L298 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
n a * m“ nun lnb In: En! sans: A sans: a 34ml! a“ is:
L298
Jenuary 2000
DUAL FULL-BRIDGE DRIVER
Multiwatt15
ORDERING NUMBERS : L298N (Multiwatt Vert.)
L298HN (Multiwatt Horiz.)
L298P (PowerSO20)
BLOCK DIAGRAM
.OPERATING SUPPLY VOLTAGE UP TO 46 V
.TOTAL DC CURRENT UP TO 4 A
.LOW SATURATION VOLTAGE
.OVERTEMPERATURE PROTECTION
.LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V
(HIGH NOISE IMMUNITY)
DESCRIPTION
The L298 is an integrated monolithic circuit in a 15-
lead Multiwatt and PowerSO20 packages. It is a
high voltage, high current dual full-bridge driver de-
signed to accept standard TTL logic levels and drive
inductive loads such as relays, solenoids, DC and
stepping motors. Two enable inputs are provided to
enable or disable the device independently of the in-
put signals. The emitters of the lower transistors of
each bridge are connected together and the corre-
sponding external terminal can be used for the con-
nection of an external sensing resistor. An additional
supply input is provided so that the logic works at a
lower voltage.
PowerSO20
®
1/13
PIN CONNECTIONS (top view)
GND
Input 2 VSS
N.C.
Out 1
V
S
Out 2
Input 1
Enable A
Sense A
GND 10
8
9
7
6
5
4
3
2
13
14
15
16
17
19
18
20
12
1
11 GND
D95IN239
Input 3
Enable B
Out 3
Input 4
Out 4
N.C.
Sense B
GND
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
VSPower Supply 50 V
VSS Logic Supply Voltage 7 V
VI,Ven Input and Enable Voltage –0.3 to 7 V
IOPeak Output Current (each Channel)
– Non Repetitive (t = 100µs)
–Repetitive (80% on –20% off; ton = 10ms)
–DC Operation
3
2.5
2
A
A
A
Vsens Sensing Voltage –1 to 2.3 V
Ptot Total Power Dissipation (Tcase = 75°C) 25 W
Top Junction Operating Temperature –25 to 130 °C
Tstg, TjStorage and Junction Temperature –40 to 150 °C
THERMAL DATA
Symbol Parameter PowerSO20 Multiwatt15 Unit
Rth j-case Thermal Resistance Junction-case Max. 3 °C/W
Rth j-amb Thermal Resistance Junction-ambient Max. 13 (*) 35 °C/W
(*) Mounted on aluminum substrate
1
2
3
4
5
6
7
9
10
11
8
ENABLE B
INPUT 3
LOGIC SUPPLY VOLTAGE VSS
GND
INPUT 2
ENABLE A
INPUT 1
SUPPLY VOLTAGE VS
OUTPUT 2
OUTPUT 1
CURRENT SENSING A
TAB CONNECTED TO PIN 8
13
14
15
12
CURRENT SENSING B
OUTPUT 4
OUTPUT 3
INPUT 4
D95IN240A
Multiwatt15
PowerSO20
L298
2/13
PIN FUNCTIONS (refer to the block diagram)
MW.15 PowerSO Name Function
1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to
control the current of the load.
2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load
connected between these two pins is monitored at pin 1.
46 V
SSupply Voltage for the Power Output Stages.
A non-inductive 100nF capacitor must be connected between this
pin and ground.
5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.
6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A
(enable A) and/or the bridge B (enable B).
8 1,10,11,20 GND Ground.
9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must be
connected between this pin and ground.
10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.
13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load
connected between these two pins is monitored at pin 15.
3;18 N.C. Not Connected
ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VSSupply Voltage (pin 4) Operative Condition VIH +2.5 46 V
VSS Logic Supply Voltage (pin 9) 4.5 5 7 V
ISQuiescent Supply Current (pin 4) Ven = H; IL = 0 Vi = L
Vi = H 13
50 22
70 mA
mA
Ven = L Vi = X 4 mA
ISS Quiescent Current from VSS (pin 9) Ven = H; IL = 0 Vi = L
Vi = H 24
736
12 mA
mA
Ven = L Vi = X 6 mA
ViL Input Low Voltage
(pins 5, 7, 10, 12) –0.3 1.5 V
ViH Input High Voltage
(pins 5, 7, 10, 12) 2.3 VSS V
IiL Low Voltage Input Current
(pins 5, 7, 10, 12) Vi = L –10 µA
IiH High Voltage Input Current
(pins 5, 7, 10, 12) Vi = H VSS –0.6V 30 100 µA
Ven = L Enable Low Voltage (pins 6, 11) –0.3 1.5 V
Ven = H Enable High Voltage (pins 6, 11) 2.3 VSS V
Ien = L Low Voltage Enable Current
(pins 6, 11) Ven = L –10 µA
Ien = H High Voltage Enable Current
(pins 6, 11) Ven = H VSS –0.6V 30 100 µA
VCEsat (H) Source Saturation Voltage IL = 1A
IL = 2A 0.95 1.35
21.7
2.7 V
V
VCEsat (L) Sink Saturation Voltage IL = 1A (5)
IL = 2A (5) 0.85 1.2
1.7 1.6
2.3 V
V
VCEsat Total Drop IL = 1A (5)
IL = 2A (5) 1.80 3.2
4.9 V
V
Vsens Sensing Voltage (pins 1, 15) –1 (1) 2 V
L298
3/13
VSAT m 1. A ‘L B 1.2 0.6 u o 5- ml v N vsgsm usuzv ..I. v” .5v main 0.— II‘ L258 ENABLE |L // nl‘zon 5—5151" (M 0! II 1.6 2.0 1.4 In“).
Figure 1 : Typical Saturation Voltage vs. Output
Current. Figure 2 : Switching Times Test Circuits.
Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = H
1) 1)Sensing voltage can be –1 V for t 50 µsec; in steady state Vsens min 0.5 V.
2) See fig. 2.
3) See fig. 4.
4) The load must be a pure resistor.
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
T1 (Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5 µs
T2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µs
T3 (Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2 µs
T4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µs
T5 (Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7 µs
T6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µs
T7 (Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6 µs
T8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µs
fc (Vi) Commutation Frequency IL = 2A 25 40 KHz
T1 (Ven) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3 µs
T2 (Ven) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1 µs
T3 (Ven) Source Current Turn-on Delay 0.5 Ven to 0.1 IL (2); (4) 0.3 µs
T4 (Ven) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4 µs
T5 (Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2 µs
T6 (Ven) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35 µs
T7 (Ven) Sink Current Turn-on Delay 0.5 Ven to 0.9 IL (3); (4) 0.25 µs
T8 (Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1 µs
L298
4/13
Inn-nu” 90,. ' IO‘II‘ . ueni wt) so». C .. 5-5.!" I lNPUY ENABLE
Figure 3 : Source Current Delay Times vs. Input or Enable Switching.
Figure 4 : Switching Times Test Circuits.
Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = L
L298
5/13
Inn-(2A) - 901.- — ———————————————————— v, (no say. < lmilfla)="" 90‘!-="" ,="" ’01.-="" (mi)="" 50".="" s-iosn="" "2="" unit="" n="" «a="" mm="" as="" man="" “ell"lm)="" a-siiii="">
Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.
Figure 6 : Bidirectional DC Motor Control.
L = Low H = High X = Don’t care
Inputs Function
Ven = H C = H ; D = L Forward
C = L ; D = H Reverse
C = D Fast Motor Stop
Ven = L C = X ; D = X Free Running
Motor Stop
L298
6/13
n 1—H Vs ‘00 F fil—i 91:.
Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4
and channel 2 with channel 3.
APPLICATION INFORMATION (Refer to the block diagram)
1.1. POWER OUTPUT STAGE
The L298 integrates two power output stages (A ; B).
The power output stage is a bridge configuration
and its outputs can drive an inductive load in com-
mon or differenzial mode, depending on the state of
the inputs. The current that flows through the load
comes out from the bridge at the sense output : an
external resistor (RSA ; RSB.) allows to detect the in-
tensity of this current.
1.2. INPUT STAGE
Each bridge is driven by means of four gates the in-
put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.
The In inputs set the bridge state when The En input
is high ; a low state of the En input inhibits the bridge.
All the inputs are TTL compatible.
2. SUGGESTIONS
A non inductive capacitor, usually of 100 nF, must
be foreseen between both Vs and Vss, to ground,
as near as possible to GND pin. When the large ca-
pacitor of the power supply is too far from the IC, a
second smaller one must be foreseen near the
L298.
The sense resistor, not of a wire wound type, must
be grounded near the negative pole of Vs that must
be near the GND pin of the I.C.
Each input must be connected to the source of the
driving signals by means of a very short path.
Turn-On and Turn-Off : Before to Turn-ON the Sup-
ply Voltage and before to Turn it OFF, the Enable in-
put must be driven to the Low state.
3. APPLICATIONS
Fig 6 shows a bidirectional DC motor control Sche-
matic Diagram for which only one bridge is needed.
The external bridge of diodes D1 to D4 is made by
four fast recovery elements (trr 200 nsec) that
must be chosen of a VF as low as possible at the
worst case of the load current.
The sense output voltage can be used to control the
current amplitude by chopping the inputs, or to pro-
vide overcurrent protection by switching low the en-
able input.
The brake function (Fast motor stop) requires that
the Absolute Maximum Rating of 2 Amps must
never be overcome.
When the repetitive peak current needed from the
load is higher than 2 Amps, a paralleled configura-
tion can be chosen (See Fig.7).
An external bridge of diodes are required when in-
ductive loads are driven and when the inputs of the
IC are chopped ; Shottky diodes would be preferred.
L298
7/13
‘s 5v 9;. .' IUDnF H: “J: m, 3" “aw ‘Ilfl =InnnF flfi_ ‘3’” n m m m :1 as: u A s n A A 1 °' II c ' 1 I t pz n 1 In 3 L1" n Lulu In 3:51;: a n 5 u u mum‘s ., , 31 Is I m n u ‘ u 1 3 u l u m m m sense: 1 I [ szusn i i i nous m HE‘S! sr susu
This solution can drive until 3 Amps In DC operation
and until 3.5 Amps of a repetitive peak current.
On Fig 8 it is shown the driving of a two phase bipolar
stepper motor ; the needed signals to drive the in-
puts of the L298 are generated, in this example,
from the IC L297.
Fig 9 shows an example of P.C.B. designed for the
application of Fig 8.
Fig 10 shows a second two phase bipolar stepper
motor control circuit where the current is controlled
by the I.C. L6506.
Figure 8 : Two Phase Bipolar Stepper Motor Circuit.
This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.
RS1 = RS2 = 0.5
D1 to D8 = 2 A Fast diodes {VF 1.2 V @ I = 2 A
trr 200 ns
L298
8/13
\‘S 07717 6: in P51 : ' Cl— ""T 35111:" M" "W'lrimfl , (_| C} If): [7} V1 E9] I’m} 4“ \J‘VLO l mu v m 02 a, m‘vwoml 3i: Illa. {i l m :: :_ LzsaN ' 3 so 2- Lssas“ : “ _ a m z. E: . u . 1: '- zf __ , # J- “U_.
Figure 9 : Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).
Figure 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.
RR and Rsense depend from the load current
L298
9/13
Multiwatt15 V
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.02 1.27 1.52 0.040 0.050 0.060
G1 17.53 17.78 18.03 0.690 0.700 0.710
H1 19.6 0.772
H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886
L1 21.7 22.1 22.5 0.854 0.870 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.63 5.08 5.53 0.182 0.200 0.218
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
OUTLINE AND
MECHANICAL DATA
L298
10/13
«S1 FT 2 TI» “\ K I?
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 20.57 0.810
L1 18.03 0.710
L2 2.54 0.100
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L5 5.28 0.208
L6 2.38 0.094
L7 2.65 2.9 0.104 0.114
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
Multiwatt15 H
OUTLINE AND
MECHANICAL DATA
L298
11/13
4.;t HHHDDDDDDD fifi—u \ g a ‘ \ M Q , , |:| K ,5 ‘ i ‘ § P 1 U UUUIUUU
JEDEC MO-166
PowerSO20
e
a2 A
E
a1
PSO20MEC
DETAIL A
T
D
1
1120
E1
E2
h x 45
DETAIL A
lead
slug
a3
S
Gage Plane
0.35
L
DETAIL B
R
DETAIL B
(COPLANARITY)
GC
- C -
SEATING PLANE
e3
b
c
NN
H
BOTTOM VIEW
E3
D1
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.6 0.142
a1 0.1 0.3 0.004 0.012
a2 3.3 0.130
a3 0 0.1 0.000 0.004
b 0.4 0.53 0.016 0.021
c 0.23 0.32 0.009 0.013
D (1) 15.8 16 0.622 0.630
D1 9.4 9.8 0.370 0.386
E 13.9 14.5 0.547 0.570
e 1.27 0.050
e3 11.43 0.450
E1 (1) 10.9 11.1 0.429 0.437
E2 2.9 0.114
E3 5.8 6.2 0.228 0.244
G 0 0.1 0.000 0.004
H 15.5 15.9 0.610 0.626
h 1.1 0.043
L 0.8 1.1 0.031 0.043
N 10˚ (max.)
S
T10 0.394
(1) "D and F" do not include mold flash or protrusions.
- Mold flash or protrusions shall not exceed 0.15 mm (0.006").
- Critical dimensions: "E", "G" and "a3"
OUTLINE AND
MECHANICAL DATA
(max.)
10
L298
12/13
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-
croelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
L298
13/13

Products related to this Datasheet

IC BRIDGE DRIVER PAR 15MULTIWATT
IC BRIDGE DRIVER PAR 20POWERSO
IC BRIDGE DRIVER PAR 15MULTIWATT
IC BRIDGE DRIVER PAR 20POWERSO
ARDUINO SHIELD - MOTOR SHIELD
SPARKFUN FULL-BRIDGE MOTOR DRIVE
2X2A MOTOR SHIELD FOR ARDUINO TW
2A MOTOR SHIELD FOR ARDUINO
ARDUMOTO - MOTOR DRIVER SHIELD
IC BRIDGE DRIVER PAR 20POWERSO
IC BRIDGE DRIVER PAR 20POWERSO
GROVE I2C MOTOR DRIVER
MOTOR SHIELD V2.0
KIT ARDUMOTO SHIELD ARDUINO
SPARKFUN ARDUMOTO - MOTOR DRIVER
SHIELD KIT FOR ARDUINO