM32 through pin PA5; DAC peripheral
should be disabled
JP8 NOT present Heatsink temperature from motor 2 power stage cannot be
measured by STM32 through pin PA5, DAC peripheral may
be enabled if, at the same time, R14 is NC (see below)
R14
0 Ohm The onboard potentiometer R15 can be measured by
STM32 through pin PA4, DAC peripheral should be
disabled
NC (default) The onboard potentiometer R15 cannot be measured by
STM32 through pin PA4; DAC peripheral may be enabled if,
at the same time, JP8 is removed (see above).
R99
NC (default) Motor 1 overcurrent protection disabling can’t be performed
0 Ohm Motor 1 overcurrent protection disabling may be done by
STM32 through pin PC9
Description of jumpers, test pins and connectors UM1553
20/52 DocID023347 Rev 2
J15
J15 present (default) PFC stage linked with IPM DC power inputs. This jumper
can be conveniently used to measure (with an isolated
probe) PFC current output, so as to assess PFC efficiency
J16 not present PFC stage not linked with IPM DC power inputs. In this
condition, the PFC load is only that supplied from connector
J11
Table 1. Jumper description (continued)
Jumper Selection Description
Table 2. Connector description
Name Description
J9 PFC inductor connector; if PFC stage is not used, a short jumper (able to bear DC bus
capacitor charge currents) should be connected here, otherwise the rectified AC mains is
not used (power supply, inverter, microcontroller not fed)
J10 AC mains connector.
J11 DC bus output connector, polarity to respect board silkscreen; if the system is to be
configured for dual motor control, motor 2 power stage is to be fed with DC voltage from
here. On the contrary, the connector can remain unused.
J12
Motor 1 connector:
U: phase U
V: phase V
W: phase W
J13
STM32 SWD programming and debugging
STM32 JTAG programming, only if AC mains is disconnected and board supplied
through J14.
J14
+5 V DC power supply for offline (power stage OFF) STM32 programming or debugging.
The board should never be supplied from both J10 and J14. When STM32 is
supplied from J14, it can be programmed / debugged through the JTAG channel
2ND_MC (J2 in
schematics) Motor control connector for second motor power stage, if the system is to be configured
for dual motor control.
P1 RS232 serial communication port
Table 3. Test point description
Number Description
TP1
3-shunt configuration (refer to JP1/JP2): motor current phase V - amplified measurement
of voltage drop on shunt R32
1-shunt configuration (refer to JP1/JP2): motor currents (DC link method) - amplified
measurement of voltage drop on shunt R40
TP2 3-shunt configuration (refer to JP1/JP2): motor current phase U - amplified measurement
of voltage drop on shunt R35
DocID023347 Rev 2 21/52
UM1553 Description of jumpers, test pins and connectors
52
TP3 3-shunt configuration (refer to JP1/JP2): motor current phase W - amplified measurement
of voltage drop on shunt R30
TP5 DC bus partition as sent to the microcontroller, partitioning ratio is 139
TP6 PFC overcurrent protection signal (active low)
TP7 AC mains, voltage zero crossing detection signal
TP8 Motor 1, overcurrent protection signal (active low)
TP9 GND
TP10 PWM signal sent from microcontroller to PFC driver
TP11 PWM signal, phase U, low-side, sent from microcontroller to IPM inverter
TP12 PWM signal, phase V, low-side, sent from microcontroller to IPM inverter
TP13 PWM signal, phase V, low-side, sent from microcontroller to IPM inverter
TP14 DAC peripheral, output 1
TP15 DAC peripheral, output 2
Table 3. Test point description (continued)
Number Description
STM32 pinout UM1553
22/52 DocID023347 Rev 2
6 STM32 pinout
Table 4 summarizes the STM32 pinout assignment on this STEVAL-IHM034V2.
Table 4. STM32 pin assignment
Functionality STM32 peripheral Port / pin Connected to
Motor 1
TIM1,ch1N PB13
No remap STGIPS20C60
!LIN U
TIM1, ch2N PB14 !LIN V
TIM1, ch3N PB15 !LIN W
TIM1, ch1 PA8 HIN U
TIM1, ch2 PA9 HIN V
TIM1, ch3 PA10 HIN W
TIM1, BKIN PB12 !SD/OD
ADC123, ch 10 PC0
TSV914
1-shunt: DC link current
measurement
3-shunt: phase U current
measurement
ADC123, ch 11 PC1 3-shunt: phase V current
measurement
ADC123, ch 12 PC2 3-shunt: phase W current
measurement
Motor 2
TIM8,ch1N PA7 2ND_MC connector, pin 5
TIM8, ch2N PB0 2ND_MC connector, pin 9
TIM8, ch3N PB1 2ND_MC connector, pin 13
TIM8, ch1 PC6 2ND_MC connector, pin 3
TIM8, ch2 PC7 2ND_MC connector, pin 7
TIM8, ch3 PC8 2ND_MC connector, pin 11
TIM8, BKIN PA6 2ND_MC connector, pin 1
ADC12, ch 5 PA5 (through jumper
JP8) 2ND_MC connector, pin 26; heatsink
temperature
ADC123, ch 1 PA1 2ND_MC connector, pin 17; 1-shunt: DC link
current measurement network; 3-shunt: phase
V current measurement
ADC123, ch 0 PA0 2ND_MC connector, pin 15; 3-shunt: phase U
current measurement
ADC123, ch 2 PA2 2ND_MC connector, pin 19; 3-shunt: phase W
current measurement
PFC
TIM3, ch1 PB4 Partial
remap
L6391 PWM !LIN
TIM3, ch2 PB5 LM193 AC mains zero crossing
voltage detector
DocID023347 Rev 2 23/52
UM1553 STM32 pinout
52
6.1 Configuration for STM32F2 and STM32F4 series
This board is able to host a microcontroller from the STMicroelectronics STM32F2 and
STM32F4 series, please contact your nearest ST sales office or support team to request
samples.
These parts have a close compatibility with the STM32F103 family, all functional pins are
pin-to-pin compatible, therefore Table 4 continues to be valid.
On the other hand, some power pins are different (see relevant datasheets) but this board -
through few resistors - allows the modifications needed to be implemented, summarized in
Table 5.
PFC
TIM3, ETR PD2 L6391 Overcurrent protection
!SD/OD
ADC123, ch 13 PC3 TSV914 PFC current measurement
ADC123, ch3 PA3 AC mains rectified, partitioned voltage,
sampled before PFC stage
RS232
communication
USART3, RX PC11 Partial
remap ST3232CTR R1OUT
USART3, TX PC10 T1IN
DC bus voltage ADC12, ch14 PC4 DC bus partitioned voltage
Heatsink
temperature ADC12, ch15 PC5 Voltage from NTC2 network
User key
LED
Potentiometer
GPIO
GPIO
ADC12, ch4
PB10
PB11
PA4
B1, through R17
D3, through R16
R15, through R14 not mounted
In-rush current
limiter relay GPIO PB9 Relay LS1 driving network
Overcurrent
disabling network GPIO PC9 D18, through R99 not mounted
Table 4. STM32 pin assignment (continued)
Functionality STM32 peripheral Port / pin Connected to
Table 5. STM32F2 and STM32F4 configuration
STM32 part onboard Board configuration
STM32F103 R80 = 0 ; R76 = 0
STM32F2 or STM32F4 R80 = not present; R76 = not present
'_ll; Rsnwvlmz = W Pmm = f 2 = 2_55w
Hardware settings / configuration UM1553
24/52 DocID023347 Rev 2
7 Hardware settings / configuration
7.1 Motor 1, phase current amplification network
Motor 1 phase current measurements are performed using shunt resistors (single or 3-shunt
topology, according to jumpers JP1 and JP2) and the differential amplification network
shown in Figure 13 for phase V; phase U, W and DC link have the same topology, Table 5
summarizes - for each of them - the components used.
Figure 13. Motor current measurement, amplification network
Maximum current that can be read - compatibly with IPM capability - is set to be 17.6 A 0-to-
pk, 12.45 A RMS.
A 0.033 shunt resistor is chosen, whose power rate should be greater than:
Equation 1
The amplification network must allow bidirectional current sensing, so that an output offset
Vo = +1.65 V represents a zero current.
Therefore, the maximum measurable phase current, considering that the output swings
from +1,65 V to +3.3 V for positive currents and from +1.65 V to 0 for negative going
currents, is:
$0Y
5G
N
769
9
5F
N
0B6+817B9D
5H N
&F
S
&DQ)
5DN 
5EN 
&E
S)
ORZVLGH
KLJKVLGH
5VKXQW

02725:,1',1*
3+$6(9
,LQ
!
9RXW
AIL/31mm'umwi: l W : (i4 , u ' , :—: 77:0 093-59 4 ffl'RC:l 5m 1 Fm 4110009 :. '5pF(3301>Fselected)
DocID023347 Rev 2 25/52
UM1553 Hardware settings / configuration
52
Equation 2
The overall trans-resistance of the two-port network - represented by the orange block - is:
Equation 3
Finally, choosing Ra = Rb and Rc = Rd, the differential gain of the circuit is:
Equation 4
The RC filter is designed so as to have a time constant that matches noise parameters in
the range of 1.5 µs:
Equation 5
Table 6. Amplifying networks
Amplifying network RC filter
Ra Rb Rc Rd Re Cc
Phase U or DC link R67 R71 R65 R74 R69 C107
Phase V R56 R59 R54 R62 R58 C105
Phase W R64 R68 R63 R70 R66 C106
r :Rm : 0 033 Q m 0.58 ' 0 0330 [RUOWIunmelnuxlwhl ’ 4‘1 :4 R(' :Sux , 5m , : :1 lithZlnFSeleclexl) +1101!
Hardware settings / configuration UM1553
26/52 DocID023347 Rev 2
7.2 Motor 1, overcurrent protection network
The motor 1 overcurrent protection schematic is shown in Figure 14.
Figure 14. Motor 1 overcurrent protection network
Considering the trans-resistance of the two-port network represented by the orange block:
Equation 6
and the STGIPS20C60 + 0.58 V internal comparator max. reference voltage (typical 0.54 V,
minimum 0.5 V), the overcurrent protection, carried out by the STGIPS20C60 smart
shutdown function, is set to occur at:
Equation 7
The RC filter is designed so as to have a time constant that matches the 5 µs
STGIPS20C60 short-circuit withstand time:
Equation 8
$0Y
ORZVLGH
KLJKVLGH
02725:,1',1*
3+$6(8
ORZVLGH
KLJKVLGH
02725:,1',1*
3+$6(:
ORZVLGH
KLJKVLGH
02725:,1',1*
3+$6(9
287
 95
1&
5  &
Q
6'2'
5VKXQW

67*,36.
VPDUWVKXWGRZQLQWHUQDOFRPSDUDWRU
Pm", : R,,u,,,,-1,.,,,,Z : comm-8.59142 : 1.25w Jlm‘JA’z/u'zumrr 7 7 AV "' 7 MaxMeas , 1m:R A:0.0105{2A:O.”1Q Sm ' 12.‘3(11is chosen)
DocID023347 Rev 2 27/52
UM1553 Hardware settings / configuration
52
7.3 PFC stage, mains current amplification network
Mains current measurement for PFC stage control is performed using a shunt resistor and
the differential amplification network shown in Figure 14.
Figure 15. PFC current measurement amplification network
Board maximum input current is 8.69 A RMS, drawn by a 1.7 kW load at minimum AC
voltage 195 V RMS. Maximum peak current is set to be 15 A 0-to-pk, to accommodate for
up to 44% current ripple.
A 0.0165 shunt resistor is chosen, whose power rate should be greater than:
Equation 9
An offset Vo = +0.1 V is added so as to minimize the linearity error / saturation recovery for
low current values.
Equation 10
The overall trans-resistance of the two-port network - represented by the orange block - is:
Equation 11
Therefore:
$0Y
5G
N 
769
9
5F
N 
3)&B,D
5H N
&F
S
&DQ)
5DN 
5EN 
&E
S)
5VKXQW

9RXW
,LQ
!
rm :018151: 315V 181511 MaxMzasCurrem : : 17 36A 4E 2.9V PFCOW’I‘L’Ill1‘L’HVT/H‘L’S/U/(1 *0?
Hardware settings / configuration UM1553
28/52 DocID023347 Rev 2
Equation 12
Finally, choosing Ra = Rb and Rc = Rd, the differential gain of the circuit is:
Equation 13
The RC filter is designed so as to have a time constant that matches a typical 20 kHz PWM
frequency.
7.4 PFC stage, overcurrent protection
The overcurrent protection network of the PFC stage is shown in Figure 15.
Figure 16. PFC overcurrent protection network
Considering the trans-resistance of the mains current sensing network, the 0.1 V offset and
the +3 V threshold fixed at L6391 CP- comparator input by the voltage divider R24 and R26,
the overcurrent protection, carried out by the L6391 smart shutdown function, is set to occur
at:
Equation 14
$0Y
5G
N 
769
9
5F
N 
3)&B,D
5H N
&F
S
&DQ)
5DN 
5EN 
&E
S)
5VKXQW

9RXW
,LQ
!
DocID023347 Rev 2 29/52
UM1553 Hardware settings / configuration
52
7.5 Single motor configuration
This section describes the basic steps to configure the hardware to drive a single motor
application (without PFC). Nonetheless, a thorough reading of all the sections of this user
manual is recommended, Section 2 in particular.
A jumper should be placed in the connector J9 (the wire should be able to bear the
repetitive DC bus capacitor charge currents)
A jumper should be placed in the connector J15 (the wire should be able to bear IPM
input current)
Single shunt or 3-shunt current measurement topology to be selected through jumper
JP1 and JP2
Motor windings to abut connector J10
Overvoltage protection to be optionally enabled (JP6)
+5 V DC power supply to be provided through connector J14
JTAG or SWD programmer connected through J13 can now flash the customized
firmware
+5 V DC power supply to be removed from connector J14
JTAG or SWD programmer to be removed from connector J13
It is now possible to plug AC mains terminals to connector J10.
The application can now be controlled by means of the opto-isolated RS232 serial
communication channel, if the firmware provides for its handling. The STM32 PMSM FOC
SDK v3.2 and successive versions, used in conjunction with STMCWB v2.0, and
successive versions, allows a PC to send commands / receive status information about the
running motor.
Only in a case where an opto-isolated SWD dongle (such as the ST-LINK/V2-ISOL) or an
isolated laptop is available, can the application be programmed and debugged in SWD
mode being powered by the AC mains.
On the contrary, it can be programmed in SWD or JTAG mode while J14 is being supplied
from an external +5 V DC source. The external source must be removed before plugging AC
mains terminals.
7.6 Dual motor configuration
This section describes the basic steps to configure the hardware to drive two motors, the
first one powered by the onboard IPM inverter, the second by an external ST power stage.
Nonetheless, a thorough reading of all the sections of this user manual is recommended,
Section 2 in particular.
A jumper should be placed in the connector J9 (the wire should be able to bear the
repetitive DC bus capacitor charge currents)
A jumper should be placed in the connector J15 (the wire should be able to bear IPM
input current)
Single shunt or 3-shunt current measurement topology to be selected through jumper
JP1 and JP2
Motor windings to abut connector J10
Hardware settings / configuration UM1553
30/52 DocID023347 Rev 2
Overvoltage protection to be optionally enabled (JP6)
Second motor power stage MC connector linked to 2ND_MC (J2) connector with the
provided short ribbon cable
Second power stage is to be fed with DC voltage from DC bus output connector J11,
polarity to respect board silkscreen; if the power stage hasn't got a dedicated DC power
input connector, it's recommended not to feed from its rectifier input but directly across
the DC bus
Second power stage bulk capacitor(s) must be removed, filtering capacitors to be
added if not present
Motor 2 windings to abut dedicated connector on second power stage
JTAG or SWD programmer connected through J13 can now flash the customized
firmware
+5 V DC power supply to be removed from connector J14
JTAG or SWD programmer to be removed from connector J13
It's now possible to plug AC mains terminals to connector J10.
The application can now be controlled by means of the opto-isolated RS232 serial
communication channel, if the firmware provides for its handling. The STM32 PMSM FOC
SDK v3.2, and successive versions, used in conjunction with STMCWB v2.0, and
successive versions, allows a PC to send commands / receive status information about the
running dual motor control.
Only in a case where an opto-isolated SWD dongle (such as the ST-LINK/V2-ISOL) or an
isolated laptop is available, can the application be programmed and debugged in SWD
mode being powered by the AC mains.
On the contrary, it can be programmed in SWD or JTAG mode while J14 is being supplied
from an external +5 V DC source. The external source must be removed before plugging AC
mains terminals.
7.7 Dual motor and PFC configuration
This section describes the basic steps to configure the hardware to drive two motors and
PFC, the first one powered by the onboard IPM inverter, the second by an external ST
DocID023347 Rev 2 31/52
UM1553 Hardware settings / configuration
52
power stage. Nonetheless, a thorough reading of all the sections of this user manual is
recommended, Section 2 in particular.
A proper inductor for PFC operation, or the one included in the kit (whose datasheet is
reported in Figure 17 and 18), should be placed in the connector J9
A jumper should be placed in the connector J15 (the wire should be able to bear IPM
input current)
Single shunt or 3-shunt current measurement topology to be selected through jumper
JP1 and JP2
Motor 1 windings to abut connector J10
PFC overvoltage protection to be enabled (JP7)
Overvoltage protection OR-ing with IPM overcurrent protection (JP6) enabled
(recommended)
Second motor power stage MC connector linked to 2ND_MC (J2) connector with the
provided short ribbon cable
Second power stage is to be fed with DC voltage from DC bus output connector J11,
polarity to respect board silkscreen; if the power stage hasn't got a dedicated DC power
input connector, it's recommended not to feed from its rectifier input but directly across
the DC bus
Second power stage bulk capacitor(s) must be removed, filtering capacitors to be
added if not present
Motor 2 windings to abut dedicated connector on second power stage
JTAG or SWD programmer connected through J13 can now flash the customized
firmware
+5 V DC power supply to be removed from connector J14
JTAG or SWD programmer to be removed from connector J13
It's now possible to plug AC mains terminals to connector J10.
The application can now be controlled by means of the opto-isolated RS232 serial
communication channel, if the firmware provides for its handling. The STM32 PMSM FOC
SDK v3.2, and successive versions, used in conjunction with the PFC library plug-in v1.0
and STMCWB v2.0, and successive versions, allows a PC to send commands / receive
status information about the running dual motor control and PFC.
Only in a case where an opto-isolated SWD dongle (such as the ST-LINK/V2-ISOL) or an
isolated laptop is available, can the application be programmed and debugged in SWD
mode being powered by the AC mains.
On the contrary, it can be programmed in SWD or JTAG mode while J14 is being supplied
from an external +5 V DC source. The external source must be removed before plugging AC
mains terminals.
Hardware settings / configuration UM1553
32/52 DocID023347 Rev 2
7.8 PFC configuration
This section describes the basic steps to configure the hardware to drive the PFC for an
external load. Nonetheless, a thorough reading of all the sections of this user manual is
recommended, Section 2 in particular.
A proper inductor for PFC operations, or the one included in the kit (whose datasheet is
reported in Figure 17 and 18), should be placed in the connector J9
External load to be fed with DC voltage from DC bus output connector J11, polarity to
respect board silkscreen
PFC overvoltage protection to be enabled (JP7)
Overvoltage protection OR-ing with IPM overcurrent protection to be disabled (JP6)
Jumper in connector J15 removed
JTAG or SWD programmer connected through J13 can now flash the customized
firmware
+5 V DC power supply to be removed from connector J14
JTAG or SWD programmer to be removed from connector J13
It's now possible to plug AC mains terminals to connector J10.
The application can now be controlled by means of the opto-isolated RS232 serial
communication channel, if the firmware provides for its handling. The STM32 PMSM FOC
SDK v3.2, and successive versions, used in conjunction with PFC library plug-in v1.0 and
STMCWB v2.0, and successive versions, allows a PC to send commands / receive status
information about PFC.
Only in a case where an opto-isolated SWD dongle (such as the ST-LINK/V2-ISOL) or an
isolated laptop is available, can the application be programmed and debugged in SWD
mode being powered by the AC mains. On the contrary, it can be programmed in SWD or
JTAG mode while J14 is being supplied from an external +5 V DC source. The external
source must be removed before plugging AC mains terminals.
DocID023347 Rev 2 33/52
UM1553 Firmware configuration for STM32 PMSM FOC SDK
52
8 Firmware configuration for STM32 PMSM FOC SDK
Table 7 summarizes the parameters to be set - through the “ST motor control workbench”
GUI - in order to customize the STM32 PMSM FOC SDK v3.2 for this STEVAL-IHM034V2.
On the other hand, inside the IDE used to batch-build and download the SDK firmware, the
user project must be configured by selecting from the menu STM3210E-EVAL (in case of
single motor and PFC) or STEVAL-IHM022_DUALDRIVE (in case of dual motor and PFC);
for more information, see the UM1052 user manual, section 6.2.
Firmware configuration for STM32 PMSM FOC SDK UM1553
34/52 DocID023347 Rev 2
Table 7. Parameters for “ST motor control workbench” GUI
Section Field Parameter STEVAL-IHM034V2
value Unit or note
POWER STAGE 1
ICL shut-out Polarity High
Rated bus voltage Min. voltage 40 V
Rated bus voltage Max. voltage 450 V
Rated bus voltage Nominal voltage 320 V
Bus voltage sensing Bus voltage divider 139
Temperature sensing V0 2600 mV
Temperature sensing T0 74 °C
Temperature sensing V/T 30 28 mV/°C
Temperature sensing Max. working temp 90 °C
Overcurrent protection Comparator threshold 0.54 V
Overcurrent protection Overcurrent network
gain 0.03 V/A
Overcurrent protection Overcurrent feed polar Active low
Overcurrent protection Disabling network Active low
Current sensing
(JP1&JP2 default) 1-shunt resistor
Current sensing
(JP1&JP2 default) Shunt resistor value 0.033 W
Current sensing
(JP1&JP2 default) Amplifying network gain 2.87
Current sensing
(JP1&JP2 default) T-Rise 1500 ns
Current sensing
(JP1&JP2 opposite) 3-shunt resistor
Current sensing
(JP1&JP2 opposite) Shunt resistor value 0.033 W
Current sensing
(JP1&JP2 opposite) Amplifying network gain 2.87
Current sensing
(JP1&JP2 opposite) T-Noise 2500 ns
Current sensing
(JP1&JP2 opposite) T-Rise 1500 ns
DocID023347 Rev 2 35/52
UM1553 Firmware configuration for STM32 PMSM FOC SDK
52
POWER STAGE 1
Phase U driver High-side polarity Active high
Phase U driver Low-side polarity Active low
Phase V driver High-side polarity Active high
Phase V driver Low-side polarity Active low
Phase W driver High-side polarity Active high
Phase W driver Low-side polarity Active low
Power switches Min. deadtime 1000 Ns
Power switches Max. switching freq. 20 kHz
PFC enable Check box Enable or disable
POWER STAGE 2 According to parameters of connected motor 2 power stage
CONTROL STAGE
MCU and clock
frequency MCU selection Performance line high
density
MCU and clock
frequency CPU frequency 72 MHz
MCU and clock
frequency Nominal MCU supply
voltage 3.3 V
Analog input
Motor 1
ADC ch phase U (3-
shunt selected)
ADC12_IN10
Analog input
Motor 1
ADC ch phase V (3-
shunt selected)
ADC12_IN11
Analog input
Motor 1
ADC ch phase W (3-
shunt selected)
ADC12_IN12
Analog input
Motor 1
ADC ch
(1-shunt selected)
ADC3_IN10
Analog input
Motor 1
Bus voltage feedback
ADC ch
ADC12_IN14
Analog input
Motor 1
Heatsink temperature
feedback
ADC ch
ADC12_IN15
Analog input
Motor 2
ADC ch phase U (3-
shunt selected)
ADC12_IN0
Analog input
Motor 2
ADC ch phase V (3-
shunt selected)
ADC12_IN1
Table 7. Parameters for “ST motor control workbench” GUI (continued)
Section Field Parameter STEVAL-IHM034V2
value Unit or note
Firmware configuration for STM32 PMSM FOC SDK UM1553
36/52 DocID023347 Rev 2
CONTROL STAGE
Analog input
Motor 2
ADC ch phase W (3-
shunt selected)
ADC12_IN2
Analog input
Motor 2
ADC ch
(1-shunt selected)
ADC12_IN1
Analog input
Motor 2
bus voltage feedback
ADC ch
To be disabled in
power stage 2
parameters
Analog input
Motor 2
temperature feedback
ADC ch
ADC12_IN5 Through jumper
JP8, excluding
DAC functionality
DAC functionality DAC peripheral PA4, PA5
Excluding motor 2
temperature
feedback and
potentiometer
R15
Digital I/O Motor 1 timer TIM1
Digital I/O Motor 1
TIM1 remapping No remap
Digital I/O Serial COM channel USART3
Digital I/O USART3 remap Partial remap
Digital I/O In-rush current limiter B - 9
Digital I/O Overcurrent protection
disabling (if function is
activated) C - 9
Digital I/O Motor 2 timer TIM8
Section Field Parameter STEVAL-IHM034V2
value Unit or note
Table 7. Parameters for “ST motor control workbench” GUI (continued)
Section Field Parameter STEVAL-IHM034V2
value Unit or note
UM1553 Firmware configuration for STM32 PMSM FOC SDK
DocID023347 Rev 2 37/52
Table 8. BOM
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
B1 User Surface mount
tactile switch SMD Any RS code:
183-701
B2 Reset Surface mount
tactile switch SMD Any RS code:
183-701
C77,C51 47 µF +/-20% 10 V Aluminium
electrolytic
capacitor SMT Panasonic EEE1AA47
0SP RS code:536-
9843
C1 47 µF +/-20% 25 V Aluminium
electrolytic
capacitor SMD Any RS code:
537-0225
C2,C3,C4,C5,
C6,C7,C10,C12
,C25,C42,C61,
C62,C67,C72,
C71,C69,C64,
C63,C59,C83,
C85,C75
100 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805
C8,C84,C95, 1 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805
C11,R14,R16,
R17,R38,R99,
R97,C47,C48,
C53,C54
NC Do not fit Do not fit Do not fit Do not fit Do not fit Do not fit Do not fit Do not fit
C65,C66 22 pF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C68 1 µF +/-10% 16 V Tantalium
capacitor SMD RS:code:496-
4043
C28,C29,C30,
C31,C32,C33 4.7 µF +/-10% 50 V Ceramic
capacitor X7R SMD 1206 Any
Firmware configuration for STM32 PMSM FOC SDK UM1553
38/52 DocID023347 Rev 2
C21 0.22 µF +/-20% 300 V X2 capacitor Through
hole Distrelec
code: 820765
C70 10 µF +/-10% 16 V Ceramic
capacitor X7R SMD RS code:106-
846
C22,C23 220 µF +/-20% 450 V Electrolytic
capacitor Through
hole RS code:
575-147
C74 2.2 µF +/-20% 450 V Electrolytic
capacitor Through
hole 450YK2.2M
10X12.5 RS code:
193-7256
C45,C50,C52 2.2 µF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C26,C108,C86 470 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C94,C96,C97 5.6 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C27 4.7 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C34,C46,C49 10 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C93,C76,C82 22 µF +/-20% 25 V Aluminium
electrolytic
capacitor SMT Panasonic EEE1EA22
0SP RS: 536-9893
C87,C92,C35 22 nF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C90 1 µF +/-5% 25 V Aluminium
electrolytic
capacitor SMD 0805 Any
C88 10 µF +/-20% 6.3 V Ceramic SMT
capacitor 1206 Murata GRM31CR6
0J106KA01
LRS: 653-0541
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
UM1553 Firmware configuration for STM32 PMSM FOC SDK
DocID023347 Rev 2 39/52
C78,C79,C80,
C81, 100 pF +/-10% 50 V Ceramic
capacitor X7R SMD 0805 Any
C105,C106,
C107 330 pF +/-10% 50 V Ceramic
capacitor X7R SMD 0603 Any
C104 680 pF +/-10% 50 V Ceramic
capacitor X7R SMD 0603 Any
C73 100 nF +/-5% 630 VCC Polyester film
capacitor Through
hole Panasonic ECQE6104
JF RS:622-4943
C91 220 nF +/-5% 25 V Ceramic
capacitor X7R 0805 Any
C89 100 µF +/-20% 25 V Aluminium
electrolytic
capacitor SMT Panasonic ECEV1EA1
01P RS code:
628-4024
C55, C56 2.2 nF +/-20% 400 V Y1 ceramic
capacitor Through
hole RS code:
214-5903
C98,C99,C100,
C101,C102,
C103 10 pF +/-20% 25 V Ceramic
capacitor X7R SMD 0603 Any
D1,D2,D7,D8,
D23,D24 LL4148 Switching diode_ SOD-80 Distrelec
code: 601496
D3 Red LED SMD Chip LED SMD 0805 Distrele code:
250154
D4 STTH15R06D Turbo 2 ultrafast
high voltage
rectifier TO-220 ST STTH15L06
D
D5 GF1M 1000 V/
1 A Rectifier diode DO214BA Vishay GF1M RS code:
629-1123
D6 8 A/ 400 V AC
diode bridge 400 V/ 8 A Single-phase
bridge rectifier Through
hole Vishay KBU8G-E4 RS code:
634-9288
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
Firmware configuration for STM32 PMSM FOC SDK UM1553
40/52 DocID023347 Rev 2
D19 1N4148WT High
conductance fast
switching diode SOD 523 FAIRCHILD 1N4148WT rs code: 708-
2163
D20,D21,D22 STTH1L06A Turbo 2 ultrafast
high voltage
rectifier SMA ST STTH1L06A
D16,D18,D27 BAT48Z Small signal
Schottky diodes SOD-123 ST BAT48ZFIL
M
D13 GREEN LED SMD Chip LED SMD 0805 Any Distrele code:
250158
D25 1N5406 600 V/3 A Rectifier diode DO201AD Any RS code:
628-9574
D26 SMAJ15A Transil SMA ST SMAJ15A-
TR
L1 FCM1608KF-
601T03 600 /100
MHz Ferrite bead SMD 0603 WURTH Distrelec
code: 330821
F1 Fuse 250 V/
10 A Time lag fuse - RS RS code:
563-334
SOCKET for F1 Socket for F1 SOCKET for F1 Through
hole Schurter 31.8231 RS code:
336-7851
JP1,JP2 Jumper
3-way single row
strip line
connector (male
connector)
2,54 mm pitch
Vertical
through hole Any RS code:
495-8470
J1 SPI
5-way single row
strip line
connector (male
connector)
2,54 mm pitch
Vertical
through hole Any RS code:
495-8470
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
UM1553 Firmware configuration for STM32 PMSM FOC SDK
DocID023347 Rev 2 41/52
J2 2M_MC_CONNEC
TOR
34-way IDC low
profile boxed
header 2,54 mm
pitch
Vertical
through hole Any RS code:
473-8311
JP5,JP6,JP7
Jumper
2-way single row
strip line
connector (male
connector)
2,54 mm pitch
Vertical
through hole Any RS code:
495-8470
Jumper Female jumper
2.54mm black Any
J13 JTAG\SWD
20-way IDC low
profile boxed
header 2,54 mm
pitch
Vertical
through hole Any RS code:
461-770
J9
PFC boost inductor
2-way vertical
closed header,
5.08 mm pitch
vertical
Through
hole Phoenix
Contact RS code:
189-6199
2-way parallel
rising clamp, 5.08
mm
Phoenix
Contact RS code:
189-6010
J10
AC mains
4-way vertical
closed header,
5.08 mm pitch
vertical
Through
hole Phoenix
Contact RS code:
189-6228
4-way parallel
rising clamp, 5.08
mm
Phoenix
Contact RS code:
189-6032
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
Firmware configuration for STM32 PMSM FOC SDK UM1553
42/52 DocID023347 Rev 2
J11 PFC_OUT
2-way vertical
closed header,
5.08 mm pitch
vertical
Through
hole Phoenix
Contact RS code:
189-6199
J12
Motor
3-way vertical
closed header,
5.08 mm pitch
vertical
Through
hole Phoenix
Contact RS code:
189-6212
3-way parallel
rising clamp, 5.08
mm
Phoenix
Contact RS code:
189-6026
J15 PFC boost inductor
2-way vertical
closed header,
5.08 mm pitch
vertical
Through
hole Phoenix
Contact RS code:
189-6199
LS1 FINDER 4031-12 12 V/10 A Relè 12 V 12 A Through
hole Finder 40.31.7.012
.0000 RS code:
351-601
NTC1 10 Coated-Disk NTC
thermistor Through
hole Epcos B57364-
S100-M Distrelec
code: 730723
NTC2 NTC 10 k Temperature
measurement
probe assemblies
Through
hole Epcos B57703M10
3G RS code:
191-2128
P1 DB9-female 9-way r/a PCB D
female, US
footprint 8.1 mm
Through
hole Any RS code:
542-8043
Q1 STGW35HF60WD 35 A, 600 V
ultrafast IGBT TO-247 ST STW23NM6
0N
Q2 BC847 NPN transistor NXP BC847 RS code:
436-7953
Q3 TLV431CDBZR V-Ref adjustable
1.24 V to 6 V SOT-23 Texas
Instruments TLV431CD
BZRG4 RS code:
661-9635
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
UM1553 Firmware configuration for STM32 PMSM FOC SDK
DocID023347 Rev 2 43/52
R90,R41 240 +/-1% 1/8 W Resistor SMD 0805
R7 4.7 k+/-1% 1/8 W Resistor SMD 0805
R8 4.7 k+/-1% 1/8 W Resistor SMD 0805
R11,R87,R91,
R106 3.3 k+/-1% 1/8 W Resistor SMD 0805
R15,R118,
R119 10 kTrimmer Through
hole Bourns 3386F-1-
103LF
R72 680 +/-1% 1/8 W Resistor SMD 0805 Any
R27,R26 10 k+/-1% 1/8 W Resistor SMD 0805 Any
R1,R2,R98,R76
,R80,R110,
R109 0 +/-1% 1/8 W Resistor SMD 0805 Any
R19,R52 100 +/-1% 1/8 W Resistor SMD 0805 Any
R81 220 +/-1% 1/8 W Resistor SMD 0805 Any
R22 160 +/-1% 1/4 W Resistor SMD 1206 Any
R23 6.8 +/-1% 1/8 W Resistor SMD 0805 Any
R25 47 +/-1% 1/8 W Resistor SMD 0805 Any
R29,R94 100 k+/-1% 1/8 W Resistor SMD 0805 Any
R30,R32,R35,
R40,R21,R120 0.033 +/-1% 3 W Resistor SMD 2512 DISTRELEC DISTRELE
C-71.52.11 Distrelec
code: 715211
R37,R96,R95,
R121 4.7 k+/-1% 1/8 W Resistor SMD 0805 Any
R103 15 k+/-1% 1/8 W Resistor SMD 0805 Any
R43,R44,R82,
R83 470 k+/-1% 1/8 W Resistor SMD 0805 Any
R105,R108,
R101 1.5 k+/-1% 1/8 W Resistor SMD 0805 Any
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
Firmware configuration for STM32 PMSM FOC SDK UM1553
44/52 DocID023347 Rev 2
R102 10 k+/-1% 1/8 W Resistor SMD 0805 Any
R88 3.9 k+/-1% 1/8 W Resistor SMD 0805 Any
R89 15 k+/-1% 1/8 W Resistor SMD 0805 Any
R86 560 +/-1% 1/8 W Resistor SMD 0805 Any
R48,R85 6.8 k+/-1% 1/8 W Resistor SMD 0805 Any
R92,R93,R104,
R107 220 k+/-1% 1/8 W Resistor SMD 0805 Any
R75,R51 3 k+/-1% 1/8 W Resistor SMD 0805 Any
R54,R62,R63,
R70,R65,R74 2.87 k+/-1% 1/8 W Resistor SMD 0805 Any
R55,R56,R59,
R60,R64,R67,
R68,R71,R24,
R57,R58,R66,
R69,R73
1 k+/-1% 1/8 W Resistor SMD 0805 Any
R36 110 +/-1% 1/8 W Resistor SMD 0805 Any
R84,R53,R61 11 k+/-1% 1/8 W Resistor SMD 0805 Any
R100 53 k+/-1% 1/8 W Resistor SMD 0805 Any
R10,R9 470 +/-1% 1/8 W Resistor SMD 0805 Any
R111,R112,
R113,R114,
R115,R116 1 k+/-1% 1/8 W Resistor SMD 0603 Any
R117 1.2 k+/-1% 1/4 W Resistor SMD 1206 Any
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
UM1553 Firmware configuration for STM32 PMSM FOC SDK
DocID023347 Rev 2 45/52
TP1,TP2,TP3,
TP4,TP5,TP6,
TP7,TP8,TP9,
TP10,TP11,
TP12,TP13,
TP14,TP15
TEST POINT_3
1-way single row
strip line
connector (male
connector) 2,54
mm pitch
Through
hole Any RS code:
101-2391
T1 1.41 mH/15-3.3 V 15-3.3 V 2.55 W Transformer- Through
hole MAGNETICA 2092.0001
U1 L78L33ACUTR Positive voltage
regulators SOT-89 ST L78L33ACU
TR
U2 ST3232CTR
± 15 kV ESD
protection 3 to
5.5 V low power,
up to 250 kbps,
RS-232 drivers
and receivers
TSSOP16 ST ST3232CT
R
U3,U4 SFH6156-2T Optocoupler
phototrans SMD Vishay/Semic
onductors SFH6156-
2T RS code:
2841190
U13 LM193 Low power single
voltage
comparator SO8 ST LM193D
U11 STM32F103RCT6
HIGH-density
performance line
ARM-based 32-
bit MCU
LQFP64 ST STM32F103
RCT6
U6 L6391 High-voltage high
and low-side
driver SO-14 ST L6391
U7 STGIPS20C60
IGBT intelligent
power module
(IPM) 20 A - 600
V
SDIP-25L
molded ST STGIPS20C
60
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
Firmware configuration for STM32 PMSM FOC SDK UM1553
46/52 DocID023347 Rev 2
U14 LD1117S33TR
Low drop fixed
and adjustable
positive voltage
regulators
SOT-223 ST LD1117S33
TR
U15 VIPER16LD Low power offline
SMPS primary
switcher SO-16 ST VIPER16LD
U10 TSV914
Rail-to-rail
input/output 8
MHz operational
amplifiers
SO-14 ST TSV914ID
J14 PCB DC power
socket 12 V / 1A Mini DC power
socket 2,5 mm Through
hole RS 448-376 RS code:
448-376
Heatsink L=220 mm Heatsink PADA(www.p
ada.it) G8425140
Distance
Distance M3, 10
mm long, plastic,
with screw, for
corners
Any
X1 8 MHz (with socket) 8 MHz crystal Through
hole Any RS code:
547-6200
Socket for X1 Socket for X1
2-way single row
strip line
connector
(female
connector)
2,54mm pitch
Through
hole Any Distrelec
code: 120324
Kit for TO-220
insulation Mica, sleeve for
screw
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
UM1553 Firmware configuration for STM32 PMSM FOC SDK
DocID023347 Rev 2 47/52
Kit for TO-247
insulation mica
SPACER SPACER L=10 x 3
mm NYLON R.S.-325-
687 R.S.-325-687
ISO metric ivory
nylon 6.6 full
NUT,M3 NYLON-NUT NYLON-NUT R.S.525-
701 R.S.525-701
External PFC
inductor 1 mH 12 A RMS MAGNETICA 2006.0008 See Figure 17
and 18
Table 8. BOM (continued)
Reference Part / value Tolerance % Voltage
current WATT Technology
information Package Manuf. Manuf.
code More Info
STP 04 Product Technical Spec Ication Code : 5395 Product: hiperCoil 1mH 12ARM5 18AM Class Code 2006.0008 Date 20/12/10 ‘Revision, 03 Page 1 M 2 TVPIOAL APPLICATION INDUCTOR FOR BUCK. BOOST AND BUCKVBOOST DC/DC TECHNICAL DATA CONVERTER, SmTABLE ALSO IN HALFVBR‘DGET PUSHV |(:2|A:I:UTRAEN;:KEHZ M U who) 1mH :15 /° PULL AND FULL-BRTDGE APPLTCATTONS ' ‘ INDUCTANCE 965UH :15% ”ECU" ”"5““ (MEASURE YKHZ, 12A,TA 20°C) REsIsTANcE 47 m9 max (MEASURE no, TA 20%;) OPERATING CURRENT 1B A MAX (MEASURE Dc, TA 21%) SATURATION CURRENT 26 AM (MEASURE DC, L 250%NOM, TA we) REsoNANcE FREQUEch 350 KHZ NOM 1 of (TA 20%) PARAsITIc CAPACITANCE 200 pF NOM (MEASURE PIN 172, F TMHz, TA 20%;) OPERATING TEMPERATURE RANGE >10”CT+SO°C (IR 12A) MAXIMUM DIMENSIONS 97x68 H80 mm WEIGHT 1425 g APPROX 2 of INOUcTANcE vs CURRENT _ 20cc INDUcTANcE vs FREOUEch 100% i 190% :2 170% 3 150% 130% 110% 90% 70% 10% 50% 0 1D 20 IIA] MOREDm mu 4" Rev nu MAGNETICA 02/09/05
Firmware configuration for STM32 PMSM FOC SDK UM1553
48/52 DocID023347 Rev 2
Figure 17. Technical sheet of PFC inductor (page 1 of 2)
AM15294v1
STP 04 Product Technical Specification Code : 5395 Product: hiperCoil 1mH 12ARMS13APK Class Code :2006.0008 Date -2or12/1o iRevisr'on- 03 Page 2 on DIMENSIONAL DRAWING DIMENsiONs IN IIIILLiMErERs, DMwiNG Nut IN SCALE 20u6.ouna INDucmR 1 mH 85-5 12Arms1EApk TOP VIEW MAGNETICA d)32(x2) RECOMMENDED PCB m: m 3 8 (x2) :<—68max—> 80 MAX m— 97 MAX —w monuum we Rev on 02/09/08 _ MAGNETICA £17
DocID023347 Rev 2 49/52
UM1553 Firmware configuration for STM32 PMSM FOC SDK
52
Figure 18. Technical sheet of PFC inductor (page 2 of 2)
AM15295v1
References UM1553
50/52 DocID023347 Rev 2
9 References
1. STGIPS20C60 datasheet
2. VIPER16 datasheet
3. STM32F103RC datasheet
4. TSV91x datasheet
5. STPSC1206 datasheet
6. STB38N65M5, STF38N65M5, STP38N65M5, STW38N65M5 datasheets
7. STTH15R06 datasheet
8. STGF35HF60W, STGW35HF60W, STGFW35HF60W datasheets
9. STM32F2 datasheet
10. STM32F4 datasheet
11. UM1052 user manual.
DocID023347 Rev 2 51/52
UM1553 Revision history
52
10 Revision history
Table 9. Document revision history
Date Revision Changes
05-Oct-2012 1 Initial release.
16-Dec-2013 2
Modified: STEVAL-IHM034V1 in STEVAL-IHM034V2 and
STGIPS20K60 in STGIPS20C60.
Updated: Figure 4 on page 10, Figure 8 on page 14 and Figure 9 on
page 15.
UM1553
52/52 DocID023347 Rev 2
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

Products related to this Datasheet

BOARD DEMO STM32F103 STGIPS20C60