STM32F101x(4,6) Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
This is information on a product in full production.
September 2015 DocID15058 Rev 6 1/87
STM32F101x4
STM32F101x6
Low-density access line, ARM®-based 32 bit MCU with
16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M3 CPU
36 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1)
performance at 0 wait state memory
access
Single-cycle multiplication and hardware
division
Memories
16 to 32 Kbytes of Flash memory
4 to 6 Kbytes of SRAM
Clock, reset and supply management
2.0 to 3.6 V application supply and I/Os
POR, PDR and programmable voltage
detector (PVD)
4-to-16 MHz crystal oscillator
Internal 8 MHz factory-trimmed RC
Internal 40 kHz RC
PLL for CPU clock
32 kHz oscillator for RTC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC and backup registers
Debug mode
Serial wire debug (SWD) and JTAG
interfaces
DMA
7-channel DMA controller
Peripherals supported: timers, ADC, SPIs,
I2Cs and USARTs
1 × 12-bit, 1 µs A/D converter (up to 16
channels)
Conversion range: 0 to 3.6 V
Temperature sensor
Up to 51 fast I/O ports
26/37/51 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
Up to 5 timers
Up to two16-bit timers, each with up to 4
IC/OC/PWM or pulse counter
2 watchdog timers (Independent and
Window)
SysTick timer: 24-bit downcounter
Up to 4 communication interfaces
1 x I2C interface (SMBus/PMBus)
–Up to 2 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control)
1 × SPI (18 Mbit/s)
CRC calculation unit, 96-bit unique ID
ECOPACK® packages
Table 1. Device summary
Reference Part number
STM32F101x4
STM32F101C4,
STM32F101R4,
STM32F101T4
STM32F101x6
STM32F101C6,
STM32F101R6,
STM32F101T6
LQFP48
7 x 7 mm
LQFP64
10 x 10 mm VFQFPN36
6 × 6 mm
www.st.com
Contents STM32F101x4, STM32F101x6
2/87 DocID15058 Rev 6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex® -M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.18 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . 19
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID15058 Rev 6 3/87
STM32F101x4, STM32F101x6 Contents
4
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 32
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 32
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 51
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 VFQFPN36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Contents STM32F101x4, STM32F101x6
4/87 DocID15058 Rev 6
6.4 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.2 Evaluating the maximum junction temperature for an application . . . . . 83
7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DocID15058 Rev 6 5/87
STM32F101x4, STM32F101x6 List of Tables
6
List of Tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Low-density STM32F101xx device features and peripheral counts . . . . . . . . . . . . . . . . . . 11
Table 3. STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Low-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 9. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 12. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 14. Maximum current consumption in Sleep mode, code running from Flash
or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 15. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 37
Table 16. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 41
Table 18. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 19. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 20. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 21. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 23. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 24. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 25. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 26. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 27. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 28. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 29. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 30. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 31. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 32. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 34. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 35. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 36. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 37. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 38. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 39. SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 40. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 41. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 42. RAIN max for fADC = 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 43. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 44. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
List of Tables STM32F101x4, STM32F101x6
6/87 DocID15058 Rev 6
Table 45. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 46. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 49. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 50. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DocID15058 Rev 6 7/87
STM32F101x4, STM32F101x6 List of Figures
8
List of Figures
Figure 1. STM32F101xx Low-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F101xx Low-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4. STM32F101xx Low-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. STM32F101xx Low-density access line UFQPFN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 36
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 36
Figure 14. Typical current consumption on VBAT with RTC on versus temperature at different
VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 15. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 17. Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 19. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 22. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 23. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 24. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 25. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 26. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 27. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 28. I2C bus AC waveforms and measurement circuit(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 29. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 30. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 31. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 32. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 34. Power supply and reference decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 35. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 36. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 37. VFQFPN36 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 38. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 75
Figure 39. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
List of Figures STM32F101x4, STM32F101x6
8/87 DocID15058 Rev 6
Figure 40. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 78
Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 43. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 44. LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Cortex Intellxgent Processors by ARM' ARM DWERED a.
DocID15058 Rev 6 9/87
STM32F101x4, STM32F101x6 Introduction
86
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F101x4 and STM32F101x6 low-density access line microcontrollers. For more
details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2:
Full compatibility throughout the family.
The Low-density STM32F101xx datasheet should be read in conjunction with the low-,
medium- and high-density STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex®-M3 core please refer to the Cortex®-M3 Technical Reference
Manual, available from the www.arm.com website.
Description STM32F101x4, STM32F101x6
10/87 DocID15058 Rev 6
2 Description
The STM32F101x4 and STM32F101x6 Low-density access line family incorporates the
high-performance ARM Cortex®-M3 32-bit RISC core operating at a 36 MHz frequency,
high-speed embedded memories (Flash memory of 16 to 32 Kbytes and SRAM of 4 to 6
Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB
buses. All devices offer standard communication interfaces (one I2C, one SPI, and two
USARTs), one 12-bit ADC and up to two general-purpose 16-bit timers.
The STM32F101xx Low-density access line family operates in the –40 to +85 °C
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F101xx Low-density access line family includes devices in three different
packages ranging from 36 pins to 64 pins. Depending on the device chosen, different sets of
peripherals are included, the description below gives an overview of the complete range of
peripherals proposed in this family.
These features make the STM32F101xx Low-density access line microcontroller family
suitable for a wide range of applications such as application control and user interface,
medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial
applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and
HVACs.
DocID15058 Rev 6 11/87
STM32F101x4, STM32F101x6 Description
86
2.1 Device overview
Figure 1 shows the general block diagram of the device family.
Table 2. Low-density STM32F101xx device features and peripheral counts
Peripheral STM32F101Tx STM32F101Cx STM32F101Rx
Flash - Kbytes 16 32 16 32 16 32
SRAM - Kbytes 464646
Timers
General-purpose 222222
Communication
SPI 111111
I2C111111
USART 222222
12-bit synchronized ADC
number of channels
1
10 channels
1
10 channels
1
16 channels
GPIOs 26 37 51
CPU frequency 36 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures Ambient temperature: –40 to +85 °C (see Table 8 )
Junction temperature: –40 to +105 °C (see Table 8)
Packages VFQFPN36 LQFP48 LQFP64
g4:
Description STM32F101x4, STM32F101x6
12/87 DocID15058 Rev 6
Figure 1. STM32F101xx Low-density access line block diagram
1. AF = alternate function on I/O port pin.
2. TA = –40 °C to +85 °C (junction temperature up to 105 °C).
Temp sensor
PA[15:0]
EXTI
W W D G
NVIC
12bit ADC
SWD
16AF
JTDI
JTCK/SWCLK
JTMS/SWDIO
NJTRST
JTDO
NRST
V
DD
= 2 to 3.6 V
80AF
PB[15:0]
PC[15:0]
AHB2
SRAM
WAKEUP
GPIOA
GPIOB
GPIOC
F
max
: 36 MHz
V
SS
GP DMA
TIM2
TIM3
XTAL OSC
4-16 MHz
XTAL 32 kHz
OSC_IN
OSC_OUT
OSC32_OUT
OSC32_IN
PLL &
APB1 : F
max
=24 / 36 MHz
PCLK1
HCLK CLOCK
MANAGT
PCLK 2
VOLT. REG.
3.3V TO 1.8V
POWER
Backu p i nterface
as AF
6 KB
RTC
RC 8 MHz
Cortex M3 CPU
USART1
USART2
7 channels
Back up
reg
SCL,SDA,SMBA
I2C
as AF
PD[3:0] GPIOD
AHB: Fmax=36 MHz
4 Chann els
4 Chann els
FCLK
RC 42 kHz
Stand by
IWDG
@VDD
@VBAT
POR / PDR
SUPPLY
@VDDA
VDDA
VSSA
@VDDA
V
BAT
RX,TX, CTS, RTS,
Smartcard as AF
RX,TX, CTS, RTS,
APB2 : F
max
= 36 MHz
NVIC
SPI
MOSI,MISO,
SCK,NSS as AF
IF
interface
@VDDA
SUPERVISION
PVD
Rst
Int
@VDD
AHB2
APB2 APB 1 AWU TAMPER-RTC
Flash 32 KB
BusMatrix
64 bit
Interface
Ibus
Dbus
pbus
obl
Flash
Trace
controller
System
ai15173c
TRACECLK
TRACED[0:3]
as AS
SW/JTAG
TPIU
Trace/trig
CK, SmartCard as AF
DocID15058 Rev 6 13/87
STM32F101x4, STM32F101x6 Description
86
Figure 2. Clock tree
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is
36 MHz.
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.
HSE OSC
4-16 MHz
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
LSE OSC
32.768 kHz
HSI RC
8 MHz
LSI RC
40 kHz
to Independent Watchdog (IWDG)
PLL
x2, x3, x4
PLLMUL
Legend:
MCO
Clock Output
Main
PLLXTPRE
/2
..., x16 AHB
Prescaler
/1, 2..512
/2 PLLCLK
HSI
HSE
APB1
Prescaler
/1, 2, 4, 8, 16
ADC
Prescaler
/2, 4, 6, 8 ADCCLK
PCLK1
HCLK
PLLCLK
to AHB bus, core,
memory and DMA
to TIM2, TIM3
to ADC
LSE
LSI
HSI
/128
/2
HSI
HSE
peripherals
to APB1
Peripheral Clock
Enable (13 bits)
Enable (3 bits)
Peripheral Clock
APB2
Prescaler
/1, 2, 4, 8, 16
PCLK2
peripherals
to APB2
Peripheral Clock
Enable (11 bits)
36 MHz max
36 MHz max
to RTC
PLLSRC SW
MCO
CSS
to Cortex System timer
/8
Clock
Enable (3 bits)
SYSCLK
RTCCLK
RTCSEL[1:0]
TIMXCLK
IWDGCLK
SYSCLK
FCLK Cortex
free running clock
TIM2, TIM3
If (APB1 prescaler =1) x1
else x2
HSE = high-speed external clock signal
HSI = high-speed internal clock signal
LSI = low-speed internal clock signal
LSE = low-speed external clock signal
ai15174
36 MHz max
36 MHz
max
Description STM32F101x4, STM32F101x6
14/87 DocID15058 Rev 6
2.2 Full compatibility throughout the family
The STM32F101xx is a complete family whose members are fully pin-to-pin, software and
feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are
referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as
medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are
referred to as high-density devices.
Low- and high-density devices are an extension of the STM32F101x8/B devices, they are
specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Low-
density devices feature lower Flash memory and RAM capacities and a timer less. High-
density devices have higher Flash memory and RAM capacities, and additional peripherals
like FSMC and DAC, while remaining fully compatible with the other members of the
STM32F101xx family.
The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE
are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the
user to try different memory densities and providing a greater degree of freedom during the
development cycle.
Moreover, the STM32F101xx performance line family is fully compatible with all existing
STM32F101xx access line and STM32F102xx USB access line devices.
Table 3. STM32F101xx family
Pinout
Memory size
Low-density devices Medium-density devices High-density devices
16 KB
Flash
32 KB
Flash(1)
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the
reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
64 KB
Flash
128 KB
Flash
256 KB
Flash
384 KB
Flash
512 KB
Flash
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM 32 KB
RAM
48 KB
RAM
48 KB
RAM
144 - - - - 5 × USARTs
4 × 16-bit timers, 2 × basic timers
3 × SPIs, 2 × I2Cs, 1 × ADC,
2 × DACs, FSMC (100 and 144 pins)
100 - -
3 × USARTs
3 × 16-bit timers
2 × SPIs, 2 × I2Cs,
1 × ADC
64 2 × USARTs
2 × 16-bit timers
1 × SPI, 1 × I2C
1 × ADC
48 - - -
36 - - -
DocID15058 Rev 6 15/87
STM32F101x4, STM32F101x6 Description
86
2.3 Overview
2.3.1 ARM® Cortex® -M3 core with embedded Flash and SRAM
The ARM® Cortex®-M3 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F101xx Low-density access line family having an embedded ARM core, is
therefore compatible with all ARM tools and software.
2.3.2 Embedded Flash memory
16 or 32 Kbytes of embedded Flash is available for storing programs and data.
2.3.3 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
2.3.4 Embedded SRAM
Up to 6 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states.
2.3.5 Nested vectored interrupt controller (NVIC)
The STM32F101xx Low-density access line embeds a nested vectored interrupt controller
able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of
Cortex®-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
Description STM32F101x4, STM32F101x6
16/87 DocID15058 Rev 6
2.3.6 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 19 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected
to the 16 external interrupt lines.
2.3.7 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and
the APB domains is 36 MHz. See Figure 2 for details on the clock tree.
2.3.8 Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1. For further details please refer to AN2606.
2.3.9 Power supply schemes
VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used).
VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.
2.3.10 Power supply supervisor
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
DocID15058 Rev 6 17/87
STM32F101x4, STM32F101x6 Description
86
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 10: Embedded reset and power control block characteristics for the values of
VPOR/PDR and VPVD.
2.3.11 Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop mode
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high
impedance output.
2.3.12 Low-power modes
The STM32F101xx Low-density access line supports three low-power modes to achieve the
best compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
2.3.13 DMA
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Description STM32F101x4, STM32F101x6
18/87 DocID15058 Rev 6
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general purpose timers
TIMx and ADC.
2.3.14 RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are ten 16-bit
registers used to store 20 bytes of user application data when VDD power is not present.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low power RC oscillator or the high-speed external clock divided by 128. The
internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural crystal deviation. The RTC
features a 32-bit programmable counter for long term measurement using the Compare
register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by
default configured to generate a time base of 1 second from a clock at 32.768 kHz.
2.3.15 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to
reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
2.3.16 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
2.3.17 SysTick timer
This timer is dedicated for OS, but could also be used as a standard down counter. It
features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
2.3.18 General-purpose timers (TIMx)
There areup to two synchronizable general-purpose timers embedded in the STM32F101xx
Low-density access line devices. These timers are based on a 16-bit auto-reload up/down
counter, a 16-bit prescaler and feature 4 independent channels each for input capture,
DocID15058 Rev 6 19/87
STM32F101x4, STM32F101x6 Description
86
output compare, PWM or one pulse mode output. This gives up to 12 input captures / output
compares / PWMs on the largest packages.
The general-purpose timers can work together via the Timer Link feature for synchronization
or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose
timers can be used to generate PWM outputs. They all have independent DMA request
generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
2.3.19 I²C bus
The I²C bus interface can operate in multimaster and slave modes. It can support standard
and fast modes.
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode.
A hardware CRC generation/verification is embedded.
The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.
2.3.20 Universal synchronous/asynchronous receiver transmitter (USART)
The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware
management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816
compliant and have LIN Master/Slave capability.
The USART interfaces can be served by the DMA controller.
2.3.21 Serial peripheral interface (SPI)
The SPI interface is able to communicate up to 18 Mbit/s in slave and master modes in full-
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The SPI interface can be served by the DMA controller.
2.3.22 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-
capable.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
2.3.23 ADC (analog to digital converter)
The 12-bit analog to digital converter has up to 16 external channels and performs
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed
on a selected group of analog inputs.
The ADC can be served by the DMA controller.
Description STM32F101x4, STM32F101x6
20/87 DocID15058 Rev 6
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
2.3.24 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.3.25 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
DocID15058 Rev 6 21/87
STM32F101x4, STM32F101x6 Pinouts and pin description
86
3 Pinouts and pin description
Figure 3. STM32F101xx Low-density access line LQFP64 pinout
Figure 4. STM32F101xx Low-density access line LQFP48 pinout
       
















       











9%$7
3&$17,B7$03
3&26&B,1
3&26&B287
3'26&B,1
3'26&B287
1567
3&
3&
3&
3&
966$
9''$
3$   : . 8 3
3$ 
3$ 
9''B
966B
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$  
3$  
9''B
966B
3$   
3$   
3$   
3$   
3$  
3$  
3&
3&
3&
3&
3%
3%
3%
3%
3$ 
966B
9''B
3$ 
3$ 
3$ 
3$ 
3&
3&
3%
3%
3%
3%
3%
966B
9''B
/4)3
DLE
44 43 42 41 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 21 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
LQFP48
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VDD_2
VSS_2
PA1 3
PA1 2
PA1 1
PA1 0
PA9
PA8
PB15
PB14
PB13
PB12
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
VSSA
VDDA
PA 0 - W K U P
PA 1
PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA 15
PA 14
ai14378d
PC13-TAMPER-RTC
cccccccccccc flflflflflflflflflflflfl 33333333333:
Pinouts and pin description STM32F101x4, STM32F101x6
22/87 DocID15058 Rev 6
Figure 5. STM32F101xx Low-density access line UFQPFN48 pinout
Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout
-36
6$$?
633?
0"
0"
"//4
0"
0"
0"
0"
0"
0!
0!
0! 
0! 
0! 
0! 
0! 
0"
0"
0"
0"
0"
633?
6$$?
6"!4
0#4!-0%224#
0#/3#?).
0#/3#?/54
0$/3#?).
0$/3#?/54
.234
633!
6$$!
0!7+50
0! 
0! 
6$$?
633?
0!
0!
0!
0!
0! 
0! 
0"
0"
0"
0"

1&0.
          













          



DocID15058 Rev 6 23/87
STM32F101x4, STM32F101x6 Pinouts and pin description
86
Table 4. Low-density STM32F101xx pin definitions
Pins
Pin name
Type(1)
I / O level(2)
Main
function(3)
(after reset)
Alternate functions(3)(4)
LQFP48
LQFP64
VFQFPN36
Default Remap
11- V
BAT S- V
BAT --
22- PC13-TAMPER-
RTC(5) I/O - PC13(6) TAMPER-RTC -
3 3 - PC14-OSC32_IN(5) I/O - PC14(6) OSC32_IN -
4 4 - PC15-OSC32_OUT(5) I/O - PC15(6) OSC32_OUT -
5 5 2 OSC_IN I - OSC_IN - -
663 OSC_OUT O - OSC_OUT - -
7 7 4 NRST I/O - NRST - -
- 8 - PC0 I/O - PC0 ADC_IN10 -
- 9 - PC1 I/O - PC1 ADC_IN11 -
- 10 - PC2 I/O - PC2 ADC_IN12 -
- 11 - PC3 I/O - PC3 ADC_IN13 -
8125 V
SSA S- V
SSA --
9136 V
DDA S- V
DDA --
10 14 7 PA0-WKUP I/O - PA0
WKUP/USART2_CTS/
ADC_IN0/
TIM2_CH1_ETR(7)
-
11 15 8 PA1 I/O - PA1 USART2_RTS/
ADC_IN1/TIM2_CH2(7) -
12 16 9 PA2 I/O - PA2 USART2_TX/
ADC_IN2/TIM2_CH3(7) -
13 17 10 PA3 I/O - PA3 USART2_RX/
ADC_IN3/TIM2_CH4(7) -
-18- V
SS_4 S- V
SS_4 --
-19- V
DD_4 S- V
DD_4 --
14 20 11 PA4 I/O - PA4 SPI_NSS(7)/ADC_IN4
USART2_CK -
15 21 12 PA5 I/O - PA5 SPI_SCK(7)/ADC_IN5 -
16 22 13 PA6 I/O - PA6 SPI_MISO(7)/ADC_IN6/
TIM3_CH1(7) -
Pinouts and pin description STM32F101x4, STM32F101x6
24/87 DocID15058 Rev 6
17 23 14 PA7 I/O - PA7 SPI_MOSI(7)/ADC_IN7/
TIM3_CH2(7) -
- 24 - PC4 I/O - PC4 ADC_IN14 -
- 25 - PC5 I/O - PC5 ADC_IN15 -
18 26 15 PB0 I/O - PB0 ADC_IN8/TIM3_CH3(7) -
19 27 16 PB1 I/O - PB1 ADC_IN9/TIM3_CH4(7) -
20 28 17 PB2 I/O FT PB2/BOOT1 - -
21 29 - PB10 I/O FT PB10 - TIM2_CH3
22 30 - PB11 I/O FT PB11 - TIM2_CH4
23 31 18 VSS_1 S- V
SS_1 --
24 32 19 VDD_1 S- V
DD_1 --
25 33 - PB12 I/O FT PB12 - -
26 34 - PB13 I/O FT PB13 - -
27 35 - PB14 I/O FT PB14 - -
28 36 - PB15 I/O FT PB15 - -
- 37 - PC6 I/O FT PC6 - TIM3_CH1
- 38 - PC7 I/O FT PC7 - TIM3_CH2
- 39 - PC8 I/O FT PC8 - TIM3_CH3
- 40 - PC9 I/O FT PC9 - TIM3_CH4
29 41 20 PA8 I/O FT PA8 USART1_CK/MCO -
30 42 21 PA9 I/O FT PA9 USART1_TX(7) -
31 43 22 PA10 I/O FT PA10 USART1_RX(7) -
32 44 23 PA11 I/O FT PA11 USART1_CTS -
33 45 24 PA12 I/O FT PA12 USART1_RTS -
34 46 25 PA13 I/O FT JTMS-
SWDIO -PA13
35 47 26 VSS_2 S- V
SS_2 --
36 48 27 VDD_2 S- V
DD_2 --
Table 4. Low-density STM32F101xx pin definitions (continued)
Pins
Pin name
Type(1)
I / O level(2)
Main
function(3)
(after reset)
Alternate functions(3)(4)
LQFP48
LQFP64
VFQFPN36
Default Remap
DocID15058 Rev 6 25/87
STM32F101x4, STM32F101x6 Pinouts and pin description
86
37 49 28 PA14 I/O FT JTCK/SWCL
K-PA14
38 50 29 PA15 I/O FT JTDI - TIM2_CH1_ETR/
PA15 / SPI_NSS
- 51 - PC10 I/O FT PC10 - -
- 52 - PC11 I/O FT PC11 - -
- 53 - PC12 I/O FT PC12 - -
5 5 2 PD0 I/O FT OSC_IN(8) --
6 6 3 PD1 I/O FT OSC_OUT(8) --
- 54 - PD2 I/O FT PD2 TIM3_ETR -
39 55 30 PB3 I/O FT JTDO -
TIM2_CH2 / PB3
TRACESWO
SPI_SCK
40 56 31 PB4 I/O FT NJTRST - TIM3_CH1 / PB4
SPI_MISO
41 57 32 PB5 I/O - PB5 I2C_SMBA TIM3_CH2 /
SPI_MOSI
42 58 33 PB6 I/O FT PB6 I2C_SCL(7) USART1_TX
43 59 34 PB7 I/O FT PB7 I2C_SDA(7) USART1_RX
44 60 35 BOOT0 I - BOOT0 - -
45 61 - PB8 I/O FT PB8 - I2C_SCL
46 62 - PB9 I/O FT PB9 - I2C_SDA
47 63 36 VSS_3 S- V
SS_3 --
48 64 1 VDD_3 S- V
DD_3 --
1. I = input, O = output, S = supply.
2. FT= 5 V tolerant.
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower
number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be
called SPI, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
Table 4. Low-density STM32F101xx pin definitions (continued)
Pins
Pin name
Type(1)
I / O level(2)
Main
function(3)
(after reset)
Alternate functions(3)(4)
LQFP48
LQFP64
VFQFPN36
Default Remap
Pinouts and pin description STM32F101x4, STM32F101x6
26/87 DocID15058 Rev 6
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
from the STMicroelectronics website: www.st.com.
8. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as
OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For
more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
DocID15058 Rev 6 27/87
STM32F101x4, STM32F101x6 Memory mapping
86
4 Memory mapping
The memory map is shown in Figure 7.
Figure 7. Memory map
APB memory space
DMA
RTC
WWDG
IWDG
USART2
ADC
USART1
SPI
EXTI
RCC
0
1
2
3
4
5
6
7
Peripherals
SRAM
reserved
reserved
Option Bytes
Reserved
0x4000 0000
0x4000 0400
0x4000 0800
0x4000 2800
0x4000 2C00
0x4000 3000
0x4000 3400
0x4000 4400
0x4000 4800
0x4000 5400
0x4000 5800
0x4000 6000
0x4000 6400
0x4000 6800
0x4000 6C00
0x4000 7000
0x4000 7400
0x4001 0000
0x4001 0400
0x4001 0800
0x4001 0C00
0x4001 1000
0x4001 1400
0x4001 1800
0x4001 2400
0x4001 2800
0x4001 2C00
0x4001 3000
0x4001 3400
0x4001 3800
0x4001 3C00
0x4002 0000
0x4002 0400
0x4002 1000
0x4002 1400
0x4002 2000
0x4002 2400
0x4002 3000
0x4002 3400
0x6000 0000
0xE010 0000
0xFFFF FFFF
reserved
reserved
reserved
CRC
reserved
reserved
Flash interface
reserved
reserved
reserved
reserved
reserved
reserved
reserved
Port D
Port C
Port B
Port A
AFIO
PWR
BKP
reserved
reserved
reserved
reserved
I2C
reserved
reserved
reserved
TIM3
TIM2
0xFFFF FFFF
0xE010 0000
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0x1FFF FFFF
0x1FFF F80F
0x1FFF F800
0x1FFF F000
0x0801 FFFF
0x0800 0000
System memory
Flash memory
Cortex-M3 internal
peripherals
ai15175b
0x0000 0000
Aliased to Flash or
system memory
depending on
BOOT pins
Electrical characteristics STM32F101x4, STM32F101x6
28/87 DocID15058 Rev 6
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 8.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 9.
Figure 8. Pin loading conditions Figure 9. Pin input voltage 1 VEAT :p o a 1 s 1 E T» 1 > 1 m 1 4 1 H 4.1 3
DocID15058 Rev 6 29/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
5.1.6 Power supply scheme
Figure 10. Power supply scheme
Caution: In Figure 10, the 4.7 µF capacitor must be connected to VDD3.
Figure 8. Pin loading conditions Figure 9. Pin input voltage
ai14123b
C = 50 pF
STM32F10xxx pin
ai14124b
STM32F10xxx pin
VIN
ai15496
VDD
1/2/3/4/5
Analo g:
RCs, PLL,
...
Power switch
V
BAT
GP I/O s
OUT
IN
Kernel logic
(CPU,
Digital
& Memories)
Backup circuitry
(OSC32K,RTC,
Backup registers)
Wakeup logic
5 × 100 nF
+ 1 × 4.7 µF
1.8-3.6V
Regulator
VSS
1/2/3/4/5
VDDA
VSSA
ADC
Level shifter
IO
Logic
VDD
10 nF
+ 1 µF
VDD
VREF+
VREF-
10 nF
+ 1 µF
VREF
Electrical characteristics STM32F101x4, STM32F101x6
30/87 DocID15058 Rev 6
5.1.7 Current consumption measurement
Figure 11. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics,
Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Table 5. Voltage characteristics
Symbol Ratings Min Max Unit
VDD VSS
External main supply voltage (including
VDDA and VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 6: Current characteristics for the maximum
allowed injected current values.
Input voltage on five volt tolerant pin VSS 0.3 VDD + 4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS|Variations between all the different ground
pins -50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 5.3.11: Absolute
maximum ratings (electrical
sensitivity)
-
DocID15058 Rev 6 31/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
5.3 Operating conditions
5.3.1 General operating conditions
Table 6. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD/VDDA power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
150
mA
IVSS Total current out of VSS ground lines (sink)(1) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN)(2)
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC
characteristics.
Injected current on five volt tolerant pins(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage
values.
-5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage
values.
± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
Table 7. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Table 8. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 36
MHzfPCLK1 Internal APB1 clock frequency - 0 36
fPCLK2 Internal APB2 clock frequency - 0 36
VDD Standard operating voltage - 2 3.6
VVDDA(1)
Analog operating voltage
(ADC not used) Must be the same potential
as VDD(2)
23.6
Analog operating voltage
(ADC used) 2.4 3.6
VBAT Backup operating voltage - 1.8 3.6
Electrical characteristics STM32F101x4, STM32F101x6
32/87 DocID15058 Rev 6
5.3.2 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
5.3.3 Embedded reset and power control block characteristics
The parameters given in Table 10 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
PD
Power dissipation at TA =
85 °C(3)
LQFP64 - 444
mWLQFP48 - 363
VFQFPN36 - 1000
TA Ambient temperature
Maximum power dissipation –40 85
°C Low power dissipation(4) –40 105
TJ Junction temperature range - –40 105
1. When the ADC is used, refer to Table 41: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and operation.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.5: Thermal
characteristics on page 82).
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 6.5: Thermal characteristics on page 82).
Table 8. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Table 9. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time
rate
-
0
µs/V
VDD fall time
rate 20
DocID15058 Rev 6 33/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Table 10. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26
V
PLS[2:0]=000 (falling edge) 2 2.08 2.16
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8
PLS[2:0]=111 (rising edge) 2.76 2.88 3
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9
VPVDhyst(2) PVD hysteresis - - 100 - mV
VPOR/PDR
Power on/power down
reset threshold
Falling edge 1.8(1)
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96
V
Rising edge 1.84 1.92 2.0
VPDRhyst(2) PDR hysteresis - - 40 - mV
tRSTTEMPO(2)
2. Guaranteed by design, not tested in production.
Reset temporization - 1.5 2.5 4.5 ms
Electrical characteristics STM32F101x4, STM32F101x6
34/87 DocID15058 Rev 6
5.3.4 Embedded reference voltage
The parameters given in Table 11 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
5.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 11: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 36 MHz)
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Table 12 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
Table 11. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +85 °C 1.16 1.20 1.24 V
TS_vrefint(1)
1. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading
the internal reference voltage - - 5.1 17.1(2)
2. Guaranteed by design, not tested in production.
µs
VRERINT(2) Internal reference voltage spread
over the temperature range VDD = 3 V ±10 mV - - 10 mV
TCoeff(2) Temperature coefficient - - - 100 ppm/
°C
DocID15058 Rev 6 35/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Table 12. Maximum current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, not tested in production.
Unit
TA = 85 °C
IDD
Supply current
in Run mode
External clock (2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
36 MHz 26
mA
24 MHz 18
16 MHz 13
8 MHz 7
External clock (2), all
peripherals Disabled
36 MHz 19
24 MHz 13
16 MHz 10
8 MHz 6
Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, tested in production at VDD max, fHCLK max.
Unit
TA = 85 °C
IDD
Supply current in
Run mode
External clock (2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
36 MHz 20
mA
24 MHz 14
16 MHz 10
8 MHz 6
External clock(2) all
peripherals disabled
36 MHz 15
24 MHz 10
16 MHz 7
8 MHz 5
Electrical characteristics STM32F101x4, STM32F101x6
36/87 DocID15058 Rev 6
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled
0
5
10
15
20
25
– 45°C 25 °C 70 °C 85 °C
Temperature (°C)
Consumption (mA)
36 MHz
16 MHz
8 MHz
0
2
4
6
8
10
12
14
16
– 45°C 25 °C 70 °C 85 °C
Temperature (°C)
Consumption (mA)
36 MHz
16 MHz
8 MHz
DocID15058 Rev 6 37/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Table 14. Maximum current consumption in Sleep mode, code running from Flash
or RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
Unit
TA = 85 °C
IDD
Supply current in
Sleep mode
External clock(2) all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
36 MHz 14
mA
24 MHz 10
16 MHz 7
8 MHz 4
External clock(2), all
peripherals disabled
36 MHz 5
24 MHz 4.5
16 MHz 4
8 MHz 3
Table 15. Typical and maximum current consumptions in Stop and Standby modes
Symbol Parameter Conditions
Typ(1) Max
Unit
VDD/VBAT
= 2.0 V
VDD/ VBAT
= 2.4 V
VDD/VBAT
= 3.3 V
TA =
85 °C(2)
IDD
Supply
current in
Stop mode
Regulator in Run mode,
Low-speed and high-speed internal
RC oscillators and high-speed
oscillator OFF (no independent
watchdog)
- 21.3 21.7 160
µA
Regulator in Low Power mode,
Low-speed and high-speed internal
RC oscillators and high-speed
oscillator OFF (no independent
watchdog)
- 11.3 11.7 145
Supply
current in
Standby
mode
Low-speed internal RC oscillator
and independent watchdog ON -2.63.4-
Low-speed internal RC oscillator
ON, independent watchdog OFF -2.43.2-
Low-speed internal RC oscillator
and independent watchdog OFF,
low-speed oscillator and RTC OFF
-1.723.2
IDD_VBAT
Backup
domain
supply current
Low-speed oscillator and RTC ON 0.9 1.1 1.4 1.9
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not rested in production.
Electrical characteristics STM32F101x4, STM32F101x6
38/87 DocID15058 Rev 6
Figure 14. Typical current consumption on VBAT with RTC on versus temperature at
different
VBAT values
Figure 15. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at VDD = 3.3 V and 3.6 V
0
0.5
1
1.5
2
2.5
–40 °C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption ( µA )
2 V
2.4 V
3 V
3.6 V
ai17351
0
5
10
15
20
25
30
35
40
45
–45 °C 25 °C 85 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
DocID15058 Rev 6 39/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Figure 16. Typical current consumption in Stop mode with regulator in Low-power
mode versus
temperature at VDD = 3.3 V and 3.6 V
Figure 17. Typical current consumption in Standby mode versus temperature at VDD =
3.3 V and
3.6 V
0
5
10
15
20
25
30
–45 °C 25 °C 85 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
0
0.5
1
1.5
2
2.5
3
3.5
–45 °C 25 °C 85 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
Electrical characteristics STM32F101x4, STM32F101x6
40/87 DocID15058 Rev 6
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 36 MHz)
Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK =
fPCLK2/4
The parameters given in Table 16 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
Table 16. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Typ(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Typ(1)
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Run mode
External
clock(3)
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
36 MHz 17.2 13.8
mA
24 MHz 11.2 8.9
16 MHz 8.1 6.6
8 MHz 5 4.2
4 MHz 3 2.6
2 MHz 2 1.8
1 MHz 1.5 1.4
500 kHz 1.2 1.2
125 kHz 1.05 1
Running on
high speed
internal RC
(HSI), AHB
prescaler
used to
reduce the
frequency
36 MHz 16.5 13.1
24 MHz 10.5 8.2
16 MHz 7.4 5.9
8 MHz 4.3 3.6
4 MHz 2.4 2
2 MHz 1.5 1.3
1 MHz 1 0.9
500 kHz 0.7 0.65
125 kHz 0.5 0.45
DocID15058 Rev 6 41/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed
under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and VDD supply voltage conditions summarized in
Table 5.
Table 17. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol Parameter Conditions fHCLK
Typ(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Typ(1)
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Sleep mode
External clock(3)
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
36 MHz 6.7 3.1
mA
24 MHz 4.8 2.3
16 MHz 3.4 1.8
8 MHz 2 1.2
4 MHz 1.5 1.1
2 MHz 1.25 1
1 MHz 1.1 0.98
500 kHz 1.05 0.96
125 kHz 1 0.95
Running on High
Speed Internal RC
(HSI), AHB
prescaler used to
reduce the
frequency
36 MHz 6.1 2.5
24 MHz 4.2 1.7
16 MHz 2.8 1.2
8 MHz 1.4 0.55
4 MHz 0.9 0.5
2 MHz 0.7 0.45
1 MHz 0.55 0.42
500 kHz 0.48 0.4
125 kHz 0.4 0.38
Electrical characteristics STM32F101x4, STM32F101x6
42/87 DocID15058 Rev 6
5.3.6 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 19 result from tests performed using an high-speed
external clock source, and under the ambient temperature and supply voltage conditions
summarized in Table 8.
Table 18. Peripheral current consumption
Peripheral Typical consumption at 25 °C Unit
AHB (up to 36 MHz)
DMA1 15.97
μA/MHz
CRC 1.67
BusMatrix(1)
1. The BusMatrix is automatically active when at least one master is ON. (CPU, DMA1).
8.33
APB1 (up to 18 MHz)
APB1-Bridge 7.22
TIM2 33.33
TIM3 33.61
USART2 12.78
I2C1 10.83
WWDG 3.33
PWR 1.94
BKP 2.78
IWDG 1.39
APB2 (up to 36 MHz)
APB2-Bridge 3.33
GPIO A 7.50
GPIO B 6.81
GPIO C 7.22
GPIO D 6.94
SPI1 4.86
USART1 12.78
ADC1(2)
2. Specific conditions for measuring ADC current consumption: fHCLK = 28 MHz, fAPB1 = fHCLK, fAPB2 = fHCLK,
fADCCLK = fAPB2 / 2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of analog
part equal to 0.7 mA must be added.
15.54
DocID15058 Rev 6 43/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Low-speed external user clock generated from an external source
The characteristics given in Table 20 result from tests performed using an low-speed
external clock source, and under the ambient temperature and supply voltage conditions
summarized in Table 8.
Table 19. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency(1)
1. Guaranteed by design, not tested in production.
-
1825MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1) 5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 20. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User external clock source
frequency(1)
1. Guaranteed by design, not tested in production.
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage VSS -0.3V
DD
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
Electrical characteristics STM32F101x4, STM32F101x6
44/87 DocID15058 Rev 6
Figure 18. High-speed external clock source AC timing diagram
Figure 19. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 21. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
ai14127b
OSC _I N
External
STM32F10xxx
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90%
10%
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
ai14140c
OSC32_IN
External
STM32F10xxx
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
DocID15058 Rev 6 45/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 20. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 22. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
Table 21. HSE 4-16 MHz oscillator characteristics(1)(2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 8 16 MHz
RFFeedback resistor - - 200 - kΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
RS = 30 Ω -30-pF
i2HSE driving current VDD = 3.3 V, VIN = VSS
with 30 pF load --1mA
gmOscillator transconductance Startup 25 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
ai14128b
OSC_OU T
OSC_IN fHSE
CL1
RF
STM32F10xxx
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT(1)
CL2
Electrical characteristics STM32F101x4, STM32F101x6
46/87 DocID15058 Rev 6
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2,
are usually the same size. The crystal manufacturer typically specifies a load capacitance
which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray
where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it
is between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL
7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF is chosen,
then CL1 = CL2 = 8 pF.
Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (2)
Symbol Parameter Conditions -Min Typ Max Unit
RFFeedback resistor - - - 5 - MΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)
RS = 30 KΩ---15pF
I2LSE driving current VDD = 3.3 V
VIN = VSS
---1.4µA
gmOscillator transconductance - - 5 - - µA/V
tSU(LSE)(3) Startup time VDD is
stabilized
TA = 50 °C - 1.5 -
s
TA = 25 °C - 2.5 -
TA = 10 °C - 4 -
TA = 0 °C - 6 -
TA = -10 °C - 10 -
TA = -20 °C - 17 -
TA = -30 °C - 32 -
TA = -40 °C - 60 -
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
DocID15058 Rev 6 47/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Figure 21. Typical application with a 32.768 kHz crystal
5.3.7 Internal clock source characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
High-speed internal (HSI) RC oscillator
ai14129b
OSC32_OU T
OSC32_IN fLSE
CL1
RF
STM32F10xxx
32.768 KHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2
Table 23. HSI oscillator characteristics(1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
DuCy(HSI) Duty cycle - 45 - 55 %
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from
the ST website www.st.com.
--1
(3)
3. Guaranteed by design, not tested in production.
%
Factory-
calibrated
(4) (5)
4. Based on characterization, not tested in production.
5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified
range.
TA = –40 to 105 °C –2 - 2.5 %
TA = –10 to 85 °C –1.5 - 2.2 %
TA = 0 to 70 °C –1.3 - 2 %
TA = 25 °C –1.1 - 1.8 %
tsu(HSI)(4) HSI oscillator
startup time -1-2µs
IDD(HSI)(4) HSI oscillator power
consumption - - 80 100 µA
Electrical characteristics STM32F101x4, STM32F101x6
48/87 DocID15058 Rev 6
Low-speed internal (LSI) RC oscillator
Wakeup time from low-power mode
The wakeup times given in Table 25 are measured on a wakeup phase with an 8-MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under the ambient temperature and VDD supply
voltage conditions summarized in Table 8.
5.3.8 PLL characteristics
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 8.
Table 24. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 85 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Based on characterization, not tested in production.
Frequency 30 40 60 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.65 1.2 µA
Table 25. Low-power mode wakeup timings
Symbol Parameter Typ Unit
tWUSLEEP(1)
1. The wakeup times are measured from the wakeup event to the point at which the user application code
reads the first instruction.
Wakeup from Sleep mode 1.8 µs
tWUSTOP(1) Wakeup from Stop mode (regulator in run mode) 3.6
µs
Wakeup from Stop mode (regulator in low-power mode) 5.4
tWUSTDBY(1) Wakeup from Standby mode 50 µs
Table 26. PLL characteristics
Symbol Parameter
Value
Unit
Min(1) Typ Max(1)
fPLL_IN
PLL input clock(2) 18.0
25 MHz
PLL input clock duty cycle 40 - 60 %
fPLL_OUT PLL multiplier output clock 16 - 36 MHz
DocID15058 Rev 6 49/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
5.3.9 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 85 °C unless otherwise specified.
5.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
tLOCK PLL lock time - - 200 µs
Jitter Cycle-to-cycle jitter - - 300 ps
1. Based on device characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT
.
Table 26. PLL characteristics (continued)
Symbol Parameter
Value
Unit
Min(1) Typ Max(1)
Table 27. Flash memory characteristics
Symbol Parameter Conditions Min(1)
1. Guaranteed by design, not tested in production.
Typ Max(1) Unit
tprog 16-bit programming time TA = –40 to +85 °C 40 52.5 70 µs
tERASE Page (1 KB) erase time TA = 40 to +85 °C 20 - 40 ms
tME Mass erase time TA = –40 to +85 °C 20 - 40 ms
IDD Supply current
Read mode
fHCLK = 36 MHz with 1 wait
state, VDD = 3.3 V
--20mA
Write / Erase modes
fHCLK = 36 MHz, VDD = 3.3 V --5mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V - - 50 µA
Vprog Programming voltage - 2 - 3.6 V
Electrical characteristics STM32F101x4, STM32F101x6
50/87 DocID15058 Rev 6
The test results are given in Table 28. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and pre
qualification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second. To complete these trials, ESD stress can be applied directly on the device, over the
range of specification values. When unexpected behavior is detected, the software can be
hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC61967-2 standard which specifies the test board and the pin loading.
Table 28. EMS characteristics
Symbol Parameter Conditions Level/Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK= 36 MHz
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS pins
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 36 MHz
conforms to IEC 61000-4-4
4A
Table 29. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/36 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C,
compliant with
IEC 61967-2
0.1 MHz to 30 MHz 7
dBµV30 MHz to 130 MHz 8
130 MHz to 1GHz 13
EMI Level 3.5 -
DocID15058 Rev 6 51/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
5.3.11 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78 IC latch-up standard.
5.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
Table 30. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Based on characterization results, not tested in production.
Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = +25 °C
conforming to JESD22-A114 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device model)
TA = +25 °C
conforming to
ANSI/ESD STM5.3.1
II 500
Table 31. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +85 °C conforming to JESD78A II level A
Electrical characteristics STM32F101x4, STM32F101x6
52/87 DocID15058 Rev 6
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 32
Table 32. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13 -0 +0
mA
Injected current on all FT pins -5 +0
Injected current on any other pin -5 +5
DocID15058 Rev 6 53/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
5.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 33 are derived from tests
performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL
compliant.
Table 33. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Standard IO input low
level voltage
-
-0.3 - 0.28*(VDD-2 V)+0.8 V(1)
V
IO FT(2) input low
level voltage -0.3 - 0.32*(VDD-2 V)+0.75 V(1)
VIH
Standard IO input high
level voltage - 0.41*(VDD-2 V)+1.3 V(1) -V
DD+0.3
IO FT(2) input high
level voltage
VDD > 2 V
0.42*(VDD-2 V)+1 V(1) -
5.5
VDD 2 V 5.2
Vhys
Standard IO Schmitt
trigger voltage
hysteresis(3)
-200--
mV
IO FT Schmitt trigger
voltage hysteresis(3) -5% V
DD(4) --
Ilkg
Input leakage current
(5)
VSS VIN VDD
Standard I/Os --±1
µA
VIN = 5 V
I/O FT -- 3
RPU
Weak pull-up
equivalent resistor(6) VIN = VSS 30 40 50
kΩ
RPD
Weak pull-down
equivalent resistor(6) VIN = VDD 30 40 50
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation.
2. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
disabled.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
4. With a minimum of 100 mV.
5. Leakage could be higher than max. if negative current is injected on adjacent pins.
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
Electrical characteristics STM32F101x4, STM32F101x6
54/87 DocID15058 Rev 6
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 22 and Figure 23 for standard I/Os, and
in Figure 24 and Figure 25 for 5 V tolerant I/Os.
Figure 22. Standard I/O input characteristics - CMOS port
Figure 23. Standard I/O input characteristics - TTL port
AIC
6$$6





#-/3STANDARDREQUIREMENT6)(6$$

6)(6),6





 
7),MAX
7)(MIN
4ESTEDINPRODUCTION
6
$$
6
),
#-/3STANDARDREQUIREMENT6),6$$
6)(6$$
4ESTEDINPRODUCTION
"ASEDONDESIGNSIMULATIONS
"ASEDONDESIGNSIMULATIONS
!REANOT
DETERMINED
AIB

6)(6),6




44,REQUIREMENTS 6)( 6
6)(6$$
6),6$$
44,REQUIREMENTS 6),
6


6$$6
7
),MAX
7
)(MIN
"ASEDONDESIGNSIMULATIONS
"ASEDONDESIGNSIMULATIONS
!REANOT
DETERMINED
U/wWW/fl/ ,
DocID15058 Rev 6 55/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Figure 24. 5 V tolerant I/O input characteristics - CMOS port
Figure 25. 5 V tolerant I/O input characteristics - TTL port
6$$


#-/3STANDARDREQUIREMENTS6)(6 $$
#-/3STANDARDREQUIRMENT6 ), 6$$











6)(6),6
6$$6
AIC
6)(6$$
6),6$$
"ASEDONDESIGNSIMULATIONS
"ASEDONDESIGNSIMULATIONS
4ESTEDINPRODUCTION
4ESTEDINPRODUCTION
!REANOT
DETERMINED


 


44,REQUIREMENT6)(6
44,REQUIREMENTS6),6
6)(6),6
6$$6
7),MAX
7)(MIN
AIB
6)(6$$
6),6$$
"ASEDONDESIGNSIMULATIONS
"ASEDONDESIGNSIMULATIONS
!REANOT
DETERMINED
Electrical characteristics STM32F101x4, STM32F101x6
56/87 DocID15058 Rev 6
Output driving current
The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 6).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 6).
Output voltage levels
Unless otherwise specified, the parameters given in Table 34 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 8. All I/Os are CMOS and TTL compliant.
Table 34. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output Low level voltage for an I/O pin
when 8 pins are sunk at the same time CMOS port(2),,
IIO = +8 mA,
2.7 V < VDD < 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output High level voltage for an I/O pin
when 8 pins are sourced at the same time VDD–0.4 -
VOL(1) Output low level voltage for an I/O pin
when 8 pins are sunk at the same time TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin
when 8 pins are sourced at the same time 2.4 -
VOL(1) Output low level voltage for an I/O pin
when 8 pins are sunk at the same time IIO = +20 mA(4)
2.7 V < VDD < 3.6 V
4. Based on characterization data, not tested in production.
-1.3
V
VOH (3) Output high level voltage for an I/O pin
when 8 pins are sourced at the same time VDD–1.3 -
VOL(1) Output low level voltage for an I/O pin
when 8 pins are sunk at the same time IIO = +6 mA(4)
2 V < VDD < 2.7 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin
when 8 pins are sourced at the same time VDD–0.4 -
DocID15058 Rev 6 57/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 26 and
Table 35, respectively.
Unless otherwise specified, the parameters given in Table 35 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 8.
Table 35. I/O AC characteristics(1)
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
MODEx
[1:0] bit
value(1)
Symbol Parameter Conditions Max Unit
10
fmax(IO)out Maximum frequency(2)
2. The maximum frequency is defined in Figure 26.
CL = 50 pF, VDD = 2 V to 3.6 V 2 MHz
tf(IO)out
Output high to low level fall
time
CL = 50 pF, VDD = 2 V to 3.6 V
125(3)
3. Guaranteed by design, not tested in production.
ns
tr(IO)out
Output low to high level rise
time 125(3)
01
fmax(IO)out Maximum frequency(2) CL= 50 pF, VDD = 2 V to 3.6 V 10 MHz
tf(IO)out
Output high to low level fall
time
CL= 50 pF, VDD = 2 V to 3.6 V
25(3)
ns
tr(IO)out
Output low to high level rise
time 25(3)
11
Fmax(IO)out Maximum Frequency(2)
CL= 30 pF, VDD = 2.7 V to 3.6 V 50 MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz
tf(IO)out
Output high to low level fall
time
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
tr(IO)out
Output low to high level rise
time
CL = 30 pF, VDD = 2.7 V to 3.6
V5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10ns
Electrical characteristics STM32F101x4, STM32F101x6
58/87 DocID15058 Rev 6
Figure 26. I/O AC characteristics definition
5.3.14 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 33).
Unless otherwise specified, the parameters given in Table 36 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 8.
AI



TR)/OUT
/54054
%84%2.!,
/.P&
-AXIMUMFREQUENCYISACHIEVEDIFTRTFa4ANDIFTHEDUTYCYCLEIS



WHENLOADEDBYP&
4
TF)/OUT
Table 36. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design, not tested in production.
NRST Input low level voltage - 0.5 - 0.8
V
VIH(NRST)(1) NRST Input high level voltage - 2 - VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis - - 200 - mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)(1) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(1) NRST Input not filtered pulse - 300 - - ns
VDD
DocID15058 Rev 6 59/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Figure 27. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 36. Otherwise the reset will not be taken into account by the device.
ai14132d
STM32F10xxx
RPU
NRST
(2)
VDD
Filter
Internal Reset
0.1 µF
External
reset circuit(1)
Electrical characteristics STM32F101x4, STM32F101x6
60/87 DocID15058 Rev 6
5.3.15 TIM timer characteristics
The parameters given in Table 37 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
5.3.16 Communications interfaces
I2C interface characteristics
The STM32F101xx Low-density access line I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 38. Refer also to Section 5.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 37. TIMx(1) characteristics
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
-1-t
TIMxCLK
fTIMxCLK = 36 MHz 27.8 - ns
fEXT
Timer external clock
frequency on CH1 to CH4
0f
TIMxCLK/2 MHz
fTIMxCLK = 36 MHz 0 18 MHz
ResTIM Timer resolution - - 16 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
- 1 65536 tTIMxCLK
fTIMxCLK = 36 MHz 0.0278 1820 µs
tMAX_COUNT Maximum possible count
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 36 MHz - 119.2 s
DocID15058 Rev 6 61/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Table 38. I2C characteristics
Symbol Parameter
Standard mode I2C(1)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C
fast mode clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 - 0(3)
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
900(4)
4. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 20+0.1Cb300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition setup
time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
Stop to Start condition time (bus
free) 4.7 - 1.3 - µs
CbCapacitive load for each bus line - 400 - 400 pF
DJZC DDJZ fPCLK1
Electrical characteristics STM32F101x4, STM32F101x6
62/87 DocID15058 Rev 6
Figure 28. I2C bus AC waveforms and measurement circuit(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
2. Rs = Series protection resistors, Rp = Pull-up resistors, VDD_I2C = I2C bus supply.
Table 39. SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x801E
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
AIE
3TART
3$ !
)£#BUS
6$$?)#
6$$?)#
34-&X
3$!
3#,
TF3$! TR3$!
3#,
TH34!
TW3#,(
TW3#,,
TSU3$!
TR3#, TF3#,
TH3$!
3TARTREPEATED
3TART
TSU34!
TSU34/
3TOP TSU34/34!
5S 5S 5V
5V
DocID15058 Rev 6 63/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 40 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 8.
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 0 18
MHz
Slave mode 0 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 30 pF 8
ns
tsu(NSS)(1)
1. Based on characterization, not tested in production.
NSS setup time Slave mode 4 tPCLK -
th(NSS)(1) NSS hold time Slave mode 73 -
tw(SCKH)(1)
tw(SCKL)(1) SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 50 60
tsu(MI) (1) Data input setup time
Master mode SPI 1 -
tsu(SI)(1) Data input setup time
Slave mode -1-
th(MI) (1) Data input hold time
Master mode SPI 1 -
th(SI)(1) Data input hold time
Slave mode - 3-
ta(SO)(1)(2)
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
Data output access time
Slave mode, fPCLK = 36 MHz,
presc = 4 055
Slave mode, fPCLK = 24 MHz 0 4 tPCLK
tdis(SO)(1)(3)
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Data output disable time Slave mode 10
tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25
tv(MO)(1) Data output valid time Master mode (after enable
edge) - 3
th(SO)(1)
Data output hold time
Slave mode (after enable edge) 25 -
th(MO)(1) Master mode (after enable
edge) 4-
Electrical characteristics STM32F101x4, STM32F101x6
64/87 DocID15058 Rev 6
Figure 29. SPI timing diagram - slave mode and CPHA = 0
Figure 30. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14134c
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT PUT
CPHA= 0
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
DocID15058 Rev 6 65/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Figure 31. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14136
SCK Input
CPHA= 0
MOSI
OUTUT
MISO
INP UT
CPHA= 0
MS BIN
M SB OUT
BI T6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
Electrical characteristics STM32F101x4, STM32F101x6
66/87 DocID15058 Rev 6
5.3.17 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 41 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 8.
Note: It is recommended to perform a calibration after each power-up.
Table 41. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply - 2.4 - 3.6 V
fADC ADC clock frequency - 0.6 - 14 MHz
fS(1) Sampling rate - 0.043 - 1 MHz
fTRIG(1) External trigger frequency
fADC = 14 MHz - - 823 kHz
---171/f
ADC
VAIN Conversion voltage range(2) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(1) External input impedance See Equation 1 and
Table 42 for details --50κΩ
RADC(1) Sampling switch resistance - - - 1 κΩ
CADC(1) Internal sample and hold
capacitor ---8pF
tCAL(1) Calibration time
fADC = 14 MHz 5.9 µs
-831/f
ADC
tlat(1) Injection trigger conversion
latency
fADC = 14 MHz - - 0.214 µs
---3
(3) 1/fADC
tlatr(1) Regular trigger conversion
latency
fADC = 14 MHz - - 0.143 µs
---2
(3) 1/fADC
tS(1) Sampling time fADC = 14 MHz
0.107 - 17.1 µs
1.5 - 239.5 1/fADC
tSTAB(1) Stabilization time - 14 1/fADC
tCONV(1) Total conversion time
(including sampling time)
fADC = 14 MHz 1 - 18 µs
-14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. Guaranteed by design, not tested in production.
2. VREF+ is internally connected to VDDA and VREF- is be internally connected to VSSA.
3. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 41.
AIN ADC
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
DocID15058 Rev 6 67/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Equation 1: RAIN max formula:
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 42. RAIN max for fADC = 14 MHz(1)
1. Guaranteed by design, not tested in production.
Ts (cycles) tS (µs) RAIN max (kΩ)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
Table 43. ADC accuracy - limited test conditions(1) (2)
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should
be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially
inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not
affect the ADC accuracy.
Symbol Parameter Test conditions Typ Max(3)
3. Based on characterization, not tested in production.
Unit
ET Total unadjusted error fPCLK2 = 28 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
±1.3 ±2
LSB
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
Electrical characteristics STM32F101x4, STM32F101x6
68/87 DocID15058 Rev 6
Figure 32. ADC accuracy characteristics
Table 44. ADC accuracy(1) (2) (3)
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to
standard analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not
affect the ADC accuracy.
Symbol Parameter Test conditions Typ Max(4)
4. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 28 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
EO
EG
1LSB
IDEAL
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
ET=Total unadjusted error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset error: deviation between the first actual
transition and the first ideal one.
EG=Gain er ror: deviation between the last ideal
transition and the last actual one.
ED=Differential linearity error: maximum deviation
between actual steps and the ideal one.
EL=Integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
ai15497
VDDA
4096
[1LSBIDEAL =
«HF:
DocID15058 Rev 6 69/87
STM32F101x4, STM32F101x6 Electrical characteristics
86
Figure 33. Typical connection diagram using the ADC
1. Refer to Table 41 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 34. The 10 nF capacitors
should be ceramic (good quality). They should be placed them as close as possible to the
chip.
Figure 34. Power supply and reference decoupling
ai14139d
STM32F10xxx
VDD
AINx
IL±1 µA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1)
C
ADC(1)
12-bit
converter
Sample and hold ADC
converter
V
DDA
STM32F10xx4/6
1 µF // 10 nF
V
SSA
ai15498
Electrical characteristics STM32F101x4, STM32F101x6
70/87 DocID15058 Rev 6
5.3.18 Temperature sensor characteristics
Table 45. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by characterization, not tested in production.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25(1) Voltage at 25°C 1.34 1.43 1.52 V
tSTART(2)
2. Guaranteed by design, not tested in production.
Startup time 4 - 10 µs
TS_temp(3)(2)
3. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the
temperature - - 17.1 µs
DocID15058 Rev 6 71/87
STM32F101x4, STM32F101x6 Package characteristics
86
6 Package characteristics
6.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.2 VFQFPN36 package information
Figure 35. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
quad flat package outline
1. Drawing is not to scale.
:2?-%?6
6HDWLQJSODQH
GGG &
&
$ $
$$
3LQ,'
5 
(
E







'
(
'
H
/
/
.
Package characteristics STM32F101x4, STM32F101x6
72/87 DocID15058 Rev 6
Table 46. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
quad flat package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 - 0.020 0.050 - 0.0008 0.0020
A2 - 0.650 1.000 - 0.0256 0.0394
A3 - 0.200 - - 0.0079 -
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 5.875 6.000 6.125 0.2313 0.2362 0.2411
D2 1.750 3.700 4.250 0.0689 0.1457 0.1673
E 5.875 6.000 6.125 0.2313 0.2362 0.2411
E2 1.750 3.700 4.250 0.0689 0.1457 0.1673
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.350 0.550 0.750 0.0138 0.0217 0.0295
K 0.250 - - 0.0098 - -
ddd - - 0.080 - - 0.0031
CE. Em SE EDJDUDDDH + E WSW g DDJDUDDDD
DocID15058 Rev 6 73/87
STM32F101x4, STM32F101x6 Package characteristics
86
Figure 36. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
quad flat package recommended footprint
1. Dimensions are expressed in millimeters.
:2?&0?6

















Package characteristics STM32F101x4, STM32F101x6
74/87 DocID15058 Rev 6
Device Marking for VFQFPN36
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 37. VFQFPN36 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQLGHQWLILHU
7$
<::
$
670)
HHMMMMMWM E i g E 1 :
DocID15058 Rev 6 75/87
STM32F101x4, STM32F101x6 Package characteristics
86
6.3 LQFP64 package information
Figure 38. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
Table 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
’ ,4444444,flflflflflflflflflflfl HUD UH flflflfl flflflflflflflfl flflflfl HHHHHHHH 4,: UUUUHUUUHUHUUHU ‘in" Pi fl
Package characteristics STM32F101x4, STM32F101x6
76/87 DocID15058 Rev 6
Figure 39. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
/\ \,/
DocID15058 Rev 6 77/87
STM32F101x4, STM32F101x6 Package characteristics
86
Device Marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 40. LQFP64 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
$
<::
5HYLVLRQFRGH
'DWHFRGH
3LQLGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
57$
aNe mmmmmmm m WWWW J L_J mmmmmimmwmw i,i+i,i i WWWWW
Package characteristics STM32F101x4, STM32F101x6
78/87 DocID15058 Rev 6
6.4 LQFP48 package information
Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
DocID15058 Rev 6 79/87
STM32F101x4, STM32F101x6 Package characteristics
86
Table 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package characteristics STM32F101x4, STM32F101x6
80/87 DocID15058 Rev 6
Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
  













AID

JEOD/
DocID15058 Rev 6 81/87
STM32F101x4, STM32F101x6 Package characteristics
86
Device Marking for LQFP48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 43. LQFP48 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
< ::
5
3URGXFW,GHQWLILFDWLRQ 
$GGLWLRQDO,QIRUPDWLRQ
3LQLGHQWLILHU
'DWHFRGH
&7$
670)
Package characteristics STM32F101x4, STM32F101x6
82/87 DocID15058 Rev 6
6.5 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 8: General operating conditions on page 31.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
6.5.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 49. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP 64 - 10 x 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
LQFP 48 - 7 x 7 mm / 0.5 mm pitch 55
Thermal resistance junction-ambient
UFQFPN 48 - 6 x 6 mm / 0.5 mm pitch 32
Thermal resistance junction-ambient
VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch 18
DocID15058 Rev 6 83/87
STM32F101x4, STM32F101x6 Package characteristics
86
6.5.2 Evaluating the maximum junction temperature for an application
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 50: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature. Here, only
temperature range 6 is available (–40 to 85 °C).
The following example shows how to calculate the temperature range needed for a given
application, making it possible to check whether the required temperature range is
compatible with the STM32F101xx junction temperature range.
Example: high-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
mode at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 49 TJmax is calculated as follows:
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C
This is within the junction temperature range of the STM32F101xx (–40 < TJ < 105 °C).
Figure 44. LQFP64 PD max vs. TA
0
100
200
300
400
500
600
700
65 75 85 95 105 115
TAC)
PD (mW)
Suffix 6
Q;
Ordering information scheme STM32F101x4, STM32F101x6
84/87 DocID15058 Rev 6
7 Ordering information scheme
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact the nearest ST sales office.
Table 50. Ordering information scheme
Example: STM32 F 101 C 4 T 6 A xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
101 = access line
Pin count
T = 36 pins
C = 48 pins
R = 64 pins
Flash memory size
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
Package
T = LQFP
U = VFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
Internal code
“A” or blank(1)
1. For STM32F101x6 devices with a blank internal code, please refer to the STM32F103x6/8/B datasheet
available from the ST website: www.st.com.
Options
xxx = programmed parts
TR = tape and real
DocID15058 Rev 6 85/87
STM32F101x4, STM32F101x6 Revision history
86
8 Revision history
Table 51. Document revision history
Date Revision Changes
23-Sep-2008 1 Initial release.
07-Apr-2009 2
I/O information clarified on page 1. Figure 7: Memory map modified.
In Table 4: Low-density STM32F101xx pin definitions: PB4, PB13, PB14,
PB15, PB3/TRACESWO moved from Default column to Remap column.
VREF- is not available in the offered packages: Figure 1: STM32F101xx
Low-density access line block diagram, Figure 10: Power supply scheme
and Figure 34: Power supply and reference decoupling updated,
Figure 30: Power supply and reference decoupling (VREF+ not
connected to VDDA) removed.
Note modified in Table 12: Maximum current consumption in Run mode,
code with data processing running from Flash and Table 14: Maximum
current consumption in Sleep mode, code running from Flash or RAM.
Figure 15, Figure 16 and Figure 17 show typical curves.
ACCHSI max values modified in Table 23: HSI oscillator characteristics.
Small text changes.
24-Sep-2009 3
Note 5 updated and Note 4 added in Table 4: Low-density STM32F101xx
pin definitions.
VRERINT and TCoeff added to Table 11: Embedded internal reference
voltage. Typical IDD_VBATvalue added in Table 15: Typical and maximum
current consumptions in Stop and Standby modes. Figure 14: Typical
current consumption on VBAT with RTC on versus temperature at
different VBAT values added.
fHSE_ext min modified in Table 19: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 21: HSE 4-16 MHz oscillator
characteristics and Table 22: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables.
Note 1 modified below Figure 20: Typical application with an 8 MHz
crystal.
Table 23: HSI oscillator characteristics modified. Conditions removed from
Table 25: Low-power mode wakeup timings.
Figure 27: Recommended NRST pin protection modified.
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to
IEC 61967-2 in Section 5.3.10: EMC characteristics on page 49.
Jitter added to Table 26: PLL characteristics.
CADC and RAIN parameters modified in Table 41: ADC characteristics.
RAIN max values modified in Table 42: RAIN max for fADC = 14 MHz.
Small text changes.
20-May-2010 4
Added VFQFPN48 package.
Updated note 2 below Table 38: I2C characteristics
Updated Figure 28: I2C bus AC waveforms and measurement circuit(1)
Updated Figure 27: Recommended NRST pin protection
Updated Section 5.3.12: I/O current injection characteristics
Revision history STM32F101x4, STM32F101x6
86/87 DocID15058 Rev 6
19-Apr-2011 5
Updated footnotes below Table 5: Voltage characteristics on page 30 and
Table 6: Current characteristics on page 31
Updated tw min in Table 19: High-speed external user clock
characteristics on page 43
Updated startup time in Table 22: LSE oscillator characteristics (fLSE =
32.768 kHz) on page 46
Added Section 5.3.12: I/O current injection characteristics
Updated Section 5.3.13: I/O port characteristics
25-Sep-2015 6
Updated:
All GPIOs are high current...’ in Section 2.3.22: GPIOs (general-
purpose inputs/outputs)
first sentence in Output driving current
Table 2: Low-density STM32F101xx device features and peripheral
counts, Table 4: Low-density STM32F101xx pin definitions,
Table 6: Current characteristics
Table 8: General operating conditions
Table 18: Peripheral current consumption
notes in Table 38: I2C characteristics
note 2. in Table 44: ADC accuracy
title of Table 39: SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V)
reference for ‘VESD(CDM)’ in Table 30: ESD absolute maximum ratings
Table 50: Ordering information scheme,
Table 49: Package thermal characteristics,
Figure 28: I2C bus AC waveforms and measurement circuit(1)
Added
note 5. in Table 23: HSI oscillator characteristics
Figure 37: VFQFPN36 marking example (package top view)
Figure 40: LQFP64 marking example (package top view)
Figure 43: LQFP48 marking example (package top view)
Corrected
Corrected ‘tf(IO)out’ in Figure 26: I/O AC characteristics definition
Sigma letter in Section 5.1.1: Minimum and maximum values
Removed
UFDFPN48 package
First sentence in Section 5.3.16: Communications interfaces
Table 51. Document revision history (continued)
Date Revision Changes
DocID15058 Rev 6 87/87
STM32F101x4, STM32F101x6
87
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved

Products related to this Datasheet

IC MCU 32BIT 32KB FLASH 48LQFP
IC MCU 32BIT 32KB FLASH 48LQFP
IC MCU 32BIT 16KB FLASH 48LQFP
IC MCU 32BIT 32KB FLASH 64LQFP
IC MCU 32BIT 32KB FLASH 36VFQFPN
IC MCU 32BIT 32KB FLASH 48LQFP
IC MCU 32BIT 32KB FLASH 64LQFP
IC MCU 32BIT 32KB FLASH 36VFQFPN
IC MCU 32BIT 16KB FLASH 64LQFP
IC MCU 32BIT 16KB FLASH 36VFQFPN
IC MCU 32BIT 32KB FLASH 64LQFP
IC MCU 32BIT 32KB FLASH 36VFQFPN
IC MCU 32BIT 16KB FLASH 36VFQFPN
IC MCU 32BIT 32KB FLASH 48LQFP
IC MCU 32BIT 32KB FLASH 48LQFP