STM32F030x4,6,8,C Datasheet

STMicroelectronics

Download PDF Datasheet

Datasheet

This is information on a product in full production.
January 2019 DS9773 Rev 4 1/93
STM32F030x4 STM32F030x6
STM32F030x8 STM32F030xC
Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers,
ADC, communication interfaces, 2.4-3.6 V operation
Datasheet - production data
Features
Core: Arm® 32-bit Cortex®-M0 CPU, frequency
up to 48 MHz
Memories
16 to 256 Kbytes of Flash memory
4 to 32 Kbytes of SRAM with HW parity
CRC calculation unit
Reset and power management
Digital & I/Os supply: VDD = 2.4 V to 3.6 V
Analog supply: VDDA = VDD to 3.6 V
Power-on/Power down reset (POR/PDR)
Low power modes: Sleep, Stop, Standby
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x6 PLL option
Internal 40 kHz RC oscillator
Up to 55 fast I/Os
All mappable on external interrupt vectors
Up to 55 I/Os with 5V tolerant capability
5-channel DMA controller
One 12-bit, 1.0 µs ADC (up to 16 channels)
Conversion range: 0 to 3.6 V
Separate analog supply: 2.4 V to 3.6 V
Calendar RTC with alarm and periodic wakeup
from Stop/Standby
11 timers
One 16-bit advanced-control timer for
six-channel PWM output
Up to seven 16-bit timers, with up to four
IC/OC, OCN, usable for IR control
decoding
Independent and system watchdog timers
SysTick timer
Communication interfaces
Up to two I2C interfaces
Fast Mode Plus (1 Mbit/s) support on
one or two I/Fs, with 20 mA current sink
SMBus/PMBus support (on single I/F)
Up to six USARTs supporting master
synchronous SPI and modem control; one
with auto baud rate detection
Up to two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames
Serial wire debug (SWD)
All packages ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F030x4 STM32F030F4
STM32F030x6 STM32F030C6, STM32F030K6
STM32F030x8 STM32F030C8, STM32F030R8
STM32F030xC STM32F030CC, STM32F030RC
LQFP64 10 × 10 mm
LQFP48 7 × 7 mm
LQFP32 7 × 7 mm
TSSOP20 6.4 × 4.4 mm
www.st.com
Contents STM32F030x4/x6/x8/xC
2/93 DS9773 Rev 4
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Arm® Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . . 12
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17
3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 22
DS9773 Rev 4 3/93
STM32F030x4/x6/x8/xC Contents
4
3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 45
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Contents STM32F030x4/x6/x8/xC
4/93 DS9773 Rev 4
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
DS9773 Rev 4 5/93
STM32F030x4/x6/x8/xC List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F030x4/x6/x8/xC family device features and peripheral counts . . . . . . . . . . . . . . . 10
Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. STM32F030x4/x6/x8/xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 8. STM32F0x0 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 9. STM32F030x4/x6/x8/xC SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 11. STM32F030x4/6/8/C pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 12. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 34
Table 13. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 35
Table 14. Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 37
Table 15. Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 37
Table 16. Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 37
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . 39
Table 18. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 21. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 22. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 23. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 24. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 47
Table 26. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 48
Table 27. Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 49
Table 28. Typical current consumption in Run mode, code with data processing
running from Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 29. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 30. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 31. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 32. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 33. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 35. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 36. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 37. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 38. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 39. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 40. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
List of tables STM32F030x4/x6/x8/xC
6/93 DS9773 Rev 4
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 50. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 51. RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 52. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 53. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 54. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 55. IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 56. WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 57. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 58. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 59. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 60. LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 61. LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 62. TSSOP20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 63. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 64. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
DS9773 Rev 4 7/93
STM32F030x4/x6/x8/xC List of figures
7
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Clock tree of STM32F030x4/x6/x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. Clock tree of STM32F030xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 25
Figure 5. LQFP64 64-pin package pinout (top view), for STM32F030RC devices . . . . . . . . . . . . . . 25
Figure 6. LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 26
Figure 7. LQFP48 48-pin package pinout (top view), for STM32F030CC devices . . . . . . . . . . . . . . 26
Figure 8. LQFP32 32-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 10. STM32F030x4/x6/x8/xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 16. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 19. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 21. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 22. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 23. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 24. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 26. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 27. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 28. LQFP64 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 29. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 30. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 31. LQFP48 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 32. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 33. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 34. LQFP32 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 35. LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 36. LQFP32 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 37. TSSOP20 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 38. TSSOP20 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 39. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Introduction STM32F030x4/x6/x8/xC
8/93 DS9773 Rev 4
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F030x4/x6/x8/xC microcontrollers.
This document should be read in conjunction with the STM32F0x0xx reference manual
(RM0360). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm®(a) Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS9773 Rev 4 9/93
STM32F030x4/x6/x8/xC Description
24
2 Description
The STM32F030x4/x6/x8/xC microcontrollers incorporate the high-performance Arm®
Cortex®-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded
memories (up to 256 Kbytes of Flash memory and up to 32 Kbytes of SRAM), and an
extensive range of enhanced peripherals and I/Os. All devices offer standard
communication interfaces (up to two I2Cs, up to two SPIs and up to six USARTs), one 12-bit
ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer.
The STM32F030x4/x6/x8/xC microcontrollers operate in the -40 to +85 °C temperature
range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows
the design of low-power applications.
The STM32F030x4/x6/x8/xC microcontrollers include devices in four different packages
ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of
peripherals are included. The description below provides an overview of the complete range
of STM32F030x4/x6/x8/xC peripherals proposed.
These features make the STM32F030x4/x6/x8/xC microcontrollers suitable for a wide range
of applications such as application control and user interfaces, handheld equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
Description STM32F030x4/x6/x8/xC
10/93 DS9773 Rev 4
Table 2. STM32F030x4/x6/x8/xC family device features and peripheral counts
Peripheral STM32
F030F4
STM32
F030K6
STM32
F030C6
STM32
F030C8
STM32
F030CC
STM32
F030R8
STM32
F030RC
Flash (Kbytes) 16 32 32 64 256 64 256
SRAM (Kbytes) 4 8 32 8 32
Timers
Advanced
control 1 (16-bit)
General
purpose 4 (16-bit)(1) 5 (16-bit)
Basic - 1 (16-bit)(2) 2 (16-bit) 1 (16-bit)(2) 2 (16-bit)
Comm.
interfaces
SPI 1(3) 2
I2C1
(4) 2
USART 1(5) 2(6) 62
(6) 6
12-bit ADC
(number of channels)
1
(9 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(16 ext.
+2 int.)
1
(16 ext.
+2 int.)
GPIOs 15263939375551
Max. CPU frequency 48 MHz
Operating voltage 2.4 to 3.6 V
Operating temperature Ambient operating temperature: -40°C to 85°C
Junction temperature: -40°C to 105°C
Packages TSSOP20 LQFP32 LQFP48 LQFP64
1. TIM15 is not present.
2. TIM7 is not present.
3. SPI2 is not present.
4. I2C2 is not present.
5. USART2 to USART6 are not present.
6. USART3 to USART6 are not present
DS9773 Rev 4 11/93
STM32F030x4/x6/x8/xC Description
24
Figure 1. Block diagram
1. TIMER6, TIMER15, SPI, USART2 and I2C2 are available on STM32F030x8/C devices only.
2. USART3, USART4, USART5, USART6 and TIMER7 are available on STM32F030xC devices only.
MSv32137V3
4 channels
3 compl. channels
BRK, ETR input as AF
@ VDD
@ VDDA
System and peripheral
clocks
PA[15:0]
PB[15:0]
PC[15:0]
55 AF
@ VDDA
VDDA
VSSA
SWCLK
SWDIO
as AF
16x
AD input
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
TAMPER-RTC
(ALARM OUT)
HSI14
HSI
LSI
PLLCLK
IR_OUT as AF
1 channel
1 compl, BRK as AF
1 channel
1 compl, BRK as AF
1 channel as AF
4 ch., ETR as AF
GP DMA
5 channels
CORTEX-M0 CPU
fMAX = 48 MHz
Serial Wire
Debug
NVIC
EXT. IT WKUP
SPI1
SPI2
SYSCFG IF
DBGMCU
Window WDG
APB
AHB
CRC
RESET & CLOCK
CONTROL
Power
Controller
XTAL OSC
4-32 MHz
Ind. Window WDG
SRAM
4/8/32 KB
Temp.
sensor
IF
12-bit ADC
RTC
RTC interface
RC 14 MHz
RC 8 MHz
RC 40 kHz
PLL
AHB decoder
XTAL32 kHz
SRAM
controller
Bus matrix
Flash
memory
interface
Flash GPL
16/32/64/256 KB
32-bit
Obl
2 channels
1 compl, BRK as AF
RX, TX,CTS, RTS,
CK, as AF
RX, TX,CTS, RTS,
CK, as AF
RX, TX,CTS, RTS,
CK, as AF
RX, TX,CTS, RTS,
CK, as AF
SCL, SDA, as AF
SCL, SDA, SMBA
(20 mA FM+), as AF
I2C1
I2C2
GPIO port F
GPIO port D
GPIO port C
GPIO port B
GPIO port A
PD2
PF[1:0]
PF[7:4]
SUPPLY
SUPERVISION
POWER
@ VDDA
@ VDD
VDD18
POR
Reset
Int
VDD = 2.4 to 3.6 V
VSS
NRST
VDDA
VSSA
VDD
POR/PDR
VOLT.REG
3.3 V to 1.8 V
USART4
USART3
USART2
USART1
TIMER 17
TIMER 16
TIMER 15
TIMER 14
TIMER 3
PWM TIMER 1
Power domain of analog blocks : VDD VDDA
RX, TX,CTS, RTS,
CK, as AF
RX, TX,CTS, RTS,
CK, as AF
USART6
USART5
TIMER 7
TIMER 6
MOSI, MISO,
SCK, NSS,
as AF
MOSI, MISO,
SCK, NSS,
as AF
Functional overview STM32F030x4/x6/x8/xC
12/93 DS9773 Rev 4
3 Functional overview
3.1 Arm® Cortex®-M0 core with embedded Flash and SRAM
The Arm® Cortex®-M0 processor is the latest generation of Arm processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The Arm® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an Arm core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F0xx family has an embedded Arm core and is therefore compatible with all Arm
tools and software.
Figure 3 shows the general block diagram of the device family.
3.2 Memories
The device has the following features:
4 to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0
wait states and featuring embedded parity checking with exception generation for fail-
critical applications.
The non-volatile memory is divided into two arrays:
16 to 256 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and boot
in RAM selection disabled
3.3 Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
DS9773 Rev 4 13/93
STM32F030x4/x6/x8/xC Functional overview
24
3.4 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.5 Power management
3.5.1 Power supply schemes
VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs
and PLL. The VDDA voltage level must be always greater or equal to the VDD voltage
level and must be provided first.
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.
3.5.2 Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
3.5.3 Voltage regulator
The regulator has two operating modes and it is always enabled after reset.
Main (MR) is used in normal operating mode (Run).
Low power (LPR) can be used in Stop mode where the power demand is reduced.
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
Functional overview STM32F030x4/x6/x8/xC
14/93 DS9773 Rev 4
3.5.4 Low-power modes
The STM32F030x4/x6/x8/xC microcontrollers support three low-power modes to achieve
the best compromise between low power consumption, short startup time and available
wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines and RTC.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
DS9773 Rev 4 15/93
STM32F030x4/x6/x8/xC Functional overview
24
Figure 2. Clock tree of STM32F030x4/x6/x8
1. Applies to STM32F030x4/x6 devices.
2. Applies to STM32F030x8 devices.
MSv32138V3
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
IWDG
PLLMUL
MCO
Main clock
output
PLLCLK
HSI
HSE
HCLK
PLLCLK
AHB, core, memory, DMA,
Cortex FCLK free-run clock
LSE
LSI
HSI
HSE
RTC
PLLSRC SW
MCO
RTCCLK
RTCSEL
SYSCLK
TIM1,3,6(2)
14,15(2),16,17
FLITFCLK Flash memory
programming
interface
HSI14
I2C1
USART1
LSE
HSI
SYSCLK
PCLK
SYSCLK
HSI
PCLK
Cortex
system timer
APB
peripherals
LSI(1)
LSE(1)
PLLNODIV
MCOPRE
LSE
HSE
CSS
Legend
white clock tree control element
clock line
control line
black clock tree element
/32
4-32 MHz
HSE OSC
/1,/2,/4,
/8,/16
/1(1),/2
14 MHz
HSI14 RC
/1,/2,…
…/512
32.768 kHz
LSE OSC
40 kHz
LSI RC
PLL
x2,x3,..
...x16
x1, x2
/8
/1,/2,/4,..
../128
USART1SW
PPRE
PPREHPRE
I2C1SW
SYSCLK
HSI HSI
8 MHz
HSI RC
/2, /4 ADC
(14 MHz max)
PREDIV
/1,/2,..
../16
/2
CKMODE
(1)
Functional overview STM32F030x4/x6/x8/xC
16/93 DS9773 Rev 4
Figure 3. Clock tree of STM32F030xC
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
MSv47988V1
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
IWDG
MCO
Main clock
output
PLLCLK
HSI
HSE
HCLK
PLLCLK
AHB, core, memory, DMA,
Cortex FCLK free-run clock
LSE
LSI
HSI
HSE
RTC
SW
MCO
RTCCLK
RTCSEL
SYSCLK
TIM1,3,6,7
14,15,16,17
FLITFCLK Flash memory
programming
interface
HSI14
I2C1
USART1
LSE
HSI
SYSCLK
PCLK
SYSCLK
HSI
PCLK
Cortex
system timer
APB
peripherals
LSI LSE
PLLNODIV
MCOPRE
LSE
HSE
CSS
Legend
white clock tree control element
clock line
control line
black clock tree element
/32
4-32 MHz
HSE OSC
/1,/2,/4,
/8,/16
/1,/2
14 MHz
HSI14 RC
/1,/2,…
…/512
32.768 kHz
LSE OSC
40 kHz
LSI RC
x1, x2
/8
/1,/2,/4,..
../128
USART1SW
PPRE
PPREHPRE
I2C1SW
SYSCLK
HSI HSI
8 MHz
HSI RC
/2, /4 ADC
(14 MHz max)
CKMODE
PLLMUL
PLLSRC
PREDIV
/1,/2,..
../16
PLL
x2,x3,..
...x16
DS9773 Rev 4 17/93
STM32F030x4/x6/x8/xC Functional overview
24
3.8 Direct memory access controller (DMA)
The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except
TIM14) and ADC.
3.9 Interrupts and events
3.9.1 Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4
priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 32 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 55
GPIOs can be connected to the 16 external interrupt lines.
Functional overview STM32F030x4/x6/x8/xC
18/93 DS9773 Rev 4
3.10 Analog to digital converter (ADC)
The 12-bit analog to digital converter has up to 16 external and two internal (temperature
sensor, voltage reference measurement) channels and performs conversions in single-shot
or scan modes. In scan mode, automatic conversion is performed on a selected group of
analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage
of VREFINT is individually measured for each part by ST during production test and stored in
the system memory area. It is accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7B8 - 0x1FFF F7B9
Table 4. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7BA - 0x1FFF F7BB
DS9773 Rev 4 19/93
STM32F030x4/x6/x8/xC Functional overview
24
3.11 Timers and watchdogs
The STM32F030x4/x6/x8/xC devices include up to five general-purpose timers, two basic
timers and one advanced control timer.
Tabl e 5 compares the features of the different timers.
3.11.1 Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
Table 5. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/compare
channels
Complementary
outputs
Advanced
control TIM1 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes 4 3
General
purpose
TIM3 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes 4 -
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 -
TIM15(1) 16-bit Up
Any integer
between 1
and 65536
Yes 2 1
TIM16,
TIM17 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6,(1)
TIM7(2) 16-bit Up
Any integer
between 1
and 65536
Yes 0 -
1. Available on STM32F030x8 and STM32F030xC devices only.
2. Available on STM32F030xC devices only
Functional overview STM32F030x4/x6/x8/xC
20/93 DS9773 Rev 4
3.11.2 General-purpose timers (TIM3, TIM14..17)
There are four or five synchronizable general-purpose timers embedded in the
STM32F030x4/x6/x8/xC devices (see Table 5 for differences). Each general-purpose timer
can be used to generate PWM outputs, or as simple time base.
TIM3
STM32F030x4/x6/x8/xC devices feature one synchronizable 4-channel general-purpose
timer. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It
features four independent channels each for input capture/output compare, PWM or
one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the
largest packages.
The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the
Timer Link feature for synchronization or event chaining.
TIM3 has an independent DMA request generation.
This timer is capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 3 hall-effect sensors.
The counter can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.11.3 Basic timers TIM6 and TIM7
These timers can be used as a generic 16-bit time base.
3.11.4 Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
DS9773 Rev 4 21/93
STM32F030x4/x6/x8/xC Functional overview
24
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.11.5 System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.11.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source (HCLK or HCLK/8)
3.12 Real-time clock (RTC)
The RTC is an independent BCD timer/counter. Its main features are the following:
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
Programmable alarm with wake up from Stop and Standby mode capability.
Periodic wakeup unit with programmable resolution and period (on STM32F030xC
only).
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
Tow anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32
Functional overview STM32F030x4/x6/x8/xC
22/93 DS9773 Rev 4
3.13 Inter-integrated circuit interfaces (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also
supports Fast Mode Plus (up to 1 Mbit/s), with 20 mA output drive.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the differences between I2C1 and I2C2.
3.14 Universal synchronous/asynchronous receiver/transmitter
(USART)
The device embeds up to six universal synchronous/asynchronous receivers/transmitters
that communicate at speeds of up to 6 Mbit/s.
Table 6. Comparison of I2C analog and digital filters
-Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process -
Table 7. STM32F030x4/x6/x8/xC I2C implementation(1)
1. X = supported.
I2C features I2C1 I2C2(2)
2. Only available on STM32F030x8/C devices.
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus (up to 1 Mbit/s), with 20mA output drive I/Os X -
Independent clock X -
SMBus X -
Wakeup from STOP - -
DS9773 Rev 4 23/93
STM32F030x4/x6/x8/xC Functional overview
24
Tabl e 8 gives an overview of features as implemented on the available USART interfaces.
All USART interfaces can be served by the DMA controller.
3.15 Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
SPI1 and SPI2 are identical and implement the set of features shown in the following table.
Table 8. STM32F0x0 USART implementation(1)
USART modes/
features
STM32F030x4
STM32F030x6 STM32F030x8 STM32F030xC
USART1 USART1 USART2
USART1
USART2
USART3
USART4 USART5 USART6
Hardware flow control
for modem X XXXX - -
Continuous
communication using
DMA
X XXXXXX
Multiprocessor
communication X XXXXXX
Synchronous mode X XXXXX -
Smartcard mode - ------
Single-wire Half-duplex
communication X XXXXXX
IrDA SIR ENDEC block- ------
LIN mode - ------
Dual clock domain and
wakeup from Stop mode - ------
Receiver timeout
interrupt X X-X---
Modbus communication - ------
Auto baud rate detection
(supported modes) 2 2-2---
Driver Enable X XXXXX -
USART data length 8 and 9 bits 7, 8 and 9 bits
1. X = supported.
Functional overview STM32F030x4/x6/x8/xC
24/93 DS9773 Rev 4
3.16 Serial wire debug port (SW-DP)
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to
the MCU.
Table 9. STM32F030x4/x6/x8/xC SPI implementation(1)
1. X = supported.
SPI features SPI1 SPI2(2)
2. Not available on STM32F030x4/6.
Hardware CRC calculation X X
Rx/Tx FIFO X X
NSS pulse mode X X
TI mode X X
DS9773 Rev 4 25/93
STM32F030x4/x6/x8/xC Pinouts and pin descriptions
33
4 Pinouts and pin descriptions
Figure 4. LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices
Figure 5. LQFP64 64-pin package pinout (top view), for STM32F030RC devices
MSv36496V2
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VDD
PC14-OSC32_IN
PF0-OSC_IN
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
VDD
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
PF4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
LQFP64
PC13
PF5
VSS
VDD
VSS
PF1-OSC_OUT
PC15-OSC32_OUT
IO pins replaced by supply pairs for STM32F030RC devices.
MSv36483V2
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VDD
PC14-OSC32_IN
PF0-OSC_IN
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
VDD
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
LQFP64
PC13
VDD
VSS
VDD
VSS
PF1-OSC_OUT
PC15-OSC32_OUT
Additional supply pins required for STM32F030RC devices.
Pinouts and pin descriptions STM32F030x4/x6/x8/xC
26/93 DS9773 Rev 4
Figure 6. LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices
Figure 7. LQFP48 48-pin package pinout (top view), for STM32F030CC devices
44 43 42 4 1 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 2 1 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
LQFP48
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
NRST
VSSA
VDDA
PA0
PA1
PA2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PC13
PC14-OSC32_IN
PF0-OSC_IN
PF1-OSC_OUT
PC15-OSC32_OUT
MSv36497V2
IO pins replaced by supply pairs for STM32F030CC devices.
44 43 42 4 1 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 2 1 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
LQFP48
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
NRST
VSSA
VDDA
PA0
PA1
PA2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PC13
PC14-OSC32_IN
PF0-OSC_IN
PF1-OSC_OUT
PC15-OSC32_OUT
MSv36484V2
Additional supply pins required for STM32F030CC devices.
DS9773 Rev 4 27/93
STM32F030x4/x6/x8/xC Pinouts and pin descriptions
33
Figure 8. LQFP32 32-pin package pinout (top view)
Figure 9. TSSOP20 20-pin package pinout (top view)
MS32144V1
32 31 30 29 28 27 26 25
24
23
22
20
19
18
17
8
91011121314 15 16
1
2
3
4
5
6
7
LQFP32
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
NRST
VDDA
PA0
PA1
PA2
VSS
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PF0-OSC_IN
PF1-OSC_OUT
VDD
21
MSv36473V1
120
10 11
19
18
17
16
15
12
13
14
2
3
4
5
6
7
8
9
PF0-OSC_IN
BOOT0
PF1-OSC_OUT
NRST
VDDA
PA0
PA9
VDD
PA14
PA6
PA7
PB1
VSS
PA1
PA2
PA3
PA4 PA5
PA13
PA10
Pinouts and pin descriptions STM32F030x4/x6/x8/xC
28/93 DS9773 Rev 4
Table 10. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 11. STM32F030x4/6/8/C pin definitions
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
LQFP32
TSSOP20
Alternate functions Additional functions
1 1 - - VDD S - - Complementary power supply
22-- PC13 I/OTC
(1) -
RTC_TAMP1,
RTC_TS,
RTC_OUT,
WKUP2
33--
PC14-OSC32_IN
(PC14) I/O TC (1) - OSC32_IN
44--
PC15-OSC32_OUT
(PC15) I/O TC (1) - OSC32_OUT
5522 PF0-OSC_IN
(PF0) I/O FT - I2C1_SDA(5) OSC_IN
6633
PF1-OSC_OUT
(PF1) I/O FT - I2C1_SCL(5) OSC_OUT
7 7 4 4 NRST I/O RST - Device reset input / internal reset output
(active low)
DS9773 Rev 4 29/93
STM32F030x4/x6/x8/xC Pinouts and pin descriptions
33
8--- PC0 I/OTTa- EVENTOUT,
USART6_TX(5) ADC_IN10
9--- PC1 I/OTTa- EVENTOUT,
USART6_RX(5) ADC_IN11
10 - - - PC2 I/O TTa - SPI2_MISO(5),
EVENTOUT ADC_IN12
11 - - - PC3 I/O TTa - SPI2_MOSI(5),
EVENTOUT ADC_IN13
12 8 - - VSSA S - - Analog ground
13 9 5 5 VDDA S - - Analog power supply
14 10 6 6 PA0 I/O TTa -
USART1_CTS(2),
USART2_CTS(3)(5),
USART4_TX(5)
ADC_IN0,
RTC_TAMP2,
WKUP1
15 11 7 7 PA1 I/O TTa -
USART1_RTS(2),
USART2_RTS(3)(5),
EVENTOUT,
USART4_RX(5)
ADC_IN1
16 12 8 8 PA2 I/O TTa -
USART1_TX(2),
USART2_TX(3)(5),
TIM15_CH1(3)(5)
ADC_IN2, WKUP4(5)
17 13 9 9 PA3 I/O TTa -
USART1_RX(2),
USART2_RX(3)(5),
TIM15_CH2(3)(5)
ADC_IN3
18(4) --- PF4 I/OFT
(4) EVENTOUT -
18(5) - - - VSS S - (5) Ground
19(4) --- PF5 I/OFT
(4) EVENTOUT -
19(5) --- VDD -- (5) Complementary power supply
20 14 10 10 PA4 I/O TTa -
SPI1_NSS,
USART1_CK(2)
USART2_CK(3)(5),
TIM14_CH1,
USART6_TX(5)
ADC_IN4
21 15 11 11 PA5 I/O TTa - SPI1_SCK,
USART6_RX(5) ADC_IN5
Table 11. STM32F030x4/6/8/C pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
LQFP32
TSSOP20
Alternate functions Additional functions
Pinouts and pin descriptions STM32F030x4/x6/x8/xC
30/93 DS9773 Rev 4
22 16 12 12 PA6 I/O TTa -
SPI1_MISO,
TIM3_CH1,
TIM1_BKIN,
TIM16_CH1,
EVENTOUT
USART3_CTS(5)
ADC_IN6
23 17 13 13 PA7 I/O TTa -
SPI1_MOSI,
TIM3_CH2,
TIM14_CH1,
TIM1_CH1N,
TIM17_CH1,
EVENTOUT
ADC_IN7
24 - - - PC4 I/O TTa - EVENTOUT,
USART3_TX(5) ADC_IN14
25 - - - PC5 I/O TTa - USART3_RX(5) ADC_IN15, WKUP5(5)
26 18 14 - PB0 I/O TTa -
TIM3_CH3,
TIM1_CH2N,
EVENTOUT,
USART3_CK(5)
ADC_IN8
27 19 15 14 PB1 I/O TTa -
TIM3_CH4,
TIM14_CH1,
TIM1_CH3N,
USART3_RTS(5)
ADC_IN9
28 20 - - PB2 I/O FT (6) --
29 21 - - PB10 I/O FT -
SPI2_SCK(5),
I2C1_SCL(2),
I2C2_SCL(3)(5),
USART3_TX(5)
-
30 22 - - PB11 I/O FT -
I2C1_SDA(2),
I2C2_SDA(3)(5),
EVENTOUT,
USART3_RX(5)
-
31 23 16 - VSS S - - Ground
32 24 17 16 VDD S - - Digital power supply
33 25 - - PB12 I/O FT -
SPI1_NSS(2),
SPI2_NSS(3)(5),
TIM1_BKIN,
EVENTOUT,
USART3_CK(5)
-
Table 11. STM32F030x4/6/8/C pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
LQFP32
TSSOP20
Alternate functions Additional functions
DS9773 Rev 4 31/93
STM32F030x4/x6/x8/xC Pinouts and pin descriptions
33
34 26 - - PB13 I/O FT -
SPI1_SCK(2),
SPI2_SCK(3)(5),
I2C2_SCL(5),
TIM1_CH1N,
USART3_CTS(5)
-
35 27 - - PB14 I/O FT -
SPI1_MISO(2),
SPI2_MISO(3)(5),
I2C2_SDA(5),
TIM1_CH2N,
TIM15_CH1(3)(5),
USART3_RTS(5)
-
36 28 - - PB15 I/O FT -
SPI1_MOSI(2),
SPI2_MOSI(3)(5),
TIM1_CH3N,
TIM15_CH1N(3)(5),
TIM15_CH2(3)(5)
RTC_REFIN,
WKUP7(5)
37 - - - PC6 I/O FT - TIM3_CH1 -
38 - - - PC7 I/O FT - TIM3_CH2 -
39 - - - PC8 I/O FT - TIM3_CH3 -
40 - - - PC9 I/O FT - TIM3_CH4 -
41 29 18 - PA8 I/O FT -
USART1_CK,
TIM1_CH1,
EVENTOUT,
MCO
-
42 30 19 17 PA9 I/O FT -
USART1_TX,
TIM1_CH2,
TIM15_BKIN(3)(5)
I2C1_SCL(2)(5)
-
43 31 20 18 PA10 I/O FT -
USART1_RX,
TIM1_CH3,
TIM17_BKIN
I2C1_SDA(2)(5)
-
44 32 21 - PA11 I/O FT -
USART1_CTS,
TIM1_CH4,
EVENTOUT,
I2C2_SCL(5)
-
45 33 22 - PA12 I/O FT -
USART1_RTS,
TIM1_ETR,
EVENTOUT,
I2C2_SDA(5)
-
Table 11. STM32F030x4/6/8/C pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
LQFP32
TSSOP20
Alternate functions Additional functions
Pinouts and pin descriptions STM32F030x4/x6/x8/xC
32/93 DS9773 Rev 4
46 34 23 19 PA13
(SWDIO) I/O FT (7) IR_OUT,
SWDIO -
47(4) 35(4) -- PF6 I/OFT(4) I2C1_SCL(2),
I2C2_SCL(3) -
47(5) 35(5) - - VSS S - (5) Ground
48(4) 36(4) -- PF7 I/OFT(4) I2C1_SDA(2),
I2C2_SDA(3) -
48(5) 36(5) -- VDD S- (5) Complementary power supply
49 37 24 20 PA14
(SWCLK) I/O FT (7)
USART1_TX(2),
USART2_TX(3)(5),
SWCLK
-
50 38 25 - PA15 I/O FT -
SPI1_NSS,
USART1_RX(2),
USART2_RX(3)(5),
USART4_RTS(5),
EVENTOUT
-
51 - - - PC10 I/O FT - USART3_TX(5),
USART4_TX(5) -
52 - - - PC11 I/O FT - USART3_RX(5),
USART4_RX(5) -
53 - - - PC12 I/O FT -
USART3_CK(5),
USART4_CK(5),
USART5_TX(5)
-
54 - - - PD2 I/O FT -
TIM3_ETR,
USART3_RTS(5),
USART5_RX(5)
-
55 39 26 - PB3 I/O FT -
SPI1_SCK,
EVENTOUT,
USART5_TX(5)
-
56 40 27 - PB4 I/O FT -
SPI1_MISO,
TIM3_CH1,
EVENTOUT,
TIM17_BKIN(5),
USART5_RX(5)
-
57 41 28 - PB5 I/O FT -
SPI1_MOSI,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2,
USART5_CK_RTS(5)
WKUP6(5)
Table 11. STM32F030x4/6/8/C pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
LQFP32
TSSOP20
Alternate functions Additional functions
DS9773 Rev 4 33/93
STM32F030x4/x6/x8/xC Pinouts and pin descriptions
33
58 42 29 - PB6 I/O FTf -
I2C1_SCL,
USART1_TX,
TIM16_CH1N
-
59 43 30 - PB7 I/O FTf -
I2C1_SDA,
USART1_RX,
TIM17_CH1N,
USART4_CTS(5)
-
60 44 31 1 BOOT0 I B - Boot memory selection
61 45 - - PB8 I/O FTf (6) I2C1_SCL,
TIM16_CH1 -
62 46 - - PB9 I/O FTf -
I2C1_SDA,
IR_OUT,
SPI2_NSS(5),
TIM17_CH1,
EVENTOUT
-
63 47 32 15 VSS S - - Ground
64 48 1 16 VDD S - - Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. This feature is available on STM32F030x6 and STM32F030x4 devices only.
3. This feature is available on STM32F030x8 devices only.
4. For STM32F030x4/6/8 devices only.
5. For STM32F030xC devices only.
6. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the
package, they are not forced to a defined level by hardware).
7. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin
and internal pull-down on SWCLK pin are activated.
Table 11. STM32F030x4/6/8/C pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
LQFP32
TSSOP20
Alternate functions Additional functions
STM32F030x4/x6/x8/xC
34/93 DS9773 Rev 4
Table 12. Alternate functions selected through GPIOA_AFR registers for port A
Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6
PA0 -
USART1_CTS(2)
- - USART4_TX(1) --
USART2_CTS(1)(3)
PA1 EVENTOUT
USART1_RTS(2)
- - USART4_RX(1) TIM15_CH1N(1) -
USART2_RTS(1)(3)
PA2 TIM15_CH1(1)(3)
USART1_TX(2)
-- - - -
USART2_TX(1)(3)
PA3 TIM15_CH2(1)(3)
USART1_RX(2)
-- - - -
USART2_RX(1)(3)
PA4 SPI1_NSS
USART1_CK(2)
- - TIM14_CH1 USART6_TX(1) -
USART2_CK(1)(3)
PA5 SPI1_SCK - - - - USART6_RX(1) -
PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - USART3_CTS(1) TIM16_CH1 EVENTOUT
PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT
PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - -
PA9 TIM15_BKIN(1)(3) USART1_TX TIM1_CH2 - I2C1_SCL(1)(2) MCO(1) -
PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA(1)(2) --
PA11 EVENTOUT USART1_CTS TIM1_CH4 - - SCL -
STM32F030x4/x6/x8/xC
DS9773 Rev 4 35/93
PA12 EVENTOUT USART1_RTS TIM1_ETR - - SDA -
PA13 SWDIO IR_OUT - - - - -
PA14 SWCLK
USART1_TX(2)
-- - - -
USART2_TX(1)(3)
PA15 SPI1_NSS
USART1_RX(2)
- EVENTOUT USART4_RTS(1) --
USART2_RX(1)(3)
1. This feature is available on STM32F030xC devices.
2. This feature is available on STM32F030x4 and STM32F030x6 devices.
3. This feature is available on STM32F030x8 devices.
Table 13. Alternate functions selected through GPIOB_AFR registers for port B
Pin name AF0 AF1 AF2 AF3 AF4 AF5
PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - USART3_CK(1) -
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - USART3_RTS(1) -
PB2------
PB3 SPI1_SCK EVENTOUT - - USART5_TX(1) -
PB4 SPI1_MISO TIM3_CH1 EVENTOUT - USART5_RX(1) TIM17_BKIN(1)
PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA USART5_CK_RTS(1) -
PB6 USART1_TX I2C1_SCL TIM16_CH1N - - -
PB7 USART1_RX I2C1_SDA TIM17_CH1N - USART4_CTS(1) -
Table 12. Alternate functions selected through GPIOA_AFR registers for port A (continued)
Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6
STM32F030x4/x6/x8/xC
36/93 DS9773 Rev 4
PB8 - I2C1_SCL TIM16_CH1 - - -
PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT - SPI2_NSS(1)
PB10 -
I2C1_SCL(2)
- - USART3_TX(1) SPI2_SCK(1)
I2C2_SCL(1)(3)
PB11 EVENTOUT
I2C1_SDA(2)
- - USART3_RX(1) -
I2C2_SDA(1)(3)
PB12
SPI1_NSS(2)
EVENTOUT TIM1_BKIN - USART3_RTS(1) TIM15(1)
SPI2_NSS(1)(3)
PB13
SPI1_SCK(2)
- TIM1_CH1N - USART3_CTS(1) I2C2_SCL(1)
SPI2_SCK(1)(3)
PB14
SPI1_MISO(2)
TIM15_CH1(1)(3) TIM1_CH2N - USART3_RTS(1) I2C2_SDA(1)
SPI2_MISO(1)(3)
PB15
SPI1_MOSI(2)
TIM15_CH2(1)(3) TIM1_CH3N TIM15_CH1N(1)(3) --
SPI2_MOSI(1)(3)
1. This feature is available on STM32F030xC devices.
2. This feature is available on STM32F030x4 and STM32F030x6 devices.
3. This feature is available on STM32F030x8 devices.
Table 13. Alternate functions selected through GPIOB_AFR registers for port B (continued)
Pin name AF0 AF1 AF2 AF3 AF4 AF5
DS9773 Rev 4 37/93
STM32F030x4/x6/x8/xC
37
Table 14. Alternate functions selected through GPIOC_AFR(1) registers for port C
1. Available on STM32F030xC devices only.
Pin name AF0(2)
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOC_AFR registers).
AF1(1) AF2(1)
PC0 EVENTOUT - USART6_TX
PC1 EVENTOUT - USART6_RX
PC2 EVENTOUT SPI2_MISO -
PC3 EVENTOUT SPI2_MOSI -
PC4 EVENTOUT USART3_TX -
PC5 - USART3_RX -
PC6 TIM3_CH1 - -
PC7 TIM3_CH2 - -
PC8 TIM3_CH3 - -
PC9 TIM3_CH4 - -
PC10 USART4_TX(1) USART3_TX -
PC11 USART4_RX(1) USART3_RX -
PC12 USART4_CK(1) USART3_CK USART5_TX
PC13---
PC14---
PC15---
Table 15. Alternate functions selected through GPIOD_AFR(1) registers for port D
1. Available on STM32F030xC devices only.
Pin name AF0(2)
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOD_AFR registers).
AF1(1) AF2(1)
PD2 TIM3_ETR USART3_RTS USART5_RX
Table 16. Alternate functions selected through GPIOF_AFR(1) registers for port F
1. Available on STM32F030xC devices only.
Pin name AF0(2)
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOF_AFR registers).
AF1(1)
PF0 - I2C1_SDA
PF1 - I2C1_SCL
PF4 EVENTOUT(1)
PF5 EVENTOUT(1)
PF6 I2C1_SCL(3), I2C2_SCL(4)
3. Applies to STM32F030x4/x6
4. Applies to STM32F030x8
PF7 I2C1_SDA(3), I2C2_SDA(4)
Memory mapping STM32F030x4/x6/x8/xC
38/93 DS9773 Rev 4
5 Memory mapping
Figure 10. STM32F030x4/x6/x8/xC memory map
1. The start address of the system memory is 0x1FFF EC00 for STM32F030x4, STM32F030x6 and STM32F030x8 devices,
and 0x1FFF D800 for STM32F030xC devices.
MSv36474V2
AHB2
0
1
2
3
4
5
6
7
0xFFFF FFFF
Peripherals
SRAM
Flash memory
Reserved
System memory
Option Bytes
0xE010 0000
Flash, system
memory or SRAM,
depending on BOOT
configuration
0x0000 0000
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0x0800 0000
0x0804 0000
0x1FFF xx00(1)
0x1FFF F800
0x1FFF FFFF
0x0004 0000
Reserved
CODE
APB
APB
Reserved
0x4000 0000
0x4000 8000
0x4001 0000
0x4001 8000
Reserved
0x4002 0000
AHB1
0x4800 0000
Reserved
0x4800 17FF
0x4002 43FF
Cortex-M0 internal
peripherals
Reserved
0x1FFF FC00
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
DS9773 Rev 4 39/93
STM32F030x4/x6/x8/xC Memory mapping
40
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses
Bus Boundary address Size Peripheral
-0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1 KB GPIOF
0x4800 1000 - 0x4800 13FF 1 KB Reserved
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
-0x4002 4400 - 0x47FF FFFF ~128 MB Reserved
AHB1
0x4002 3400 - 0x4002 43FF 4 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0400 - 0x4002 0FFF 3 KB Reserved
0x4002 0000 - 0x4002 03FF 1 KB DMA
-0x4001 8000 - 0x4001 FFFF 32 KB Reserved
APB
0x4001 5C00 - 0x4001 7FFF 9 KB Reserved
0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU
0x4001 4C00 - 0x4001 57FF 3 KB Reserved
0x4001 4800 - 0x4001 4BFF 1 KB TIM17
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15(1)
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
0x4001 3000 - 0x4001 33FF 1 KB SPI1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB Reserved
0x4001 2400 - 0x4001 27FF 1 KB ADC
0x4001 1800 - 0x4001 23FF 3 KB Reserved
0x4001 1400 - 0x4001 17FF 1 KB USART6(2)
0x4001 0800 - 0x4001 13FF 3 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0000 - 0x4001 03FF 1 KB SYSCFG
Memory mapping STM32F030x4/x6/x8/xC
40/93 DS9773 Rev 4
-0x4000 8000 - 0x4000 FFFF 32 KB Reserved
APB
0x4000 7400 - 0x4000 7FFF 3 KB Reserved
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 5C00 - 0x4000 6FFF 5 KB Reserved
0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1)
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 5000 - 0x4000 53FF 1 KB USART5(2)
0x4000 4C00 - 0x4000 4FFF 1 KB USART4(2)
0x4000 4800 - 0x4000 4BFF 1 KB USART3(2)
0x4000 4400 - 0x4000 47FF 1 KB USART2(1)
0x4000 3C00 - 0x4000 43FF 2 KB Reserved
0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1)
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 2400 - 0x4000 27FF 1 KB Reserved
0x4000 2000 - 0x4000 23FF 1 KB TIM14
0x4000 1800 - 0x4000 1FFF 2 KB Reserved
0x4000 1400 - 0x4000 17FF 1 KB TIM7(2)
0x4000 1000 - 0x4000 13FF 1 KB TIM6(1)
0x4000 0800 - 0x4000 0FFF 2 KB Reserved
0x4000 0400 - 0x4000 07FF 1 KB TIM3
0x4000 0000 - 0x4000 03FF 1 KB Reserved
1. This feature is available on STM32F030x8 and STM32F030xC devices only. For STM32F030x6 and
STM32F060x4, the area is Reserved.
2. This feature is available on STM32F030xC devices only. This area is reserved for STM32F030x4/6/8
devices.
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses (continued)
Bus Boundary address Size Peripheral
DS9773 Rev 4 41/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
VIN
Electrical characteristics STM32F030x4/x6/x8/xC
42/93 DS9773 Rev 4
6.1.6 Power supply scheme
Figure 13. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
MSv39025V1
VDD
Level shifter
IO
logic
Kernel logic
(CPU, Digital
& Memories)
LSE, RTC,
Wake-up logic
IN
OUT
Regulator
GPIOs
2 x 100 nF
+1 x 4.7 μF
2 x VSS
2 x VDD
VCORE
Power switch
VDDIO1
ADC Analog:
(RCs, PLL, …)
VREF+
VREF-
VDDA
10 nF
+1 μF
VDDA
VSSA
MS32142V2
VDD
VDDA
IDD
IDDA
DS9773 Rev 4 43/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Tabl e 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 18. Voltage characteristics(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage -0.3 4.0 V
VDDA–VSS External analog supply voltage -0.3 4.0 V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum
allowed injected current values.
Input voltage on FT and FTf pins VSS 0.3 VDDIOx + 4.0 (3)
3. VDDIOx is internally connected with VDD pin.
V
Input voltage on TTa pins VSS 0.3 4.0 V
BOOT0 0 VDDIOx + 4.0 (3) V
Input voltage on any other pin VSS 0.3 4.0 V
|ΔVDDx| Variations between different VDD power pins - 50 mV
|VSSx VSS|Variations between all the different ground
pins -50mV
VESD(HBM)
Electrostatic discharge voltage
(human body model)
see Section 6.3.12: Electrical
sensitivity characteristics -
Electrical characteristics STM32F030x4/x6/x8/xC
44/93 DS9773 Rev 4
6.3 Operating conditions
6.3.1 General operating conditions
Table 19. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1) 120
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) -120
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
ΣIIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 80
Total output current sourced by sum of all I/Os and control pins(2) -80
IINJ(PIN)(3)
Injected current on FT and FTf pins -5/+0(4)
Injected current on TC and RST pin ± 5
Injected current on TTa pins(5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 52: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Table 21. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 48
MHz
fPCLK Internal APB clock frequency - 0 48
VDD Standard operating voltage - 2.4 3.6 V
DS9773 Rev 4 45/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
VDDA Analog operating voltage Must have a potential equal
to or higher than VDD
2.4 3.6 V
VIN I/O input voltage
TC and RST I/O -0.3 VDDIOx+0.3
V
TTa I/O -0.3 VDDA+0.3(2)
FT and FTf I/O -0.3 5.5(2)
BOOT0 0 5.5
PD
Power dissipation at TA = 85 °C
for suffix 6 (1)
LQFP64 - 455
mW
LQFP48 - 364
LQFP32 - 357
TSSOP20 - 263
TA Ambient temperature for the
suffix 6 version
Maximum power dissipation -40 85
°C
Low power dissipation(2) -40 105
TJ Junction temperature range Suffix 6 version -40 105 °C
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:
Thermal characteristics).
Table 21. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Table 22. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 23. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR(1) Power on/power down
reset threshold
Falling edge(2) 1.80 1.88 1.96(3) V
Rising edge 1.84(3) 1.92 2.00 V
Electrical characteristics STM32F030x4/x6/x8/xC
46/93 DS9773 Rev 4
6.3.4 Embedded reference voltage
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
VPDRhyst PDR hysteresis - - 40 - mV
tRSTTEMPO(4) Reset temporization - 1.50 2.50 4.50 ms
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Data based on characterization results, not tested in production.
4. Guaranteed by design, not tested in production.
Table 23. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 24. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT
Internal reference
voltage -40°C < TA < +85°C 1.2 1.23 1.25 V
tSTART
ADC_IN17 buffer startup
time ---10
(1) µs
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
-4 (1) --µs
ΔVREFINT
Internal reference
voltage spread over the
temperature range
VDDA = 3 V - - 10(1)
1. Guaranteed by design, not tested in production.
mV
TCoeff Temperature coefficient - -100(1) -100(1) ppm/°C
DS9773 Rev 4 47/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 27 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V(1)
Symbol
Parameter Conditions fHCLK
All peripherals enabled
Unit
Typ
Max @ TA(2)
85 °C
IDD
Supply current in
Run mode, code
executing from Flash
HSI or HSE clock, PLL on
48 MHz 22.0 22.8
mA
48 MHz 26.8 30.2
24 MHz 12.2 13.2
24 MHz 14.1 16.2
HSI or HSE clock, PLL off
8 MHz 4.4 5.2
8 MHz 4.9 5.6
IDD
Supply current in
Run mode, code
executing from RAM
HSI or HSE clock, PLL on
48 MHz 22.2 23.2
mA
48 MHz 26.1 29.3
24 MHz 11.2 12.2
24 MHz 13.3 15.7
HSI or HSE clock, PLL off
8 MHz 4.0 4.5
8 MHz 4.6 5.2
IDD
Supply current in
Sleep mode, code
executing from Flash
or RAM
HSI or HSE clock, PLL on
48 MHz 14 15.3
mA
48 MHz 17.0 19.0
24 MHz 7.3 7.8
24 MHz 8.7 10.1
HSI or HSE clock, PLL off
8 MHz 2.6 2.9
8 MHz 3.0 3.5
1. The gray shading is used to distinguish the values for STM32F030xC devices.
2. Data based on characterization results, not tested in production unless otherwise specified.
Electrical characteristics STM32F030x4/x6/x8/xC
48/93 DS9773 Rev 4
Table 26. Typical and maximum current consumption from the VDDA supply(1)
Symbol Parameter Conditions(2) fHCLK
VDDA = 3.6 V
Unit
Typ
Max @ TA(3)
85 °C
IDDA
Supply current in
Run or Sleep mode,
code executing
from Flash memory
or RAM
HSE bypass, PLL on
48 MHz 175 215
µA
48 MHz 160 192
HSE bypass, PLL off
8 MHz 3.9 4.9
8 MHz 3.7 4.6
1 MHz 3.9 4.1
1 MHz 3.3 4.4
HSI clock, PLL on
48 MHz 244 275
48 MHz 235 275
HSI clock, PLL off
8 MHz 85 105
8 MHz 77 92
1. The gray shading is used to distinguish the values for STM32F030xC devices.
2. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent of the
frequency.
3. Data based on characterization results, not tested in production.
DS9773 Rev 4 49/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins are in analog input configuration
The Flash access time is adjusted to fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled, fPCLK = fHCLK
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 27. Typical and maximum consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD
(VDD = VDDA)Max(1)
Unit
3.6 V TA = 85 °C
IDD
Supply current in
Stop mode
Regulator in run mode, all oscillators OFF 19 48
µA
Regulator in low-power mode, all oscillators OFF 5 32
Supply current in
Standby mode LSI ON and IWDG ON 2 -
IDDA
Supply current in
Stop mode
VDDA monitoring ON
Regulator in run or low-
power mode, all
oscillators OFF
2.9 3.5
Supply current in
Standby mode
LSI ON and IWDG ON 3.3 -
LSI OFF and IWDG OFF 2.8 3.5
Supply current in
Stop mode
VDDA monitoring OFF
Regulator in run or low-
power mode, all
oscillators OFF
1.7 -
Supply current in
Standby mode
LSI ON and IWDG ON 2.3 -
LSI OFF and IWDG OFF 1.4 -
1. Data based on characterization results, not tested in production unless otherwise specified.
Electrical characteristics STM32F030x4/x6/x8/xC
50/93 DS9773 Rev 4
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously, the I/Os
used by an application also contribute to the current consumption. When an I/O pin
switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to
charge/discharge the capacitive load (internal or external) connected to the pin:
Table 28. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Typ
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in Run
mode from VDD
supply
Running from
HSE crystal
clock 8 MHz,
code executing
from Flash
48 MHz 23.3 11.5
mA
8 MHz 4.5 3.0
IDDA
Supply current in Run
mode from VDDA
supply
48 MHz 158 158
µA
8 MHz 2.43 2.43
ISW VDDIOx fSW C××=
DS9773 Rev 4 51/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 30 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 21: General operating conditions.
Table 29. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
4 MHz 0.18
mA
8 MHz 0.37
16 MHz 0.76
24 MHz 1.39
48 MHz 2.188
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
4 MHz 0.49
8 MHz 0.94
16 MHz 2.38
24 MHz 3.99
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
4 MHz 0.81
8 MHz 1.7
16 MHz 3.67
Electrical characteristics STM32F030x4/x6/x8/xC
52/93 DS9773 Rev 4
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 15: High-speed external clock
source AC timing diagram.
Figure 15. High-speed external clock source AC timing diagram
Table 30. Low-power mode wakeup timings
Symbol Parameter Conditions
Typ @VDD =
VDDA Max Unit
= 3.3 V
tWUSTOP Wakeup from Stop mode Regulator in run mode 2.8 5
µs
tWUSTANDBY Wakeup from Standby mode - 51 -
tWUSLEEP Wakeup from Sleep mode - 4 SYSCLK
cycles -
Table 31. High-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fHSE_ext User external clock source frequency 1 8 32 MHz
VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
MS19214V2
VHSEH
tf(HSE)
90%
10%
THSE
t
tr(HSE)
VHSEL
tw(HSEH)
tw(HSEL)
DS9773 Rev 4 53/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 16.
Figure 16. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 33. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 32. Low-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fLSE_ext User external clock source frequency - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 50
Table 33. HSE oscillator characteristics
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 - kΩ
MS19215V2
VLSEH
tf(LSE)
90%
10%
TLSE
t
tr(LSE)
VLSEL
tw(LSEH)
tw(LSEL)
Electrical characteristics STM32F030x4/x6/x8/xC
54/93 DS9773 Rev 4
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 17. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
IDD HSE current consumption
During startup(3) --8.5
mA
VDD = 3.3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-0.5-
VDD = 3.3 V,
Rm = 30 Ω,
CL = 20 pF@32 MHz
-1.5-
gm Oscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4) Startup time VDD is stabilized - 2 - ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Table 33. HSE oscillator characteristics
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
MS19876V1
(1)
OSC_IN
OSC_OUT
RF
Bias
controlled
gain
fHSE
REXT
8 MHz
resonator
Resonator with integrated
capacitors
CL1
CL2
DS9773 Rev 4 55/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
obtained with typical external components specified in Table 34. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 18. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1)
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
Min(2) Typ Max(2)
2. Guaranteed by design, not tested in production.
Unit
IDD
LSE current
consumption
low drive capability - 0.5 0.9
µA
medium-low drive capability - - 1
medium-high drive capability - - 1.3
high drive capability - - 1.6
gm
Oscillator
transconductance
low drive capability 5 - -
µA/V
medium-low drive capability 8 - -
medium-high drive capability 15 - -
high drive capability 25 - -
tSU(LSE)(3)
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly
with the crystal manufacturer
Startup time VDDIOx is stabilized - 2 - s
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
fLSE
32.768 kHz
resonator
Resonator with integrated
capacitors
CL1
CL2
Electrical characteristics STM32F030x4/x6/x8/xC
56/93 DS9773 Rev 4
6.3.8 Internal clock source characteristics
The parameters given in Table 35 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI) RC oscillator
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Low-speed internal (LSI) RC oscillator
Table 35. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCyHSI Duty cycle - 45(2) -55
(2) %
ACCHSI
Accuracy of the HSI oscillator
(factory calibrated)
TA = -40 to 85°C - ±5 - %
TA = 25°C - ±1(3)
3. With user calibration.
-%
tSU(HSI) HSI oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption --80-µA
Table 36. HSI14 oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI14 Frequency - - 14 - MHz
TRIM HSI14 user-trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI14) Duty cycle - 45(2) -55
(2) %
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated) TA = –40 to 85 °C - ±5 - %
tsu(HSI14) HSI14 oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI14)
HSI14 oscillator power
consumption - - 100 - µA
Table 37. LSI oscillator characteristics(1)
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
DS9773 Rev 4 57/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
6.3.9 PLL characteristics
The parameters given in Table 38 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = -40 to 85 °C unless otherwise specified.
tsu(LSI)(2) LSI oscillator startup time - - 85 µs
IDDA(LSI)(2) LSI oscillator power consumption - 0.75 - µA
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
Table 37. LSI oscillator characteristics(1)
Symbol Parameter Min Typ Max Unit
Table 38. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT.
1(2) 8.0 24(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -48MHz
tLOCK PLL lock time - - 200(2)
2. Guaranteed by design, not tested in production.
µs
JitterPLL Cycle-to-cycle jitter - - 300(2) ps
Table 39. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA = -40 to +85 °C - 53.5 - µs
tERASE Page erase time(2)
2. Page size is 1KB for STM32F030x4/6/8 devices and 2KB for STM32F030xC devices
TA = -40 to +85 °C - 30 - ms
tME Mass erase time TA = -40 to +85 °C - 30 - ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
Vprog Programming voltage - 2.4 - 3.6 V
Electrical characteristics STM32F030x4/x6/x8/xC
58/93 DS9773 Rev 4
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
Table 40. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Unit
NEND Endurance TA = -40 to +85 °C 1kcycle
tRET Data retention 1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
20 Years
Table 41. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3V, LQFP48, TA = +25 °C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-2
3B(1)
2B(2)
1. Applies to STM32F030xC.
2. Applies to STM32F030x4/x6/x8.
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3V, LQFP48, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
4B
DS9773 Rev 4 59/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 42. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP100 package
compliant with
IEC 61967-2
0.1 to 30 MHz -3
dBµV30 to 130 MHz 23
130 MHz to 1 GHz 17
EMI Level 4 -
Electrical characteristics STM32F030x4/x6/x8/xC
60/93 DS9773 Rev 4
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 45.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 43. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming
to JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD STM5.3.1 All C4(2)
C3(3)
500(2)
250(3) V
1. Data based on characterization results, not tested in production.
2. Applicable to STM32F030xC
3. Applicable to STM32F030x4, STM32F030x6, and STM32F030x8
Table 44. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
DS9773 Rev 4 61/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 45. I/O current injection susceptibility
Symbol Description
Functional
susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 and PF1 pins -0 NA
mA
Injected current on PA9, PB3, PB13, PF11 pins with induced
leakage current on adjacent pins less than 50 µA-5 NA
Injected current on PA11 and PA12 pins with induced
leakage current on adjacent pins less than -1 mA -5 NA
Injected current on all other FT and FTf pins -5 NA
Injected current on PB0 and PB1 pins -5 NA
Injected current on PC0 pin -0 +5
Injected current on all other TTa, TC and RST pins -5 +5
Table 46. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TC and TTa I/O - - 0.3 VDDIOx+0.07(1)
V
FT and FTf I/O - - 0.475 VDDIOx–0.2(1)
BOOT0 - - 0.3 VDDIOx–0.3(1)
All I/Os except
BOOT0 pin --0.3 V
DDIOx
VIH
High level input
voltage
TC and TTa I/O 0.445 VDDIOx+0.398(1) --
V
FT and FTf I/O 0.5 VDDIOx+0.2(1) --
BOOT0 0.2 VDDIOx+0.95(1) --
All I/Os except
BOOT0 pin 0.7 VDDIOx --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200(1) -
mVFT and FTf I/O - 100(1) -
BOOT0 - 300(1) -
Electrical characteristics STM32F030x4/x6/x8/xC
62/93 DS9773 Rev 4
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 for standard I/Os, and in Figure 20 for
5 V tolerant I/Os. The following curves are design simulation results, not tested in
production.
Ilkg Input leakage
current(2)
TC, FT and FTf I/O
TTa in digital mode
VSS VIN VDDIOx
--± 0.1
µA
TTa in digital mode
VDDIOx VIN VDDA
--1
TTa in analog mode
VSS VIN VDDA
--± 0.2
FT and FTf I/O (3)
VDDIOx VIN 5 V --10
RPU
Weak pull-up
equivalent resistor
(4)
VIN = VSS 25 40 55 kΩ
RPD
Weak pull-down
equivalent
resistor(4)
VIN = VDDIOx 25 40 55 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45:
I/O current injection susceptibility.
3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
Table 46. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS9773 Rev 4 63/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Figure 19. TC and TTa I/O input characteristics
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics
MSv32130V4
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
0
0.5
1
1.5
2
2.5
3
TESTED RANGE
TESTED RANGE
V
IHmin
= 0.7 V
DDIOx
(CMOS standard requirement)
V
ILmax
= 0.3 V
DDIOx
(CMOS standard requirement)
UNDEFINED INPUT RANGE
V
IHmin
= 0.445 V
DDIOx
+ 0.398
V
ILmax
= 0.3 V
DDIOx
+ 0.07
VIN (V)
VDDIOx (V)
TTL standard requirement
TTL standard requirement
MSv32131V4
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
0
0.5
1
1.5
2
2.5
3
TESTED RANGE
TESTED RANGE
V
IHmin
= 0.7 V
DDIOx
(CMOS standard requirement)
V
ILmax
= 0.3 V
DDIOx
(CMOS standard requirement)
UNDEFINED INPUT RANGE
V
IHmin
= 0.5 V
DDIOx
+ 0.2
VILmax = 0.475 VDDIOx - 0.2
VIN (V)
VDDIOx (V)
TTL standard requirement
TTL standard requirement
Electrical characteristics STM32F030x4/x6/x8/xC
64/93 DS9773 Rev 4
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 18: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 18: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Tabl e 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 21 and
Tabl e 48, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 47. Output voltage characteristics(1)
Symbol Parameter Conditions Min Max Unit
VOL Output low level voltage for an I/O pin |IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin VDDIOx–0.4 -
VOL(2) Output low level voltage for an I/O pin |IIO| = 20 mA
VDDIOx 2.7 V
-1.3
V
VOH(2) Output high level voltage for an I/O pin VDDIOx–1.3 -
VOL(2) Output low level voltage for an I/O pin
|IIO| = 6 mA
-0.4
V
VOH(2) Output high level voltage for an I/O pin VDDIOx–0.4 -
VOLFm+(2) Output low level voltage for an FTf I/O pin in
Fm+ mode
|IIO| = 20 mA
VDDIOx 2.7 V -0.4V
|IIO| = 10 mA - 0.4 V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. Data based on characterization results. Not tested in production.
DS9773 Rev 4 65/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Table 48. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1) Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2.4 V
-2MHz
tf(IO)out Output fall time - 125
ns
tr(IO)out Output rise time - 125
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2.4 V
-10MHz
tf(IO)out Output fall time - 25
ns
tr(IO)out Output rise time - 25
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDDIOx 2.7 V - 50
MHzCL = 50 pF, VDDIOx 2.7 V - 30
CL = 50 pF, 2.4 V VDDIOx < 2.7 V - 20
tf(IO)out Output fall time
CL = 30 pF, VDDIOx 2.7 V - 5
ns
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, 2.4 V VDDIOx < 2.7 V - 12
tr(IO)out Output rise time
CL = 30 pF, VDDIOx 2.7 V - 5
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, 2.4 V VDDIOx < 2.7 V - 12
Fm+
configuration
(4)
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2.4 V
-2MHz
tf(IO)out Output fall time - 12
ns
tr(IO)out Output rise time - 34
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10-ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 21.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360
for a detailed description of Fm+ I/O configuration.
Electrical characteristics STM32F030x4/x6/x8/xC
66/93 DS9773 Rev 4
Figure 21. I/O AC characteristics definition
6.3.15 NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Tabl e 21: General operating conditions.
MS32132V3
T
10%
50%
90% 10%
50%
90%
Maximum frequency is achieved if (t + t ) ≤
when loaded by C (see the table I/O AC characteristics definition)
rf
r(IO)out
tf(IO)out
t
L
2
3T and if the duty cycle is (45-55%)
Table 49. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1)
V
VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) --
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis --200-mV
RPU
Weak pull-up equivalent
resistor(2) VIN = VSS 25 40 55 kΩ
VF(NRST) NRST input filtered pulse - - - 100(1) ns
VNF(NRST) NRST input not filtered pulse
2.7 < VDD < 3.6 300(3) --
ns
2.4 < VDD < 3.6 500(3) --
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
DS9773 Rev 4 67/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Figure 22. Recommended NRST pin protection
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
6.3.16 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 50 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 21: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
MS19878V4
RPU
VDD
Internal reset
External
reset circuit(1)
NRST(2)
Filter
0.1 μF(3)
Table 50. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC ON - 2.4 - 3.6 V
IDDA (ADC)
Current consumption of
the ADC(1) VDD = VDDA = 3.3 V - 0.9 - mA
fADC ADC clock frequency - 0.6 - 14 MHz
fS(2) Sampling rate - 0.05 - 1 MHz
fTRIG(2) External trigger
frequency
fADC = 14 MHz - - 823 kHz
---171/f
ADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(2) External input impedance See Equation 1 and
Table 51 for details --50kΩ
RADC(2) Sampling switch
resistance ---1kΩ
CADC(2) Internal sample and hold
capacitor ---8pF
Electrical characteristics STM32F030x4/x6/x8/xC
68/93 DS9773 Rev 4
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
tCAL(2)(3) Calibration time
fADC = 14 MHz 5.9 µs
-831/f
ADC
WLATENCY(2)(4) ADC_DR register write
latency
ADC clock = HSI14
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2 - 4.5 - fPCLK
cycle
ADC clock = PCLK/4 - 8.5 - fPCLK
cycle
tlatr(2) Trigger conversion
latency
fADC = fPCLK/2 =
14 MHz 0.196 µs
fADC = fPCLK/2 5.5 1/fPCLK
fADC = fPCLK/4 =
12 MHz 0.219 µs
fADC = fPCLK/4 10.5 1/fPCLK
fADC = fHSI14 = 14 MHz 0.188 - 0.259 µs
JitterADC ADC jitter on trigger
conversion fADC = fHSI14 -1-1/f
HSI14
tS(2) Sampling time
fADC = 14 MHz 0.107 - 17.1 µs
- 1.5 - 239.5 1/fADC
tSTAB(2) Stabilization time - 14 1/fADC
tCONV(2) Total conversion time
(including sampling time)
fADC = 14 MHz,
12-bit resolution 1 - 18 µs
12-bit resolution 14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
Table 50. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
DS9773 Rev 4 69/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Table 51. RAIN max for fADC = 14 MHz
Ts (cycles) tS (µs) RAIN max (kΩ)(1)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.52.0425.2
41.52.9637.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Table 52. ADC accuracy(1)(2)(3)
Symbol Parameter Test conditions Typ Max(4) Unit
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 2.7 V to 3.6 V
TA = 40 to 85 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
Electrical characteristics STM32F030x4/x6/x8/xC
70/93 DS9773 Rev 4
Figure 23. ADC accuracy characteristics
Figure 24. Typical connection diagram using the ADC
1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
E
T
= total unajusted error: maximum deviation
between the actual and ideal transfer curves.
E
O
= offset error: maximum deviation
between the first actual transition and
the first ideal one.
E
G
= gain error: deviation between the last
ideal transition and the last actual one.
E
D
= differential linearity error: maximum
deviation between actual steps and the ideal ones.
E
L
= integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
7
6
5
4
3
2
1
023456
17 4093 4094 4095 4096
V
DDA
V
SSA
EO
ET
EL
EG
ED
1 LSB IDEAL
(1)
(3)
(2)
MS19880V2
MS33900V1
VDDA
AINx
IL±1 μA
VT
RAIN (1)
Cparasitic
V
AIN
VT
RADC 12-bit
con ver ter
CADC
Sample and hold ADC
con ver ter
DS9773 Rev 4 71/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
6.3.17 Temperature sensor characteristics
6.3.18 Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 53. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ± 1± C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V30 Voltage at 30 °C (± 5 °C)(2) 1.34 1.43 1.52 V
tSTART(1) ADC_IN16 buffer startup time - - 10 µs
tS_temp(1) ADC sampling time when reading the
temperature 4- -µs
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:
Temperature sensor calibration values.
Table 54. TIMx characteristics
Symbol Parameter Conditions Min Typ Max Unit
tres(TIM) Timer resolution
--1-
tTIMxCLK
fTIMxCLK = 48 MHz - 20.8 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4
--
fTIMxCLK/2 -MHz
fTIMxCLK = 48 MHz - 24 - MHz
tMAX_COUNT
16-bit timer maximum
period
--
216 -tTIMxCLK
fTIMxCLK = 48 MHz - 1365 - µs
32-bit timer maximum
period
--
232 -tTIMxCLK
fTIMxCLK = 48 MHz - 89.48 - s
Electrical characteristics STM32F030x4/x6/x8/xC
72/93 DS9773 Rev 4
6.3.19 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 55. IWDG min/max timeout period at 40 kHz (LSI)(1)
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF Unit
/4 0 0.1 409.6
ms
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 6 or 7 6.4 26214.4
Table 56. WWDG min/max timeout value at 48 MHz (PCLK)
Prescaler WDGTB Min timeout value Max timeout value Unit
1 0 0.0853 5.4613
ms
2 1 0.1706 10.9226
4 2 0.3413 21.8453
8 3 0.6826 43.6906
DS9773 Rev 4 73/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
SPI characteristics
Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 21: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 57. I2C analog filter characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
Table 58. SPI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 18
MHz
Slave mode - 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 15 pF - 6 ns
tsu(NSS) NSS setup time Slave mode 4Tpclk -
ns
th(NSS) NSS hold time Slave mode 2Tpclk + 10 -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 Tpclk/2 -2 Tpclk/2 + 1
tsu(MI)
tsu(SI)
Data input setup time
Master mode 4 -
Slave mode 5 -
th(MI) Data input hold time
Master mode 4 -
th(SI) Slave mode 5 -
ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk
tdis(SO)(3) Data output disable time Slave mode 0 18
tv(SO) Data output valid time Slave mode (after enable edge) - 22.5
tv(MO) Data output valid time Master mode (after enable edge) - 6
th(SO) Data output hold time
Slave mode (after enable edge) 11.5 -
th(MO) Master mode (after enable edge) 2 -
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 25 75 %
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
Electrical characteristics STM32F030x4/x6/x8/xC
74/93 DS9773 Rev 4
Figure 25. SPI timing diagram - slave mode and CPHA = 0
Figure 26. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
ai14135b
NSS input
tSU(NSS) tc(SCK) th(NSS)
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
ta(SO) tv(SO) th(SO) tr(SCK)
tf(SCK) tdis(SO)
MISO
OUTPUT
MOSI
INPUT
tsu(SI) th(SI)
MSB OUT
MSB IN
BIT6 OUT LSB OUT
LSB IN
BIT 1 IN
DS9773 Rev 4 75/93
STM32F030x4/x6/x8/xC Electrical characteristics
75
Figure 27. SPI timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Package information STM32F030x4/x6/x8/xC
76/93 DS9773 Rev 4
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP64 package information
LQFP64 is 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 28. LQFP64 outline
1. Drawing is not to scale.
Table 59. LQFP64 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
5W_ME_V3
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
DS9773 Rev 4 77/93
STM32F030x4/x6/x8/xC Package information
89
Figure 29. LQFP64 recommended footprint
1. Dimensions are expressed in millimeters.
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 59. LQFP64 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909c
Package information STM32F030x4/x6/x8/xC
78/93 DS9773 Rev 4
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 30. LQFP64 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv36475V1
Product identification (1)
Pin 1 identifier
Revision code
Date code
STM32F030
RCT6
YWW
R
DS9773 Rev 4 79/93
STM32F030x4/x6/x8/xC Package information
89
7.2 LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package
Figure 31. LQFP48 outline
1. Drawing is not to scale.
Table 60. LQFP48 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
5B_ME_V2
PIN 1
IDENTIFICATION
ccc C
C
D3
0.25 mm
GAUGE PLANE
b
A1
A
A2
c
A1
L1
L
D
D1
E3
E1
E
e
12
1
13
24
25
36
37
48
SEATING
PLANE
K
Package information STM32F030x4/x6/x8/xC
80/93 DS9773 Rev 4
Figure 32. LQFP48 recommended footprint
1. Dimensions are expressed in millimeters.
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 60. LQFP48 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
9.70 5.80 7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911d
1348
DS9773 Rev 4 81/93
STM32F030x4/x6/x8/xC Package information
89
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 33. LQFP48 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32F
MSv36476V1
030CCT6
R
YWW
Product identification(1)
Revision code
Date code
Pin 1 identifier
Package information STM32F030x4/x6/x8/xC
82/93 DS9773 Rev 4
7.3 LQFP32 package information
LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package
Figure 34. LQFP32 outline
1. Drawing is not to scale.
Table 61. LQFP32 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
D
D1
D3
E3
E1
E
18
9
16
17
24
25
32
A1
L1
L
K
A1
A2
A
c
b
GAUGE PLANE
0.25 mm
SEATING
PLANE
C
PIN 1
IDENTIFICATION
ccc C
5V_ME_V2
e
DS9773 Rev 4 83/93
STM32F030x4/x6/x8/xC Package information
89
Figure 35. LQFP32 recommended footprint
1. Dimensions are expressed in millimeters.
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 61. LQFP32 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
5V_FP_V2
18
9
16
17
24
25
32
9.70
7.30
7.30
1.20
0.30
0.50
1.20
6.10
9.70
0.80
6.10
Package information STM32F030x4/x6/x8/xC
84/93 DS9773 Rev 4
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 36. LQFP32 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32F
MSv36477V1
030K6T6
R
YWW
Product identification (1)
Revision code
Date code
Pin 1 identification
DS9773 Rev 4 85/93
STM32F030x4/x6/x8/xC Package information
89
7.4 TSSOP20 package information
TSSOP20 is a 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch package.
Figure 37. TSSOP20 outline
1. Drawing is not to scale.
Table 62. TSSOP20 mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
c 0.090 - 0.200 0.0035 - 0.0079
D 6.400 6.500 6.600 0.2520 0.2559 0.2598
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1 4.300 4.400 4.500 0.1693 0.1732 0.1772
e - 0.650 - - 0.0256 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
YA_ME_V3
1
20
C
c
L
EE1
D
A2
A
k
eb
10
11
A1
L1
aaa
SEATING
PLANE
CGAUGE PLANE
0.25 mm
PIN 1
IDENTIFICATION
Package information STM32F030x4/x6/x8/xC
86/93 DS9773 Rev 4
Figure 38. TSSOP20 footprint
1. Dimensions are expressed in millimeters.
k 0° - 8° 0° - 8°
aaa - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Table 62. TSSOP20 mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
YA_FP_V1
7.10 4.40
0.25
0.25
6.25
1.35
0.40 0.65
1.35
1
20 11
10
DS9773 Rev 4 87/93
STM32F030x4/x6/x8/xC Package information
89
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 39. TSSOP20 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv36478V1
Revision code
Date code
Device identification (1)
Pin 1 identification
32F030F4P6
YWWR
Package information STM32F030x4/x6/x8/xC
88/93 DS9773 Rev 4
7.5 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Tabl e 21: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDD - VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.5.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
Table 63. Package thermal characteristics
Symbol Parameter Value Unit
Θ
J
Thermal resistance junction-ambient
LQFP64 - 10 mm x 10 mm 44
°C/W
Thermal resistance junction-ambient
LQFP48 - 7 mm x 7 mm 55
Thermal resistance junction-ambient
LQFP32 - 7 mm x 7 mm 56
Thermal resistance junction-ambient
TSSOP20 - 6.5 mm x 6.4 mm 76
DS9773 Rev 4 89/93
STM32F030x4/x6/x8/xC Ordering information
89
8 Ordering information
+
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Example: STM32 F 030 C 6 T 6 x
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
030 = STM32F030xx
Pin count
F = 20 pins
K = 32 pins
C = 48 pins
R = 64 pins
Code size
4 = 16 Kbyte of Flash memory
6 = 32 Kbyte of Flash memory
8 = 64 Kbyte of Flash memory
C = 256 Kbyte of Flash memory
Package
P = TSSOP
T = LQFP
Temperature range
6 = –40 to 85 °C
Option
xxx = programmed parts
TR = tape and reel
Revision history STM32F030x4/x6/x8/xC
90/93 DS9773 Rev 4
9 Revision history
Table 64. Document revision history
Date Revision Changes
04-Jul-2013 1 Initial release.
15-Jan-2015 2
Extended the applicability to STM32F030xC.
Updated:
Features and Table Device summary,
Section: Description,
Table: STM32F030x4/6/8/C family device features
and peripheral counts,
Figure: Block diagram,
Section: Memories,
Section: General-purpose inputs/outputs (GPIOs),
Section: Universal synchronous/asynchronous
receiver transmitters (USART),
Table: STM32F030x4/6/8/C pin definitions,
Table: Alternate functions selected through
GPIOA_AFR registers for port A,
Table: Alternate functions selected through
GPIOB_AFR registers for port B
Table: Alternate functions selected through
GPIOC_AFR registers for port C
Table: Alternate functions selected through
GPIOD_AFR registers for port D,
Table: Alternate functions selected through
GPIOF_AFR registers for port F,
Section: EMC characteristics,
Section: Part numbering.
Added device marking examples:
Figure: LQFP64 marking example (package top view),
Figure: LQFP48 marking example (package top view),
Figure: LQFP32 marking example (package top view),
Figure: TSSOP20 marking example (package top
view).
23-Jan-2017 3
Updated:
Table 2: STM32F030x4/x6/x8/xC family device
features and peripheral counts
Figure 1: Block diagram and figure footnotes
Figure 2: Clock tree of STM32F030x4/x6/x8 and
figure footnotes
Section 3.11: Timers and watchdogs - number of
timers, counts of complementary outputs in the table
and the footnotes