LCMXO_MachXO Family Datasheet

Lattice Semiconductor Corporation

View All Related Products | Download PDF Datasheet

Datasheet

MachXO Family Data Sheet
DS1002 Version 03.0, June 2013
June 2013 Data Sheet DS1002
© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com 1-1 DS1002 Introduction_01.5
Features
Non-volatile, Infinitely Reconfigurable
Instant-on – powers up in microseconds
Single chip, no external configuration memory
required
Excellent design security, no bit stream to
intercept
Reconfigure SRAM based logic in milliseconds
SRAM and non-volatile memory programmable
through JTAG port
Supports background programming of
non-volatile memory
Sleep Mode
Allows up to 100x static current reduction
TransFR™ Reconfiguration (TFR)
In-field logic update while system operates
High I/O to Logic Density
256 to 2280 LUT4s
73 to 271 I/Os with extensive package options
Density migration supported
Lead free/RoHS compliant packaging
Embedded and Distributed Memory
Up to 27.6 Kbits sysMEM™ Embedded Block
RAM
Up to 7.7 Kbits distributed RAM
Dedicated FIFO control logic
Flexible I/O Buffer
Programmable sysIO™ buffer supports wide
range of interfaces:
LVCMOS 3.3/2.5/1.8/1.5/1.2
LVTTL
PCI
LVDS, Bus-LVDS, LVPECL, RSDS
sysCLOCK™ PLLs
Up to two analog PLLs per device
Clock multiply, divide, and phase shifting
System Level Support
IEEE Standard 1149.1 Boundary Scan
Onboard oscillator
Devices operate with 3.3V, 2.5V, 1.8V or 1.2V
power supply
IEEE 1532 compliant in-system programming
Introduction
The MachXO is optimized to meet the requirements of
applications traditionally addressed by CPLDs and low
capacity FPGAs: glue logic, bus bridging, bus interfac-
ing, power-up control, and control logic. These devices
bring together the best features of CPLD and FPGA
devices on a single chip.
Table 1-1. MachXO Family Selection Guide
Device LCMXO256 LCMXO640 LCMXO1200 LCMXO2280
LUTs 256 640 1200 2280
Dist. RAM (Kbits) 2.0 6.1 6.4 7.7
EBR SRAM (Kbits) 0 0 9.2 27.6
Number of EBR SRAM Blocks (9 Kbits)0013
VCC Voltage 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V
Number of PLLs 0012
Max. I/O 78 159 211 271
Packages
100-pin TQFP (14x14 mm) 78 74 73 73
144-pin TQFP (20x20 mm) 113 113 113
100-ball csBGA (8x8 mm) 78 74
132-ball csBGA (8x8 mm) 101 101 101
256-ball caBGA (14x14 mm) 159 211 211
256-ball ftBGA (17x17 mm) 159 211 211
324-ball ftBGA (19x19 mm) 271
MachXO Family Data Sheet
Introduction
Introduction
MachXO Family Data Sheet
1-2
The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flex-
ible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, high-
security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and
careful design will provide the high pin-to-pin performance also associated with CPLDs.
The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the MachXO
family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools
use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in
the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design
for timing verification.
June 2013 Data Sheet DS1002
© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com 2-1 DS1002 Architecture_01.5
Architecture Overview
The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some
devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Figures 2-1,
2-2, and 2-3 show the block diagrams of the various family members.
The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a
column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks.
The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of inter-
face standards. The blocks are connected with many vertical and horizontal routing channel resources. The place
and route software tool automatically allocates these routing resources.
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional
unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register func-
tions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and
PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic
blocks are arranged in a two-dimensional array. Only one type of block is used per row.
In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on dif-
ferent Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast mem-
ory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or
FIFO. FIFO support includes dedicated FIFO pointer and flag “hard” control logic to minimize LUT use.
The MachXO registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is
configured, the device enters into user mode with these registers SET/RESET according to the configuration set-
ting, allowing device entering to a known state for predictable system function.
The MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices.
These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting
capabilities that are used to manage the frequency and phase relationships of the clocks.
Every device in the family has a JTAG Port that supports programming and configuration of the device as well as
access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power
supplies, providing easy integration into the overall system.
MachXO Family Data Sheet
Architecture
2-2
Architecture
MachXO Family Data Sheet
Figure 2-1. Top View of the MachXO1200 Device1
1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.
Figure 2-2. Top View of the MachXO640 Device
JTAG Port
Programmable
Functional Units
without RAM (PFFs)
Programmable
Functional Units
with RAM (PFUs)
PIOs Arranged into
sysIO Banks
sysMEM Embedded
Block RAM (EBR)
sysCLOCK
PLL
JTAG Port
PIOs Arranged into
sysIO Banks
Programmable
Function Units
with RAM (PFUs)
Programmable
Function Units
without RAM (PFFs)
2-3
Architecture
MachXO Family Data Sheet
Figure 2-3. Top View of the MachXO256 Device
PFU Blocks
The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform
Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform
Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will
use the term PFU to refer to both PFU and PFF blocks.
Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs
and 25 outputs associated with each PFU block.
Figure 2-4. PFU Diagram
Slice
Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and
some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and
LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock
select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice.
The registers in the Slice can be configured for positive/negative and edge/level clocks.
JTAG Port
Programmable
Function
Units with
RAM (PFUs)
Programmable Function
Units without RAM (PFFs)
PIOs Arranged
into sysIO Banks
Slice 0
LUT4 &
CARRY
LUT4 &
CARRY
FF/
Latch
FCIN FCO
DFF/
Latch
D
Slice 1
LUT4 &
CARRY
LUT4 &
CARRY
Slice 2
LUT4 &
CARRY
LUT4 &
CARRY
From
Routing
To
Routing
Slice 3
LUT4 &
CARRY
LUT4 &
CARRY
FF/
Latch
DFF/
Latch
DFF/
Latch
DFF/
Latch
DFF/
Latch
DFF/
Latch
D
2-4
Architecture
MachXO Family Data Sheet
There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU).
There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the sig-
nals associated with each Slice.
Figure 2-5. Slice Diagram
Table 2-1. Slice Signal Descriptions
Function Type Signal Names Description
Input Data signal A0, B0, C0, D0 Inputs to LUT4
Input Data signal A1, B1, C1, D1 Inputs to LUT4
Input Multi-purpose M0/M1 Multipurpose Input
Input Control signal CE Clock Enable
Input Control signal LSR Local Set/Reset
Input Control signal CLK System Clock
Input Inter-PFU signal FCIN Fast Carry In1
Output Data signals F0, F1 LUT4 output register bypass signals
Output Data signals Q0, Q1 Register Outputs
Output Data signals OFX0 Output of a LUT5 MUX
Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the Slice
Output Inter-PFU signal FCO Fast Carry Out1
1. See Figure 2-4 for connection details.
2. Requires two PFUs.
LUT4 &
CARRY
LUT4 &
CARRY
Slice
A0
B0
C0
D0
FF/
Latch
OFX0
F0
Q0
A1
B1
C1
D1
CI
CI
CO
CO
F
SUM
CE
CLK
LSR
FF/
Latch
OFX1
F1
Q1
Fast Connection
to I/O Cell*
F
SUM
D
D
M1
From Adjacent Slice/PFU
To Adjacent Slice/PFU
Fast Connection
to I/O Cell*
LUT
Expansion
Mux
M0
OFX0
From
Routing
To
Routing
Control Signals
selected and
inverted per
Slice in routing
Notes:
Some inter-Slice signals are not shown.
* Only PFUs at the edges have fast connections to the I/O cell.
2-5
Architecture
MachXO Family Data Sheet
Modes of Operation
Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of
all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.
Table 2-2. Slice Modes
Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A
LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by program-
ming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger
lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the fol-
lowing functions can be implemented by each Slice:
Addition 2-bit
Subtraction 2-bit
Add/Subtract 2-bit using dynamic control
Up counter 2-bit
Down counter 2-bit
Ripple mode multiplier building block
Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B
Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast
arithmetic functions to be constructed by concatenating Slices.
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory.
Through the combination of LUTs and Slices, a variety of different memories can be constructed.
The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the
software will construct these using distributed memory primitives that represent the capabilities of the PFU.
Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows
the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice
functions as the read-write port, while the other companion Slice supports the read-only port. For more information
on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data
sheet.
Table 2-3. Number of Slices Required For Implementing Distributed RAM
Logic Ripple RAM ROM
PFU Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit SP 16x2 ROM 16x1 x 2
PFF Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit N/A ROM 16x1 x 2
SPR16x2 DPR16x2
Number of Slices 1 2
Note: SPR = Single Port RAM, DPR = Dual Port RAM
2-6
Architecture
MachXO Family Data Sheet
Figure 2-6. Distributed Memory Primitives
ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is
accomplished through the programming interface during configuration.
PFU Modes of Operation
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the
functionality possible at the PFU level.
Table 2-4. PFU Modes of Operation
Routing
There are many resources provided in the MachXO devices to route signals individually or as buses with related
control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) seg-
ments.
The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2
(spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connec-
tions in the horizontal and vertical directions.
Logic Ripple RAM ROM
LUT 4x8 or
MUX 2x1 x 8 2-bit Add x 4 SPR16x2 x 4
DPR16x2 x 2 ROM16x1 x 8
LUT 5x4 or
MUX 4x1 x 4 2-bit Sub x 4 SPR16x4 x 2
DPR16x4 x 1 ROM16x2 x 4
LUT 6x 2 or
MUX 8x1 x 2 2-bit Counter x 4 SPR16x8 x 1 ROM16x4 x 2
LUT 7x1 or
MUX 16x1 x 1 2-bit Comp x 4 ROM16x8 x 1
DO1
DO0
DI0
DI1
AD0
AD1
AD2
AD3
WRE
CK
DO0
AD0
AD1
AD2
AD3
DPR16x2SPR16x2
ROM16x1
RDO1
RDO0
DI0
DI1
WCK
WRE WDO1
WDO0
WAD0
WAD1
WAD2
WAD3
RAD0
RAD1
RAD2
RAD3
2-7
Architecture
MachXO Family Data Sheet
The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the
place and route tool is completely automatic, although an interactive routing editor is available to optimize the
design.
Clock/Control Distribution Network
The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four
primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in
Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual
function clock pins and 12 internal routing signals. The available clock sources for the MachXO1200 and
MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL out-
puts.
Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices
Routing Clock
Pads
Primary Clock 0
Primary Clock 1
Primary Clock 2
Primary Clock 3
412
16:1
16:1
16:1
16:1
2-8
Architecture
MachXO Family Data Sheet
Figure 2-8. Primary Clocks for MachXO1200 and MachXO2280 Devices
Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock
sources come from dual function clock pins and 12 come from internal routing.
Figure 2-9. Secondary Clocks for MachXO Devices
PLL
Outputs
Routing Clock
Pads
Primary Clock 0
Primary Clock 1
Primary Clock 2
Primary Clock 3
4
Up to 9 Up to 6
16:1
16:1
16:1
16:1
Routing Clock
Pads
Secondary (Control)
Clocks
412
16:1
16:1
16:1
16:1
2-9
Architecture
MachXO Family Data Sheet
sysCLOCK Phase Locked Loops (PLLs)
The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an
external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from
CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from
the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input
clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.
The setup and hold times of the device can be improved by programming a delay in the feedback or input path of
the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either pro-
grammed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after
adjustment and not relock until the tLOCK parameter has been satisfied. Additionally, the phase and duty cycle block
allows the user to adjust the phase and duty cycle of the CLKOS output.
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated
with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider
is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post
scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the fre-
quency range. The secondary divider is used to derive lower frequency outputs.
Figure 2-10. PLL Diagram
Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.
Figure 2-11. PLL Primitive
VCO
CLKOS
CLKOK
CLKINTFB
(internal feedback)
LOCK
RST
CLKFB
(from Post Scalar
Divider output,
clock net,
routing/external
pin or CLKINTFB
port
Dynamic Delay Adjustment
Input Clock
Divider
(CLKI)
Feedback
Divider
(CLKFB)
Post Scalar
Divider
(CLKOP)
Phase/Duty
Select
Secondary
Clock
Divider
(CLKOK)
Delay
Adjust
Voltage
Controlled
Oscillator
CLKI
(from routing or
external pin)
CLKOP
EHXPLLC
CLKOS
CLKI
CLKFB
CLKOK
LOCK
RST
CLKOP
DDAIZR
DDAILAG
DDA MODE
DDAIDEL[2:0]
CLKINTFB
2-10
Architecture
MachXO Family Data Sheet
Table 2-5. PLL Signal Descriptions
For more information on the PLL, please see details of additional technical documentation at the end of this data
sheet.
sysMEM Memory
The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists
of a 9-Kbit RAM, with dedicated input and output registers.
sysMEM Memory Block
The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be
used in a variety of depths and widths as shown in Table 2-6.
Table 2-6. sysMEM Block Configurations
Signal I/O Description
CLKI I Clock input from external pin or routing
CLKFB I PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from
CLKINTFB port
RST I “1” to reset the input clock divider
CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP O PLL output clock to clock tree (No phase shift)
CLKOK O PLL output to clock tree through secondary clock divider
LOCK O “1” indicates PLL LOCK to CLKI
CLKINTFB O Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE I Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static)
DDAIZR I Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on
DDAILAG I Dynamic Delay Lag/Lead. “1”: Lag, “0”: Lead
DDAIDEL[2:0] I Dynamic Delay Input
Memory Mode Configurations
Single Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
True Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
Pseudo Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
FIFO
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
2-11
Architecture
MachXO Family Data Sheet
Bus Size Matching
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB
word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for
each port varies, this mapping scheme applies to each port.
RAM Initialization and ROM Operation
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a
ROM.
Memory Cascading
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools
cascade memory transparently, based on specific design inputs.
Single, Dual, Pseudo-Dual Port and FIFO Modes
Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM
modes, the input data and address for the ports are registered at the input of the memory array. The output data of
the memory is optionally registered at the memory array output.
Figure 2-12. sysMEM Memory Primitives
EBR
AD[12:0]
DI[35:0]
CLK
CE
RST
WE
CS[2:0]
DO[35:0]
Single Port RAM
EBR
True Dual Port RAM
Pseudo-Dual Port RAM
ROM
AD[12:0]
CLK
CE DO[35:0]
RST
CS[2:0]
EBR
EBR
ADA[12:0]
DIA[17:0]
CLKA
CEA
RSTA
WEA
CSA[2:0]
DOA[17:0]
ADB[12:0]
DIB[17:0]
CLKB
CEB
RSTB
WEB
CSB[2:0]
DOB[17:0]
ADW[12:0]
DI[35:0]
CLKW
CEW
ADR[12:0]
DO[35:0]
CER
CLKR
WE
RST
CS[2:0]
FIFO
EBR
DI[35:0]
CLKW
RSTA
DO[35:0]
CLKR
RSTB
RE
RCE
FF
AF
EF
AE
WE
CEW
2-12
Architecture
MachXO Family Data Sheet
The EBR memory supports three forms of write behavior for single or dual port operation:
1. Normal – data on the output appears only during the read cycle. During a write cycle, the data (at the current
address) does not appear on the output. This mode is supported for all data widths.
2. Write Through – a copy of the input data appears at the output of the same port. This mode is supported for
all data widths.
3. Read-Before-Write – when new data is being written, the old contents of the address appears at the output.
This mode is supported for x9, x18 and x36 data widths.
FIFO Configuration
The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out,
RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The
Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR.
The range of programming values for these flags are in Table 2-7.
Table 2-7. Programmable FIFO Flag Ranges
The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset
that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset
state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in
the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the
FIFO.
Memory Core Reset
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respec-
tively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both
ports are as shown in Figure 2-13.
Flag Name Programming Range
Full (FF) 1 to (up to 2N-1)
Almost Full (AF) 1 to Full-1
Almost Empty (AE) 1 to Full-1
Empty (EF) 0
N = Address bit width
2-13
Architecture
MachXO Family Data Sheet
Figure 2-13. Memory Core Reset
For further information on the sysMEM EBR block, see the details of additional technical documentation at the end
of this data sheet.
EBR Asynchronous Reset
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the
reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the
EBR is always asynchronous.
Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.
If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during
device Wake Up must occur before the release of the device I/Os becoming active.
These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR sig-
nal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing
rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and
RPReset are always asynchronous EBR inputs.
Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled
Q
SET
D
L
CLR
Output Data
Latches
Memory Core
Port A[17:0]
Q
SET
D
Port B[17:0]
RSTB
GSRN
Programmable Disable
RSTA
L
CLR
Reset
Clock
Clock
Enable
2-14
Architecture
MachXO Family Data Sheet
PIO Groups
On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells
and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO
groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective
sysIO buffers and PADs.
On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O
pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.
The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger
devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these
devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI
support.
Figure 2-15. Group of Four Programmable I/O Cells
Figure 2-16. Group ofþSix Programmable I/O Cells
PIO
The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks
receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast
PIO B
PIO C
PIO D
PIO A PADA "T"
PADB "C"
PADC "T"
PADD "C"
Six PIOs
PIO E
PIO F
PADE "T"
PADF "C"
This structure is used on the top
and bottom of MachXO devices
2-15
Architecture
MachXO Family Data Sheet
output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17
shows the MachXO PIO logic.
The tristate control signal is multiplexed from the output data signals and their complements. In addition a global
signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.
The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device.
In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.
Figure 2-17. MachXO PIO Block Diagram
sysIO Buffer
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the
periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety
of standards that are found in today’s systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.
In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. In addition to the Bank VCCIO supplies, the MachXO devices have a VCC core logic power supply,
and a VCCAUX supply that powers up a variety of internal circuits including all the differential and referenced input buf-
fers.
MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with
complementary outputs on all the I/O Banks.
MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.
1. Top and Bottom sysIO Buffer Pairs
The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and
two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom
PAD
sysIO
Buffer
TO
Programmable
Delay Elements
From Complementary
Pad
1
2
3
4
+
-
Input
Data Signal
From Routing
From Routing
Fast Output
Note: Buffer 1 tracks with VCCAUX
Buffer 3 tracks with internal 1.2V VREF.
Buffer 4 is available in MachXO1200 and MachXO2280 devices only.
Buffer 2 tracks with VCCIO.
Data signal
TSALL
DO
TS
2-16
Architecture
MachXO Family Data Sheet
of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The
PCI clamp is enabled after VCC, VCCAUX, and VCCIO are at valid operating levels and the device has been con-
figured.
The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of
the differential input buffer.
2. Left and Right sysIO Buffer Pairs
The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and
two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a
differential driver per output pair. The referenced input buffer can also be configured as a differential input buf-
fer. In these Banks the two pads in the pair are described as “true” and “comp”, where the true pad is associ-
ated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the
negative side of the differential I/O.
Typical I/O Behavior During Power-up
The internal power-on-reset (POR) signal is deactivated when VCC and VCCAUX have reached satisfactory levels.
After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure
that all VCCIO Banks are active with valid input logic levels to properly control the output logic states of all the I/O
Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a
weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have
reached satisfactory levels at which time the I/Os will take on the user-configured settings.
The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers
should be powered up along with the FPGA core fabric. Therefore, VCCIO supplies should be powered up before or
together with the VCC and VCCAUX supplies
Supported Standards
The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be
further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V
standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength,
bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL
output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output
buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and
LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top
Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices
in the MachXO family.
Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the
MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see
the details of additional technical documentation at the end of this data sheet.
2-17
Architecture
MachXO Family Data Sheet
Table 2-8. I/O Support Device by Device
Table 2-9. Supported Input Standards
MachXO256 MachXO640 MachXO1200 MachXO2280
Number of I/O Banks2488
Type of Input Buffers
Single-ended
(all I/O Banks)
Single-ended
(all I/O Banks)
Single-ended
(all I/O Banks)
Differential Receivers
(all I/O Banks)
Single-ended
(all I/O Banks)
Differential Receivers
(all I/O Banks)
Types of Output Buffers
Single-ended buffers
with complementary
outputs (all I/O Banks)
Single-ended buffers
with complementary
outputs (all I/O Banks)
Single-ended buffers
with complementary
outputs (all I/O Banks)
Differential buffers with
true LVDS outputs (50%
on left and right side)
Single-ended buffers
with complementary
outputs (all I/O Banks)
Differential buffers with
true LVDS outputs (50%
on left and right side)
Differential Output
Emulation Capability All I/O Banks All I/O Banks All I/O Banks All I/O Banks
PCI Support No No Top side only Top side only
VCCIO (Typ.)
Input Standard 3.3V 2.5V 1.8V 1.5V 1.2V
Single Ended Interfaces
LVTTL Yes Yes Yes Yes Yes
LVCMOS33 Yes Yes Yes Yes Yes
LVCMOS25 Yes Yes Yes Yes Yes
LV C M O S 18 Yes
LV C M O S 15 Yes
LVCMOS12 Yes Yes Yes Yes Yes
PCI1Ye s
Differential Interfaces
BLVDS2, LVDS2, LVPECL2, RSDS2Ye s Ye s Ye s Ye s Ye s
1. Top Banks of MachXO1200 and MachXO2280 devices only.
2. MachXO1200 and MachXO2280 devices only.
2-18
Architecture
MachXO Family Data Sheet
Table 2-10. Supported Output Standards
sysIO Buffer Banks
The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the
MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The
smallest member of this family, the MachXO256, has only two Banks.
Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage
(VCCIO) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20
and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.
Output Standard Drive VCCIO (Typ.)
Single-ended Interfaces
LVTTL 4mA, 8mA, 12mA, 16mA 3.3
LVCMOS33 4mA, 8mA, 12mA, 14mA 3.3
LVCMOS25 4mA, 8mA, 12mA, 14mA 2.5
LVCMOS18 4mA, 8mA, 12mA, 14mA 1.8
LVCMOS15 4mA, 8mA 1.5
LVCMOS12 2mA, 6mA 1.2
LVCMOS33, Open Drain 4mA, 8mA, 12mA, 14mA
LVCMOS25, Open Drain 4mA, 8mA, 12mA, 14mA
LVCMOS18, Open Drain 4mA, 8mA, 12mA, 14mA
LVCMOS15, Open Drain 4mA, 8mA
LVCMOS12, Open Drain 2mA, 6mA
PCI333N/A 3.3
Differential Interfaces
LVD S 1, 2 N/A 2.5
BLVDS, RSDS2N/A 2.5
LVPECL2N/A 3.3
1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.
2. These interfaces can be emulated with external resistors in all devices.
3. Top Banks of MachXO1200 and MachXO2280 devices only.
2-19
Architecture
MachXO Family Data Sheet
Figure 2-18. MachXO2280 Banks
Figure 2-19. MachXO1200 Banks
GND
Bank 2
VCCIO2
GND
Bank 3
VCCIO3
GND
Bank 7
VCCIO7
GND
Bank 6
VCCIO6
GND
Bank 5
VCCIO5
GND
Bank 4
VCCIO4
GND
Bank 1
V
CCIO1
V
CCIO0
1
34
1
33
1
34
33
1
136
131
135
GND
Bank 0
135
GND
Bank 2
VCCIO2
GND
Bank 3
VCCIO3
GND
Bank 7
VCCIO7
GND
Bank 6
VCCIO6
GND
Bank 5
VCCIO5
GND
Bank 4
VCCIO4
GND
Bank 1
V
CCIO1
V
CCIO0
1
26
1
28
1
26
28
1
130
120
129
GND
Bank 0
124
2-20
Architecture
MachXO Family Data Sheet
Figure 2-20. MachXO640 Banks
Figure 2-21. MachXO256 Banks
Hot Socketing
The MachXO devices have been carefully designed to ensure predictable behavior during power-up and power-
down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of
GND
Bank 1
VCCO1
GND
Bank 3
VCCO3
GND
Bank 2
VCCO2
1
40
1
40
137
GND
Bank 0
V
CCO0
42
1
V
Bank 1
1
41
37
Bank 0
1GND
CCO0
GND
CCO1
V
2-21
Architecture
MachXO Family Data Sheet
the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applica-
tions.
Sleep Mode
The MachXO “C” devices (VCC = 1.8/2.5/3.3V) have a sleep mode that allows standby current to be reduced dra-
matically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.
During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tri-
stated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power sup-
plies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11
compares the characteristics of Normal, Off and Sleep modes.
Table 2-11. Characteristics of Normal, Off and Sleep Modes
SLEEPN Pin Characteristics
The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the
device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An
external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal oper-
ation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid
low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications por-
tion of this data sheet shows a detailed timing diagram.
Oscillator
Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock
tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated
programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.
Configuration and Testing
The following section describes the configuration and testing features of the MachXO family of devices.
IEEE 1149.1-Compliant Boundary Scan Testability
All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access
port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan
path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in
and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port
consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the
VCCIO Banks (MachXO256: VCCIO1; MachXO640: VCCIO2; MachXO1200 and MachXO2280: VCCIO5) and can
operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.
For more details on boundary scan test, please see information regarding additional technical documentation at
the end of this data sheet.
Characteristic Normal Off Sleep
SLEEPN Pin High Low
Static Icc Typical <10mA 0 Typical <100uA
I/O Leakage <10µA <1mA <10µA
Power Supplies VCC/VCCIO/VCCAUX Normal Range 0 Normal Range
Logic Operation User Defined Non Operational Non operational
I/O Operation User Defined Tri-state Tri-state
JTAG and Programming circuitry Operational Non-operational Non-operational
EBR Contents and Registers Maintained Non-maintained Non-maintained
2-22
Architecture
MachXO Family Data Sheet
Device Configuration
All MachXO devices contain a test access port that can be used for device configuration and programming.
The non-volatile memory in the MachXO can be configured in two different modes:
In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by
BSCAN registers.
In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode
while reprogramming takes place.
The SRAM configuration memory can be configured in three different ways:
At power-up via the on-chip non-volatile memory.
After a refresh command is issued via the IEEE 1149.1 port.
In IEEE 1532 mode via the IEEE 1149.1 port.
Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO
devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 pro-
tocols.
Leave Alone I/O
When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh
command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility
for implementing systems where reconfiguration or reprogramming occurs on-the-fly.
TransFR (Transparent Field Reconfiguration)
TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting
system operation using a single ispVM command. See TN1087, Minimizing System Interruption During Configura-
tion Using TransFR Technology for details.
Security
The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and
non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.
For more information on device configuration, please see details of additional technical documentation at the end
of this data sheet.
2-23
Architecture
MachXO Family Data Sheet
Figure 2-22. MachXO Configuration and Programming
Density Shifting
The MachXO family has been designed to enable density migration in the same package. Furthermore, the archi-
tecture ensures a high success rate when performing design migration from lower density parts to higher density
parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a
lower density device. However, the exact details of the final resource utilization will impact the likely success in
each case.
ISP 1149.1 TAP Port
Port
Mode
Program in seconds
Download in
microseconds
Configure in milliseconds
Background 1532
Non-Volatile
Memory Space
SRAM Memory
Space
Power-up
Refresh
June 2013 Data Sheet DS1002
© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com 3-1 DS1002 DC and Switching_01.8
Recommended Operating Conditions1
MachXO Programming/Erase Specifications
Absolute Maximum Ratings1, 2, 3
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
LCMXO E (1.2V) LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V
Supply Voltage VCCAUX . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V
Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V
I/O Tristate Voltage Applied 4. . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V
Dedicated Input Voltage Applied4 . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 4.25V
Storage Temperature (ambient). . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C
Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C . . . . . . . . . . . . . . . . . . . +125°C
4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20ns.
Symbol Parameter Min. Max. Units
VCC
Core Supply Voltage for 1.2V Devices 1.14 1.26 V
Core Supply Voltage for 1.8V/2.5V/3.3V Devices 1.71 3.465 V
VCCAUX3Auxiliary Supply Voltage 3.135 3.465 V
VCCIO2I/O Driver Supply Voltage 1.14 3.465 V
tJCOM Junction Temperature Commercial Operation 0 +85 oC
tJIND Junction Temperature Industrial Operation -40 100 oC
tJFLASHCOM Junction Temperature, Flash Programming, Commercial 0 +85 oC
tJFLASHIND Junction Temperature, Flash Programming, Industrial -40 100 oC
1. Like power supplies must be tied together. For example, if VCCIO and VCC are both 2.5V, they must also be the same supply. 3.3V VCCIO
and 1.2V VCCIO should be tied to VCCAUX or 1.2V VCC respectively.
2. See recommended voltages by I/O standard in subsequent table.
3. VCC must reach minimum VCC value before VCCAUX reaches 2.5V.
Symbol Parameter Min. Max. Units
NPROGCYC
Flash Programming Cycles per tRETENTION 1,000 Cycles
Flash Functional Programming Cycles 10,000 Cycles
tRETENTION Data Retention at 125o Junction Temperature 10 Years
MachXO Family Data Sheet
DC and Switching Characteristics
MachXO1200 and MachXO2280 Hot Socketing Specifications1 2, , 3
3-2
DC and Switching Characteristics
MachXO Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
MachXO256 and MachXO640 Hot Socketing Specifications1, 2, 3
1. Insensitive to sequence of VCC, VCCAUX, and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX, and VCCIO.
2. 0 VCC VCC (MAX), 0 VCCIO VCCIO (MAX) and 0 VCCAUX VCCAUX (MAX).
3. IDK is additive to IPU, IPD or IBH.
Symbol Parameter Condition Min. Typ. Max Units
IDK Input or I/O leakage Current 0 VIN VIH (MAX) +/-1000 µA
1. Insensitive to sequence of VCC, VCCAUX, and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX, and VCCIO.
2. 0 VCC VCC (MAX), 0 VCCIO VCCIO (MAX), and 0 VCCAUX VCCAUX (MAX).
3. IDK is additive to IPU, IPW or IBH.
Symbol Parameter Condition Min. Typ. Max. Units
Non-LVDS General Purpose sysIOs
IDK Input or I/O Leakage Current 0 VIN VIH (MAX.) +/-1000 µA
LVDS General Purpose sysIOs
IDK_LVDS Input or I/O Leakage Current VIN VCCIO ——+/-1000µA
VIN > VCCIO —35—mA
Symbol Parameter Condition Min. Typ. Max. Units
IIL, IIH1, 4, 5 Input or I/O Leakage 0 VIN (VCCIO - 0.2V) 10 µA
(VCCIO - 0.2V) < VIN 3.6V 40 µA
IPU I/O Active Pull-up Current 0 VIN 0.7 VCCIO -30 -150 µA
IPD I/O Active Pull-down Current VIL (MAX) VIN VIH (MAX) 30 150 µA
IBHLS Bus Hold Low sustaining current VIN = VIL (MAX) 30 µA
IBHHS Bus Hold High sustaining current VIN = 0.7VCCIO -30 — µA
IBHLO Bus Hold Low Overdrive current 0 VIN VIH (MAX) 150 µA
IBHHO Bus Hold High Overdrive current 0 VIN VIH (MAX) -150 µA
VBHT3Bus Hold trip Points 0 VIN VIH (MAX) VIL (MAX) VIH (MIN) V
C1 I/O Capacitance2VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = Typ., VIO = 0 to VIH (MAX) —8pf
C2 Dedicated Input Capacitance2VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = Typ., VIO = 0 to VIH (MAX) —8pf
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured
with the output driver active. Bus maintenance circuits are disabled.
2. TA 25°C, f = 1.0MHz
3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.
4. Not applicable to SLEEPN pin.
5. When VIH is higher than VCCIO, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-to-
low transition. For MachXO1200 and MachXO2280 true LVDS output pins, VIH must be less than or equal to VCCIO.
3-3
DC and Switching Characteristics
MachXO Family Data Sheet
Supply Current (Sleep Mode)1, 2
Symbol Parameter Device Typ.3Max. Units
ICC Core Power Supply
LCMXO256C 12 25 µA
LCMXO640C 12 25 µA
LCMXO1200C 12 25 µA
LCMXO2280C 12 25 µA
ICCAUX Auxiliary Power Supply
LCMXO256C 1 15 µA
LCMXO640C 1 25 µA
LCMXO1200C 1 45 µA
LCMXO2280C 1 85 µA
ICCIO Bank Power Supply4All LCMXO ‘C’ Devices 2 30 µA
1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.
2. Frequency = 0MHz.
3. TA = 25°C, power supplies at nominal voltage.
4. Per Bank.
Supply Current (Standby)1, 2, 3, 4
Over Recommended Operating Conditions
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at VCCIO or GND.
3. Frequency = 0MHz.
4. User pattern = blank.
Symbol Parameter Device Typ.5
5. TJ = 25oC, power supplies at nominal voltage.
Units
ICC Core Power Supply
LCMXO256C 7 mA
LCMXO640C 9 mA
LCMXO1200C 14 mA
LCMXO2280C 20 mA
LCMXO256E 4 mA
LCMXO640E 6 mA
LCMXO1200E 10 mA
LCMXO2280E 12 mA
ICCAUX Auxiliary Power Supply
VCCAUX = 3.3V
LCMXO256E/C 5 mA
LCMXO640E/C 7 mA
LCMXO1200E/C 12 mA
LCMXO2280E/C 13 mA
ICCIO Bank Power Supply6
6. Per Bank. VCCIO = 2.5V. Does not include pull-up/pull-down.
All devices 2 mA
3-4
DC and Switching Characteristics
MachXO Family Data Sheet
Programming and Erase Flash Supply Current1, 2, 3, 4
Initialization Supply Current1, 2, 3, 4
Over Recommended Operating Conditions
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
2. Assumes all I/O pins are held at VCCIO or GND.
3. Frequency = 0MHz.
4. Typical user pattern.
Symbol Parameter Device Typ.5
5. TJ = 25oC, power supplies at nominal voltage.
Units
ICC Core Power Supply
LCMXO256C 13 mA
LCMXO640C 17 mA
LCMXO1200C 21 mA
LCMXO2280C 23 mA
LCMXO256E 10 mA
LCMXO640E 14 mA
LCMXO1200E 18 mA
LCMXO2280E 20 mA
ICCAUX Auxiliary Power Supply
VCCAUX = 3.3V
LCMXO256E/C 10 mA
LCMXO640E/C 13 mA
LCMXO1200E/C 24 mA
LCMXO2280E/C 25 mA
ICCIO Bank Power Supply6
6. Per Bank, VCCIO = 2.5V. Does not include pull-up/pull-down.
All devices 2 mA
Symbol Parameter Device Typ.5Units
ICC Core Power Supply
LCMXO256C 9 mA
LCMXO640C 11 mA
LCMXO1200C 16 mA
LCMXO2280C 22 mA
LCMXO256E 6 mA
LCMXO640E 8 mA
LCMXO1200E 12 mA
LCMXO2280E 14 mA
ICCAUX Auxiliary Power Supply
VCCAUX = 3.3V
LCMXO256C/E 8 mA
LCMXO640C/E 10 mA
LCMXO1200/E 15 mA
LCMXO2280C/E 16 mA
ICCIO Bank Power Supply6All devices 2 mA
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
2. Assumes all I/O pins are held at VCCIO or GND.
3. Typical user pattern.
4. JTAG programming is at 25MHz.
5. TJ = 25°C, power supplies at nominal voltage.
6. Per Bank. VCCIO = 2.5V. Does not include pull-up/pull-down.
3-5
DC and Switching Characteristics
MachXO Family Data Sheet
sysIO Recommended Operating Conditions
sysIO Single-Ended DC Electrical Characteristics
Standard
VCCIO (V)
Min. Typ. Max.
LVCMOS 3.3 3.135 3.3 3.465
LVCMOS 2.5 2.375 2.5 2.625
LVCMOS 1.8 1.71 1.8 1.89
LVCMOS 1.5 1.425 1.5 1.575
LVCMOS 1.2 1.14 1.2 1.26
LVTTL 3.135 3.3 3.465
PCI33.135 3.3 3.465
LVD S1, 2 2.375 2.5 2.625
LVPECL13.135 3.3 3.465
BLVDS12.375 2.5 2.625
RSDS12.375 2.5 2.625
1. Inputs on chip. Outputs are implemented with the addition of external resistors.
2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers
3. Input on the top bank of the MachXO1200 and MachXO2280 only.
Input/Output
Standard
VIL VIH VOL Max.
(V)
VOH Min.
(V)
IOL1
(mA)
IOH1
(mA)Min. (V) Max. (V) Min. (V) Max. (V)
LVCMOS 3.3 -0.3 0.8 2.0 3.6 0.4 VCCIO - 0.4 16, 12, 8, 4 -14, -12, -8, -4
0.2 VCCIO - 0.2 0.1 -0.1
LVTTL -0.3 0.8 2.0 3.6
0.4 2.4 16 -16
0.4 VCCIO - 0.4 12, 8, 4 -12, -8, -4
0.2 VCCIO - 0.2 0.1 -0.1
LVCMOS 2.5 -0.3 0.7 1.7 3.6 0.4 VCCIO - 0.4 16, 12, 8, 4 -14, -12, -8, -4
0.2 VCCIO - 0.2 0.1 -0.1
LVCMOS 1.8 -0.3 0.35VCCIO 0.65VCCIO 3.6 0.4 VCCIO - 0.4 16, 12, 8, 4 -14, -12, -8, -4
0.2 VCCIO - 0.2 0.1 -0.1
LVCMOS 1.5 -0.3 0.35VCCIO 0.65VCCIO 3.6 0.4 VCCIO - 0.4 8, 4 -8, -4
0.2 VCCIO - 0.2 0.1 -0.1
LVC MO S 1. 2
(“C” Version) -0.3 0.42 0.78 3.6 0.4 VCCIO - 0.4 6, 2 -6, -2
0.2 VCCIO - 0.2 0.1 -0.1
LVC MO S 1. 2
(“E” Version) -0.3 0.35VCC 0.65VCC 3.6 0.4 VCCIO - 0.4 6, 2 -6, -2
0.2 VCCIO - 0.2 0.1 -0.1
PCI -0.3 0.3VCCIO 0.5VCCIO 3.6 0.1VCCIO 0.9VCCIO 1.5 -0.5
1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as
shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or
between the last GND in a Bank and the end of a Bank.
3-6
DC and Switching Characteristics
MachXO Family Data Sheet
sysIO Differential Electrical Characteristics
LVD S
Over Recommended Operating Conditions
LVDS Emulation
MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is avail-
able on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with
resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for
LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.
Figure 3-1. LVDS Using External Resistors (LVDS25E)
The LVDS differential input buffers are available on certain devices in the MachXO family.
Parameter
Symbol Parameter Description Test Conditions Min. Typ. Max. Units
VINP, VINM Input Voltage 0 2.4 V
VTHD Differential Input Threshold +/-100 mV
VCM Input Common Mode Voltage
100mV VTHD VTHD/2 1.2 1.8 V
200mV VTHD VTHD/2 1.2 1.9 V
350mV VTHD VTHD/2 1.2 2.0 V
IIN Input current Power on +/-10 µA
VOH Output high voltage for VOP or VOM RT = 100 Ohm 1.38 1.60 V
VOL Output low voltage for VOP or VOM RT = 100 Ohm 0.9V 1.03 V
VOD Output voltage differential (VOP - VOM), RT = 100 Ohm 250 350 450 mV
VOD Change in VOD between high and
low ——50mV
VOS Output voltage offset (VOP - VOM)/2, RT = 100 Ohm 1.125 1.25 1.375 V
VOS Change in VOS between H and L 50 mV
IOSD Output short circuit current VOD = 0V Driver outputs
shorted —— 6mA
158
158
Zo = 100
140 100
On-chip On-chip Off-chip Off-chip
VCCIO = 2.5
8mA
8mA
Note: All resistors are ±1%.
VCCIO = 2.5
+
-
Emulated
LVDS
Buffer
3-7
DC and Switching Characteristics
MachXO Family Data Sheet
Table 3-1. LVDS DC Conditions
Over Recommended Operating Conditions
BLVDS
The MachXO family supports the BLVDS standard through emulation. The output is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The input standard
is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use when multi-drop
and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible
solution for bi-directional multi-point differential signals.
Figure 3-2. BLVDS Multi-point Output Example
Parameter Description Typical Units
ZOUT Output impedance 20
RSDriver series resistor 294
RPDriver parallel resistor 121
RTReceiver termination 100
VOH Output high voltage 1.43 V
VOL Output low voltage 1.07 V
VOD Output differential voltage 0.35 V
VCM Output common mode voltage 1.25 V
ZBACK Back impedance 100
IDC DC output current 3.66 mA
Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
2.5V
80
80
80 80 80 80
45-90 ohms 45-90 ohms
80
2.5V
2.5V
2.5V 2.5V 2.5V 2.5V
2.5V
+
-
. . .
+
-
. . .
+
-
+
-
16mA
16mA 16mA 16mA 16mA
16mA
16mA
16mA
3-8
DC and Switching Characteristics
MachXO Family Data Sheet
Table 3-2. BLVDS DC Conditions1
Over Recommended Operating Conditions
LVPECL
The MachXO family supports the differential LVPECL standard through emulation. This output standard is emu-
lated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all
the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The
scheme shown in Figure 3-3 is one possible solution for point-to-point signals.
Figure 3-3. Differential LVPECL
Table 3-3. LVPECL DC Conditions1
Over Recommended Operating Conditions
Nominal
Symbol Description Zo = 45 Zo = 90 Units
ZOUT Output impedance 100 100 Ohms
RTLEFT Left end termination 45 90 Ohms
RTRIGHT Right end termination 45 90 Ohms
VOH Output high voltage 1.375 1.48 V
VOL Output low voltage 1.125 1.02 V
VOD Output differential voltage 0.25 0.46 V
VCM Output common mode voltage 1.25 1.25 V
IDC DC output current 11.2 10.2 mA
1. For input buffer, see LVDS table.
Symbol Description Nominal Units
ZOUT Output impedance 100 Ohms
RPDriver parallel resistor 150 Ohms
RTReceiver termination 100 Ohms
VOH Output high voltage 2.03 V
VOL Output low voltage 1.27 V
VOD Output differential voltage 0.76 V
VCM Output common mode voltage 1.65 V
ZBACK Back impedance 85.7 Ohms
IDC DC output current 12.7 mA
1. For input buffer, see LVDS table.
Transmission line, Zo = 100 ohm differential
100 ohms
100 ohms
16mA
16mA
100 ohms
Off-chip On-chip
VCCIO = 3.3V
VCCIO = 3.3V +
-
150 ohms
On-chip Off-chip
3-9
DC and Switching Characteristics
MachXO Family Data Sheet
For further information on LVPECL, BLVDS and other differential interfaces please see details of additional techni-
cal documentation at the end of the data sheet.
RSDS
The MachXO family supports the differential RSDS standard. The output standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS
input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-
4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for
RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.
Figure 3-4. RSDS (Reduced Swing Differential Standard)
Table 3-4. RSDS DC Conditions
Parameter Description Typical Units
ZOUT Output impedance 20 Ohms
RSDriver series resistor 294 Ohms
RPDriver parallel resistor 121 Ohms
RTReceiver termination 100 Ohms
VOH Output high voltage 1.35 V
VOL Output low voltage 1.15 V
VOD Output differential voltage 0.20 V
VCM Output common mode voltage 1.25 V
ZBACK Back impedance 101.5 Ohms
IDC DC output current 3.66 mA
100
294
294
On-chip On-chip Off-chip
Emulated
RSDS Buffer
VCCIO = 2.5V
VCCIO = 2.5V
8mA
8mA Zo = 100
+
-
121
Off-chip
3-10
DC and Switching Characteristics
MachXO Family Data Sheet
Typical Building Block Function Performance1
Pin-to-Pin Performance (LVCMOS25 12mA Drive)
Register-to-Register Performance
Derating Logic Timing
Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case
numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can
provide logic timing numbers at a particular temperature and voltage.
Function -5 Timing Units
Basic Functions
16-bit decoder 6.7 ns
4:1 MUX 4.5 ns
16:1 MUX 5.1 ns
Function -5 Timing Units
Basic Functions
16:1 MUX 487 MHz
16-bit adder 292 MHz
16-bit counter 388 MHz
64-bit counter 200 MHz
Embedded Memory Functions (1200 and 2280 Devices Only)
256x36 Single Port RAM 284 MHz
512x18 True-Dual Port RAM 284 MHz
Distributed Memory Functions
16x2 Single Port RAM 434 MHz
64x2 Single Port RAM 320 MHz
128x4 Single Port RAM 261 MHz
32x2 Pseudo-Dual Port RAM 314 MHz
64x4 Pseudo-Dual Port RAM 271 MHz
1. The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and
tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19
3-11
DC and Switching Characteristics
MachXO Family Data Sheet
MachXO External Switching Characteristics1
Over Recommended Operating Conditions
Parameter Description Device
-5 -4 -3
UnitsMin. Max. Min. Max. Min. Max.
General I/O Pin Parameters (Using Global Clock without PLL)1
tPD Best Case tPD Through 1 LUT
LCMXO256 — 3.5 — 4.2 — 4.9 ns
LCMXO640 — 3.5 — 4.2 — 4.9 ns
LCMXO1200 — 3.6 — 4.4 — 5.1 ns
LCMXO2280 — 3.6 — 4.4 — 5.1 ns
tCO Best Case Clock to Output - From PFU
LCMXO256 — 4.0 — 4.8 — 5.6 ns
LCMXO640 — 4.0 — 4.8 — 5.7 ns
LCMXO1200 — 4.3 — 5.2 — 6.1 ns
LCMXO2280 — 4.3 — 5.2 — 6.1 ns
tSU Clock to Data Setup - To PFU
LCMXO256 1.3 — 1.6 — 1.8 — ns
LCMXO640 1.1 — 1.3 — 1.5 — ns
LCMXO1200 1.1 — 1.3 — 1.6 — ns
LCMXO2280 1.1 — 1.3 — 1.5 — ns
tHClock to Data Hold - To PFU
LCMXO256 -0.3 — -0.3 — -0.3 — ns
LCMXO640 -0.1 — -0.1 — -0.1 — ns
LCMXO1200 0.0 — 0.0 — 0.0 — ns
LCMXO2280 -0.4 — -0.4 — -0.4 — ns
fMAX_IO Clock Frequency of I/O and PFU Register
LCMXO256 — 600 — 550 — 500 MHz
LCMXO640 — 600 — 550 — 500 MHz
LCMXO1200 — 600 — 550 — 500 MHz
LCMXO2280 — 600 — 550 — 500 MHz
tSKEW_PRI Global Clock Skew Across Device
LCMXO256 — 200 — 220 — 240 ps
LCMXO640 — 200 — 220 — 240 ps
LCMXO1200 — 220 — 240 — 260 ps
LCMXO2280 — 220 — 240 — 260 ps
1. General timing numbers based on LVCMOS2.5V, 12 mA.
Rev. A 0.19
3-12
DC and Switching Characteristics
MachXO Family Data Sheet
MachXO Internal Timing Parameters1
Over Recommended Operating Conditions
Parameter Description
-5 -4 -3
UnitsMin. Max. Min. Max. Min. Max.
PFU/PFF Logic Mode Timing
tLUT4_PFU LUT4 delay (A to D inputs to F output) 0.28 0.34 0.39 ns
tLUT6_PFU LUT6 delay (A to D inputs to OFX output) 0.44 0.53 0.62 ns
tLSR_PFU Set/Reset to output of PFU 0.90 1.08 1.26 ns
tSUM_PFU Clock to Mux (M0,M1) input setup time 0.10 0.13 0.15 ns
tHM_PFU Clock to Mux (M0,M1) input hold time -0.05 -0.06 -0.07 ns
tSUD_PFU Clock to D input setup time 0.13 0.16 0.18 ns
tHD_PFU Clock to D input hold time -0.03 — -0.03 — -0.04 — ns
tCK2Q_PFU Clock to Q delay, D-type register configuration 0.40 0.48 0.56 ns
tLE2Q_PFU Clock to Q delay latch configuration 0.53 0.64 0.74 ns
tLD2Q_PFU D to Q throughput delay when latch is enabled 0.55 0.66 0.77 ns
PFU Dual Port Memory Mode Timing
tCORAM_PFU Clock to Output 0.40 0.48 0.56 ns
tSUDATA_PFU Data Setup Time -0.18 -0.22 -0.25 ns
tHDATA_PFU Data Hold Time 0.28 0.34 0.39 ns
tSUADDR_PFU Address Setup Time -0.46 -0.56 -0.65 ns
tHADDR_PFU Address Hold Time 0.71 0.85 0.99 ns
tSUWREN_PFU Write/Read Enable Setup Time -0.22 -0.26 -0.30 ns
tHWREN_PFU Write/Read Enable Hold Time 0.33 0.40 0.47 ns
PIO Input/Output Buffer Timing
tIN_PIO Input Buffer Delay 0.75 0.90 1.06 ns
tOUT_PIO Output Buffer Delay 1.29 1.54 1.80 ns
EBR Timing (1200 and 2280 Devices Only)
tCO_EBR Clock to output from Address or Data with no output
register — 2.24 — 2.69 — 3.14 ns
tCOO_EBR Clock to output from EBR output Register 0.54 0.64 0.75 ns
tSUDATA_EBR Setup Data to EBR Memory -0.26 — -0.31 — -0.37 — ns
tHDATA_EBR Hold Data to EBR Memory 0.41 0.49 0.57 ns
tSUADDR_EBR Setup Address to EBR Memory -0.26 — -0.31 — -0.37 — ns
tHADDR_EBR Hold Address to EBR Memory 0.41 0.49 0.57 ns
tSUWREN_EBR Setup Write/Read Enable to EBR Memory -0.17 -0.20 -0.23 ns
tHWREN_EBR Hold Write/Read Enable to EBR Memory 0.26 0.31 0.36 ns
tSUCE_EBR Clock Enable Setup Time to EBR Output Register 0.19 0.23 0.27 ns
tHCE_EBR Clock Enable Hold Time to EBR Output Register -0.13 -0.16 -0.18 ns
tRSTO_EBR Reset To Output Delay Time from EBR Output Regis-
ter — 1.03 — 1.23 — 1.44 ns
PLL Parameters (1200 and 2280 Devices Only)
tRSTREC Reset Recovery to Rising Clock 1.00 1.00 1.00 ns
tRSTSU Reset Signal Setup Time 1.00 1.00 1.00 ns
1. Internal parameters are characterized but not tested on every device.
Rev. A 0.19
3-13
DC and Switching Characteristics
MachXO Family Data Sheet
MachXO Family Timing Adders1, 2, 3
Over Recommended Operating Conditions
Buffer Type Description -5-4-3Units
Input Adjusters
LVD S2 54LVDS 0.44 0.53 0.61 ns
BLVDS254BLVDS 0.44 0.53 0.61 ns
LVPECL334LVPECL 0.42 0.50 0.59 ns
LVTTL33 LVTTL 0.01 0.01 0.01 ns
LVCMOS33 LVCMOS 3.3 0.01 0.01 0.01 ns
LVCMOS25 LVCMOS 2.5 0.00 0.00 0.00 ns
LVCMOS18 LVCMOS 1.8 0.07 0.08 0.10 ns
LVCMOS15 LVCMOS 1.5 0.14 0.17 0.19 ns
LVCMOS12 LVCMOS 1.2 0.40 0.48 0.56 ns
PCI334PCI 0.01 0.01 0.01 ns
Output Adjusters
LVDS25E LVDS 2.5 E -0.13 -0.15 -0.18 ns
LVD S2 54LVDS 2.5 -0.21 -0.26 -0.30 ns
BLVDS25 BLVDS 2.5 -0.03 -0.03 -0.04 ns
LVPECL33 LVPECL 3.3 0.04 0.04 0.05 ns
LVTTL33_4mA LVTTL 4mA drive 0.04 0.04 0.05 ns
LVTTL33_8mA LVTTL 8mA drive 0.06 0.07 0.08 ns
LVTTL33_12mA LVTTL 12mA drive -0.01 -0.01 -0.01 ns
LVTTL33_16mA LVTTL 16mA drive 0.50 0.60 0.70 ns
LVCMOS33_4mA LVCMOS 3.3 4mA drive 0.04 0.04 0.05 ns
LVCMOS33_8mA LVCMOS 3.3 8mA drive 0.06 0.07 0.08 ns
LVCMOS33_12mA LVCMOS 3.3 12mA drive -0.01 -0.01 -0.01 ns
LVCMOS33_14mA LVCMOS 3.3 14mA drive 0.50 0.60 0.70 ns
LVCMOS25_4mA LVCMOS 2.5 4mA drive 0.05 0.06 0.07 ns
LVCMOS25_8mA LVCMOS 2.5 8mA drive 0.10 0.12 0.13 ns
LVCMOS25_12mA LVCMOS 2.5 12mA drive 0.00 0.00 0.00 ns
LVCMOS25_14mA LVCMOS 2.5 14mA drive 0.34 0.40 0.47 ns
LVCMOS18_4mA LVCMOS 1.8 4mA drive 0.11 0.13 0.15 ns
LVCMOS18_8mA LVCMOS 1.8 8mA drive 0.05 0.06 0.06 ns
LVCMOS18_12mA LVCMOS 1.8 12mA drive -0.06 -0.07 -0.08 ns
LVCMOS18_14mA LVCMOS 1.8 14mA drive 0.06 0.07 0.09 ns
LVCMOS15_4mA LVCMOS 1.5 4mA drive 0.15 0.19 0.22 ns
LVCMOS15_8mA LVCMOS 1.5 8mA drive 0.05 0.06 0.07 ns
LVCMOS12_2mA LVCMOS 1.2 2mA drive 0.26 0.31 0.36 ns
LVCMOS12_6mA LVCMOS 1.2 6mA drive 0.05 0.06 0.07 ns
PCI334PCI33 1.85 2.22 2.59 ns
1. Timing adders are characterized but not tested on every device.
2. LVCMOS timing is measured with the load specified in Switching Test Conditions table.
3. All other standards tested according to the appropriate specifications.
4. I/O standard only available in LCMXO1200 and LCMXO2280 devices.
Rev. A 0.19
3-14
DC and Switching Characteristics
MachXO Family Data Sheet
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Parameter Descriptions Conditions Min. Max. Units
fIN Input Clock Frequency (CLKI, CLKFB)
25 420 MHz
Input Divider (M) = 1;
Feedback Divider (N) <= 45, 6 18 25 MHz
fOUT Output Clock Frequency (CLKOP, CLKOS) 25 420 MHz
fOUT2 K-Divider Output Frequency (CLKOK) 0.195 210 MHz
fVCO PLL VCO Frequency 420 840 MHz
fPFD Phase Detector Input Frequency
25 MHz
Input Divider (M) = 1;
Feedback Divider (N) <= 45, 6 18 25 MHz
AC Characteristics
tDT Output Clock Duty Cycle Default duty cycle selected3 45 55 %
tPH4Output Phase Accuracy 0.05 UI
tOPJIT1Output Clock Period Jitter fOUT >= 100 MHz +/-120 ps
fOUT < 100 MHz 0.02 UIPP
tSK Input Clock to Output Clock Skew Divider ratio = integer +/-200 ps
tWOutput Clock Pulse Width At 90% or 10%31—ns
tLOCK2PLL Lock-in Time 150 µs
tPA Programmable Delay Unit 100 450 ps
tIPJIT Input Clock Period Jitter fOUT 100 MHz +/-200 ps
fOUT < 100 MHz 0.02 UI
tFBKDLY External Feedback Delay 10 ns
tHI Input Clock High Time 90% to 90% 0.5 ns
tLO Input Clock Low Time 10% to 10% 0.5 ns
tRST RST Pulse Width 10 ns
1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment.
3. Using LVDS output buffers.
4. CLKOS as compared to CLKOP output.
5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.
6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock
inputs below 25 MHz are followed.
Rev. A 0.19
SLEEPN
t
PWRUP
Power Down Mode
t
PWRDN
t
WSLEEPN
or t
WAWAKE
I/O
3-15
DC and Switching Characteristics
MachXO Family Data Sheet
MachXO “C” Sleep Mode Timing
Flash Download Time
JTAG Port Timing Specifications
Symbol Parameter Device Min. Typ. Max Units
tPWRDN SLEEPN Low to Power Down All 400 ns
tPWRUP SLEEPN High to Power Up
LCMXO256 — 400 µs
LCMXO640 — 600 µs
LCMXO1200 800 µs
LCMXO2280 1000 µs
tWSLEEPN SLEEPN Pulse Width All 400 ns
tWAWAKE SLEEPN Pulse Rejection All 100 ns
Rev. A 0.19
Symbol Parameter Min. Typ. Max. Units
tREFRESH
Minimum VCC or VCCAUX
(later of the two supplies)
to Device I/O Active
LCMXO256 0.4 ms
LCMXO640 0.6 ms
LCMXO1200 0.8 ms
LCMXO2280 1.0 ms
Symbol Parameter Min. Max. Units
fMAX TCK [BSCAN] clock frequency 25 MHz
tBTCP TCK [BSCAN] clock pulse width 40 ns
tBTCPH TCK [BSCAN] clock pulse width high 20 ns
tBTCPL TCK [BSCAN] clock pulse width low 20 ns
tBTS TCK [BSCAN] setup time 8 ns
tBTH TCK [BSCAN] hold time 10 ns
tBTRF TCK [BSCAN] rise/fall time 50 mV/ns
tBTCO TAP controller falling edge of clock to output valid 10 ns
tBTCODIS TAP controller falling edge of clock to output disabled 10 ns
tBTCOEN TAP controller falling edge of clock to output enabled 10 ns
tBTCRS BSCAN test capture register setup time 8 ns
tBTCRH BSCAN test capture register hold time 25 ns
tBUTCO BSCAN test update register, falling edge of clock to output valid 25 ns
tBTUODIS BSCAN test update register, falling edge of clock to output disabled 25 ns
tBTUPOEN BSCAN test update register, falling edge of clock to output enabled 25 ns
Rev. A 0.19
3-16
DC and Switching Characteristics
MachXO Family Data Sheet
Figure 3-5. JTAG Port Timing Waveforms
TMS
TDI
TCK
TDO
Data to be
captured
from I/O
Data to be
driven out
to I/O
ataD dilaVataD dilaV
ataD dilaVataD dilaV
Data Captured
t
BTCPH
t
BTCPL
t
BTCOEN
t
BTCRS
t
BTUPOEN
t
BUTCO
t
BTUODIS
t
BTCRH
t
BTCO
t
BTCODIS
t
BTS
t
BTH
t
BTCP
3-17
DC and Switching Characteristics
MachXO Family Data Sheet
Switching Test Conditions
Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Figure 3-5.
Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards
Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces
Test Condition R1CLTiming Ref. VT
LVTTL and LVCMOS settings (L -> H, H -> L) 0pF
LVTTL, LVCMOS 3.3 = 1.5V
LVCMOS 2.5 = VCCIO/2 —
LVCMOS 1.8 = VCCIO/2 —
LVCMOS 1.5 = VCCIO/2 —
LVCMOS 1.2 = VCCIO/2 —
LVTTL and LVCMOS 3.3 (Z -> H)
188 0pF
1.5 VOL
LVTTL and LVCMOS 3.3 (Z -> L) VOH
Other LVCMOS (Z -> H) VCCIO/2 VOL
Other LVCMOS (Z -> L) VCCIO/2 VOH
LVTTL + LVCMOS (H -> Z) VOH - 0.15 VOL
LVTTL + LVCMOS (L -> Z) VOL - 0.15 VOH
Note: Output test conditions for all other interfaces are determined by the respective standards.
DUT
V
T
R1
CL
Test Point
June 2013 Data Sheet DS1002
© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com 4-1 DS1002 Pinouts_01.9
Signal Descriptions
Signal Name I/O Descriptions
General Purpose
P[Edge] [Row/Column
Number]_[A/B/C/D/E/F] I/O
[Edge] indicates the edge of the device on which the pad is located. Valid edge designa-
tions are L (Left), B (Bottom), R (Right), T (Top).
[Row/Column Number] indicates the PFU row or the column of the device on which the
PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number.
When Edge is L (Left) or R (Right), only need to specify Column Number.
[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
Some of these user programmable pins are shared with special function pins. When not
used as special function pins, these pins can be programmed as I/Os for user logic.
During configuration of the user-programmable I/Os, the user has an option to tri-state the
I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or
those not bonded to a package pin). The default during configuration is for user-program-
mable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is
erased, I/Os will be tri-stated with an internal pull-up resistor enabled.
GSRN I Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O
pin.
TSALL I TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the
outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC No connect.
GND GND - Ground. Dedicated pins.
VCC VCC - The power supply pins for core logic. Dedicated pins.
VCCAUX VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits
including all the differential and referenced input buffers. Dedicated pins.
VCCIOx —V
CCIO - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN1I
Sleep Mode pin - Active low sleep pin.þ When this pin is held high, the device operates
normally.þ This pin has a weak internal pull-up, but when unused, an external pull-up to
VCC is recommended. When driven low, the device moves into Sleep mode after a speci-
fied time.
PLL and Clock Functions (Used as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM
(Upper PLL) and LLM (Lower PLL). T = true and C = complement.
[LOC][0]_PLL[T, C]_FB Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM
(Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0] Primary Clock Pads, n per side.
Test and Programming (Dedicated pins)
TMS I Test Mode Select input pin, used to control the 1149.1 state machine.
TCK I Test Clock input pin, used to clock the 1149.1 state machine.
TDI I Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO O Output pin -Test Data output pin used to shift data out of the device using 1149.1.
1. Applies to MachXO “C” devices only. NC for “E” devices.
MachXO Family Data Sheet
Pinout Information
4-2
Pinout Information
MachXO Family Data Sheet
Pin Information Summary
Pin Type
LCMXO256C/E LCMXO640C/E
100 TQFP 100 csBGA 100 TQFP 144 TQFP 100 csBGA 132 csBGA
256 caBGA /
256 ftBGA
Single Ended User I/O 78 78 74 113 74 101 159
Differential Pair User I/O138 38 17 43 17 42 79
Muxed 6666666
TAP 4444444
Dedicated (Total Without Supplies) 5555555
VCC 2224244
VCCAUX 1112122
VCCIO
Bank03322224
Bank13322224
Bank222224
Bank322224
GND 8 8 1012101218
NC 00000052
Single Ended/Differential I/O
per Bank
Bank0 41/20 41/20 18/5 29/10 18/5 26/11 42/21
Bank1 37/18 37/18 21/4 30/11 21/4 27/12 40/20
Bank2 14/2 24/9 14/2 21/9 36/18
Bank3 — 21/6 30/13 21/6 27/10 40/20
1. These devices support emulated LVDS outputs.þLVDS inputs are not supported.
Pin Type
LCMXO1200C/E LCMXO2280C/E
100 TQFP 144 TQFP 132 csBGA
256 caBGA /
256 ftBGA 100 TQFP 144 TQFP 132 csBGA
256 caBGA /
256 ftBGA 324 ftBGA
Single Ended User I/O 73 113 101 211 73 113 101 211 271
Differential Pair User I/O127 48 42 105 30 47 41 105 134
Muxed 666666666
TAP 444444444
Dedicated (Total Without Supplies) 555555555
VCC 444424446
VCCAUX 222222222
VCCIO
Bank0111211122
Bank1111211122
Bank2111211122
Bank3111211122
Bank4111211122
Bank5111211122
Bank6111211122
Bank7111211122
GND 8 12 12 18 8 12 12 18 24
NC 000000000
Single Ended/Differential I/O
per Bank
Bank0 10/3 14/6 13/5 26/13 9/3 13/6 12/5 24/12 34/17
Bank1 8/2 15/7 13/5 28/14 9/3 16/7 14/5 30/15 36/18
Bank2 10/4 15/7 13/6 26/13 10/4 15/7 13/6 26/13 34/17
Bank3 11/5 15/7 14/7 28/14 11/5 15/7 14/7 28/14 34/17
Bank4 8/3 14/5 13/5 27/13 8/3 14/4 13/4 29/14 35/17
Bank5 5/2 10/4 8/2 22/11 5/2 10/4 8/2 20/10 30/15
Bank6 10/3 15/6 13/6 28/14 10/4 15/6 13/6 28/14 34/17
Bank7 11/5 15/6 14/6 26/13 11/5 15/6 14/6 26/13 34/17
1. These devices support on-chip LVDS buffers for left and right I/O Banks.
4-3
Pinout Information
MachXO Family Data Sheet
Power Supply and NC
Signal 100 TQFP1144 TQFP1100 csBGA2
VCC LCMXO256/640: 35, 90
LCMXO1200/2280: 17, 35, 66, 91
21, 52, 93, 129 P7, B6
VCCIO0 LCMXO256: 60, 74, 92
LCMXO640: 80, 92
LCMXO1200/2280: 94
LCMXO640: 117, 135
LCMXO1200/2280: 135
LCMXO256: H14, A14, B5
LCMXO640: B12, B5
VCCIO1 LCMXO256: 10, 24, 41
LCMXO640: 60, 74
LCMXO1200/2280: 80
LCMXO640: 82, 98
LCMXO1200/2280: 117
LCMXO256: G1, P1, P10
LCMXO640: H14, A14
VCCIO2 LCMXO256: None
LCMXO640: 29, 41
LCMXO1200/2280: 70
LCMXO640: 38, 63
LCMXO1200/2280: 98
LCMXO256: None
LCMXO640: P4, P10
VCCIO3 LCMXO256: None
LCMXO640: 10, 24
LCMXO1200/2280: 56
LCMXO640: 10, 26
LCMXO1200/2280: 82
LCMXO256: None
LCMXO640: G1, P1
VCCIO4 LCMXO256/640: None
LCMXO1200/2280: 44
LCMXO640: None
LCMXO1200/2280: 63
VCCIO5 LCMXO256/640: None
LCMXO1200/2280: 27
LCMXO640: None
LCMXO1200/2280: 38
VCCIO6 LCMXO256/640: None
LCMXO1200/2280: 20
LCMXO640: None
LCMXO1200/2280: 26
VCCIO7 LCMXO256/640: None
LCMXO1200/2280: 6
LCMXO640: None
LCMXO1200/2280: 10
VCCAUX LCMXO256/640: 88
LCMXO1200/2280: 36, 90
53, 128 B7
GND3LCMXO256: 40, 84, 62, 75, 93, 12,
25, 42
LCMXO640: 40, 84, 81, 93, 62, 75,
30, 42, 12, 25
LCMXO1200/2280: 9, 41, 59, 83,
100, 76, 50, 26
16, 59, 88, 123, 118, 136, 83, 99,
37, 64, 11, 27
LCMXO256: N9, B9, G14, B13,
A4, H1, N2, N10
LCMXO640: N9, B9, A10, A4,
G14, B13, N3, N10, H1, N2
NC4
1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.
2. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
3. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of
GND logic connections from the die to the common package GND plane.
4. NC pins should not be connected to any active signals, VCC or GND.
4-4
Pinout Information
MachXO Family Data Sheet
Power Supply and NC (Cont.)
Signal 132 csBGA1256 caBGA / 256 ftBGA1324 ftBGA1
VCC H3, P6, G12, C7 G7, G10, K7, K10 F14, G11, G9, H7, L7, M9
VCCIO0 LCMXO640: B11, C5
LCMXO1200/2280: C5
LCMXO640: F8, F7, F9, F10
LCMXO1200/2280: F8, F7
G8, G7
VCCIO1 LCMXO640: L12, E12
LCMXO1200/2280: B11
LCMXO640: H11, G11, K11, J11
LCMXO1200/2280: F9, F10
G12, G10
VCCIO2 LCMXO640: N2, M10
LCMXO1200/2280: E12
LCMXO640: L9, L10, L8, L7
LCMXO1200/2280: H11, G11
J12, H12
VCCIO3 LCMXO640: D2, K3
LCMXO1200/2280: L12
LCMXO640: K6, J6, H6, G6
LCMXO1200/2280: K11, J11
L12, K12
VCCIO4 LCMXO640: None
LCMXO1200/2280: M10
LCMXO640: None
LCMXO1200/2280: L9, L10
M12, M11
VCCIO5 LCMXO640: None
LCMXO1200/2280: N2
LCMXO640: None
LCMXO1200/2280: L8, L7
M8, R9
VCCIO6 LCMXO640: None
LCMXO1200/2280: K3
LCMXO640: None
LCMXO1200/2280: K6, J6
M7, K7
VCCIO7 LCMXO640: None
LCMXO1200/2280: D2
LCMXO640: None
LCMXO1200/2280: H6, G6
H6, J7
VCCAUX P7, A7 T9, A8 M10, F9
GND2F1, P9, J14, C9, A10, B4, L13,
D13, P2, N11, E1, L2
A1, A16, F11, G8, G9, H7, H8, H9,
H10, J7, J8, J9, J10, K8, K9, L6,
T1, T16
E14, F16, H10, H11, H8, H9, J10,
J11, J4, J8, J9, K10, K11, K17, K8,
K9, L10, L11, L8, L9, N2, P14, P5,
R7
NC3LCMXO640: E4, E5, F5, F6, C3,
C2, G4, G5, H4, H5, K5, K4, M5,
M4, P2, P3, N5, N6, M7, M8, N10,
N11, R15, R16, P15, P16, M11,
L11, N12, N13, M13, M12, K12,
J12, F12, F13, E12, E13, D13,
D14, B15, A15, C14, B14, E11,
E10, E7, E6, D4, D3, B3, B2
LCMXO1200: None
LCMXO2280: None
1. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of
GND logic connections from the die to the common package GND plane.
3. NC pins should not be connected to any active signals, VCC or GND.
4-5
Pinout Information
MachXO Family Data Sheet
LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP
Pin Number
LCMXO256 LCMXO640
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
1 PL2A 1 T PL2A 3 T
2 PL2B 1 C PL2C 3 T
3 PL3A 1 T PL2B 3 C
4 PL3B 1 C PL2D 3 C
5PL3C 1 TPL3A 3 T
6PL3D 1 CPL3B 3 C
7 PL4A 1 T PL3C 3 T
8 PL4B 1 C PL3D 3 C
9 PL5A 1 T PL4A 3
10 VCCIO1 1 VCCIO3 3
11 PL5B 1 C PL4C 3 T
12 GNDIO1 1 GNDIO3 3
13 PL5C 1 T PL4D 3 C
14 PL5D 1 GSRN C PL5B 3 GSRN
15 PL6A 1 T PL7B 3
16 PL6B 1 TSALL C PL8C 3 TSALL T
17 PL7A 1 T PL8D 3 C
18 PL7B 1 C PL9A 3
19 PL7C 1 T PL9C 3
20 PL7D 1 C PL10A 3
21 PL8A 1 T PL10C 3
22 PL8B 1 C PL11A 3
23 PL9A 1 T PL11C 3
24 VCCIO1 1 VCCIO3 3
25 GNDIO1 1 GNDIO3 3
26TMS 1TMS TMS 2TMS
27 PL9B 1 C PB2C 2
28 TCK 1 TCK TCK 2 TCK
29 PB2A 1 T VCCIO2 2
30 PB2B 1 C GNDIO2 2
31TDO 1TDO TDO 2TDO
32 PB2C 1 T PB4C 2
33 TDI 1 TDI TDI 2 TDI
34 PB2D 1 C PB4E 2
35 VCC - VCC -
36 PB3A 1 PCLK1_1** T PB5B 2 PCLK2_1**
37 PB3B 1 C PB5D 2
38 PB3C 1 PCLK1_0** T PB6B 2 PCLK2_0**
39 PB3D 1 C PB6C 2
40 GND - GND -
41 VCCIO1 1 VCCIO2 2
42 GNDIO1 1 GNDIO2 2
4-6
Pinout Information
MachXO Family Data Sheet
43 PB4A 1 T PB8B 2
44 PB4B 1 C PB8C 2 T
45 PB4C 1 T PB8D 2 C
46 PB4D 1 C PB9A 2
47 PB5A 1 PB9C 2 T
48* SLEEPN - SLEEPN SLEEPN - SLEEPN
49 PB5C 1 T PB9D 2 C
50 PB5D 1 C PB9F 2
51 PR9B 0 C PR11D 1 C
52 PR9A 0 T PR11B 1 C
53 PR8B 0 C PR11C 1 T
54 PR8A 0 T PR11A 1 T
55 PR7D 0 C PR10D 1 C
56 PR7C 0 T PR10C 1 T
57 PR7B 0 C PR10B 1 C
58 PR7A 0 T PR10A 1 T
59PR6B 0 CPR9D 1
60 VCCIO0 0 VCCIO1 1
61 PR6A 0 T PR9B 1
62 GNDIO0 0 GNDIO1 1
63 PR5D 0 C PR7B 1
64 PR5C 0 T PR6C 1
65 PR5B 0 C PR6B 1
66PR5A 0 TPR5D 1
67 PR4B 0 C PR5B 1
68PR4A 0 TPR4D 1
69 PR3D 0 C PR4B 1
70 PR3C 0 T PR3D 1
71 PR3B 0 C PR3B 1
72PR3A 0 TPR2D 1
73 PR2B 0 C PR2B 1
74 VCCIO0 0 VCCIO1 1
75 GNDIO0 0 GNDIO1 1
76PR2A 0 TPT9F 0 C
77 PT5C 0 PT9E 0 T
78 PT5B 0 C PT9C 0
79 PT5A 0 T PT9A 0
80 PT4F 0 C VCCIO0 0
81 PT4E 0 T GNDIO0 0
82 PT4D 0 C PT7E 0
83 PT4C 0 T PT7A 0
84 GND - GND -
LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)
Pin Number
LCMXO256 LCMXO640
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
4-7
Pinout Information
MachXO Family Data Sheet
85 PT4B 0 PCLK0_1** C PT6B 0 PCLK0_1**
86 PT4A 0 PCLK0_0** T PT5B 0 PCLK0_0** C
87 PT3D 0 C PT5A 0 T
88 VCCAUX - VCCAUX -
89 PT3C 0 T PT4F 0
90 VCC - VCC -
91 PT3B 0 C PT3F 0
92 VCCIO0 0 VCCIO0 0
93 GNDIO0 0 GNDIO0 0
94 PT3A 0 T PT3B 0 C
95 PT2F 0 C PT3A 0 T
96 PT2E 0 T PT2F 0 C
97 PT2D 0 C PT2E 0 T
98 PT2C 0 T PT2B 0 C
99 PT2B 0 C PT2C 0
100 PT2A 0 T PT2A 0 T
* NC for “E” devices.
** Primary clock inputs are single-ended.
LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)
Pin Number
LCMXO256 LCMXO640
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
4-8
Pinout Information
MachXO Family Data Sheet
LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP
Pin
Number
LCMXO1200 LCMXO2280
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
1 PL2A 7 T PL2A 7 LUM0_PLLT_FB_A T
2 PL2B 7 C PL2B 7 LUM0_PLLC_FB_A C
3 PL3C 7 T PL3C 7 LUM0_PLLT_IN_A T
4 PL3D 7 C PL3D 7 LUM0_PLLC_IN_A C
5 PL4B 7 PL4B 7
6 VCCIO7 7 VCCIO7 7
7 PL6A 7 T* PL7A 7 T*
8 PL6B 7 GSRN C* PL7B 7 GSRN C*
9GND- GND-
10 PL7C 7 T PL9C 7 T
11 PL7D 7 C PL9D 7 C
12 PL8C 7 T PL10C 7 T
13 PL8D 7 C PL10D 7 C
14 PL9C 6 PL11C 6
15 PL10A 6 T* PL13A 6 T*
16 PL10B 6 C* PL13B 6 C*
17 VCC - VCC -
18 PL11B 6 PL14D 6 C
19 PL11C 6 TSALL PL14C 6 TSALL T
20 VCCIO6 6 VCCIO6 6
21 PL13C 6 PL16C 6
22 PL14A 6 LLM0_PLLT_FB_A T* PL17A 6 LLM0_PLLT_FB_A T*
23 PL14B 6 LLM0_PLLC_FB_A C* PL17B 6 LLM0_PLLC_FB_A C*
24 PL15A 6 LLM0_PLLT_IN_A T* PL18A 6 LLM0_PLLT_IN_A T*
25 PL15B 6 LLM0_PLLC_IN_A C* PL18B 6 LLM0_PLLC_IN_A C*
26** GNDIO6
GNDIO5 -
GNDIO6
GNDIO5 -
27 VCCIO5 5 VCCIO5 5
28 TMS 5 TMS TMS 5 TMS
29 TCK 5 TCK TCK 5 TCK
30 PB3B 5 PB3B 5
31 PB4A 5 T PB4A 5 T
32 PB4B 5 C PB4B 5 C
33 TDO 5 TDO TDO 5 TDO
34 TDI 5 TDI TDI 5 TDI
35 VCC - VCC -
36 VCCAUX - VCCAUX -
37 PB6E 5 T PB8E 5 T
38 PB6F 5 C PB8F 5 C
39 PB7B 4 PCLK4_1**** PB10F 4 PCLK4_1****
40 PB7F 4 PCLK4_0**** PB10B 4 PCLK4_0****
41 GND- GND-
4-9
Pinout Information
MachXO Family Data Sheet
42 PB9A 4 T PB12A 4 T
43 PB9B 4 C PB12B 4 C
44 VCCIO4 4 VCCIO4 4
45 PB10A 4 T PB13A 4 T
46 PB10B 4 C PB13B 4 C
47*** SLEEPN - SLEEPN SLEEPN - SLEEPN
48 PB11A 4 T PB16A 4 T
49 PB11B 4 C PB16B 4 C
50** GNDIO3
GNDIO4 -
GNDIO3
GNDIO4 -
51 PR16B 3 PR19B 3
52 PR15B 3 C* PR18B 3 C*
53 PR15A 3 T* PR18A 3 T*
54 PR14B 3 C* PR17B 3 C*
55 PR14A 3 T* PR17A 3 T*
56 VCCIO3 3 VCCIO3 3
57 PR12B 3 C* PR15B 3 C*
58 PR12A 3 T* PR15A 3 T*
59 GND- GND-
60 PR10B 3 C* PR13B 3 C*
61 PR10A 3 T* PR13A 3 T*
62 PR9B 3 C* PR11B 3 C*
63 PR9A 3 T* PR11A 3 T*
64 PR8B 2 C* PR10B 2 C*
65 PR8A 2 T* PR10A 2 T*
66 VCC - VCC -
67 PR6C 2 PR8C 2
68 PR6B 2 C* PR8B 2 C*
69 PR6A 2 T* PR8A 2 T*
70 VCCIO2 2 VCCIO2 2
71 PR4D 2 PR5D 2
72 PR4B 2 C* PR5B 2 C*
73 PR4A 2 T* PR5A 2 T*
74 PR2B 2 C PR3B 2 C*
75 PR2A 2 T PR3A 2 T*
76** GNDIO1
GNDIO2 -
GNDIO1
GNDIO2 -
77 PT11C 1 PT15C 1
78 PT11B 1 C PT14B 1 C
79 PT11A 1 T PT14A 1 T
80 VCCIO1 1 VCCIO1 1
81 PT9E 1 PT12D 1 C
LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)
Pin
Number
LCMXO1200 LCMXO2280
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
4-10
Pinout Information
MachXO Family Data Sheet
82 PT9A 1 PT12C 1 T
83 GND- GND-
84 PT8B 1 C PT11B 1 C
85 PT8A 1 T PT11A 1 T
86 PT7D 1 PCLK1_1**** PT10B 1 PCLK1_1****
87 PT6F 0 PCLK0_0**** PT9B 1 PCLK1_0****
88 PT6D 0 C PT8F 0 C
89 PT6C 0 T PT8E 0 T
90 VCCAUX - VCCAUX -
91 VCC - VCC -
92 PT5B 0 PT6D 0
93 PT4B 0 PT6F 0
94 VCCIO0 0 VCCIO0 0
95 PT3D 0 C PT4B 0 C
96 PT3C 0 T PT4A 0 T
97 PT3B 0 PT3B 0
98 PT2B 0 C PT2B 0 C
99 PT2A 0 T PT2A 0 T
100** GNDIO0
GNDIO7 -
GNDIO0
GNDIO7 -
*Supports true LVDS outputs.
**Double bonded to the pin.
***NC for "E" devices.
****Primary clock inputs are single-ended.
LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)
Pin
Number
LCMXO1200 LCMXO2280
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
4-11
Pinout Information
MachXO Family Data Sheet
LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA
LCMXO256 LCMXO640
Ball
Number
Ball
Function Bank
Dual
Function
Differen-
tial
Ball
Number
Ball
Function Bank
Dual
Function
Differen-
tial
B1 PL2A 1 T B1 PL2A 3 T
C1 PL2B 1 C C1 PL2C 3 T
D2 PL3A 1 T D2 PL2B 3 C
D1 PL3B 1 C D1 PL2D 3 C
C2 PL3C 1 T C2 PL3A 3 T
E1 PL3D 1 C E1 PL3B 3 C
E2 PL4A 1 T E2 PL3C 3 T
F1 PL4B 1 C F1 PL3D 3 C
F2 PL5A 1 T F2 PL4A 3
G2 PL5B 1 C G2 PL4C 3 T
H1 GNDIO1 1 H1 GNDIO3 3
H2 PL5C 1 T H2 PL4D 3 C
J1 PL5D 1 GSRN C J1 PL5B 3 GSRN
J2 PL6A 1 T J2 PL7B 3
K1 PL6B 1 TSALL C K1 PL8C 3 TSALL T
K2 PL7A 1 T K2 PL8D 3 C
L1 PL7B 1 C L1 PL9A 3
L2 PL7C 1 T L2 PL9C 3
M1 PL7D 1 C M1 PL10A 3
M2 PL8A 1 T M2 PL10C 3
N1 PL8B 1 C N1 PL11A 3
M3 PL9A 1 T M3 PL11C 3
N2 GNDIO1 1 N2 GNDIO3 3
P2 TMS 1 TMS P2 TMS 2 TMS
P3 PL9B 1 C P3 PB2C 2
N4 TCK 1 TCK N4 TCK 2 TCK
P4 PB2A 1 T P4 VCCIO2 2
N3 PB2B 1 C N3 GNDIO2 2
P5 TDO 1 TDO P5 TDO 2 TDO
N5 PB2C 1 T N5 PB4C 2
P6 TDI 1 TDI P6 TDI 2 TDI
N6 PB2D 1 C N6 PB4E 2
P7 VCC - P7 VCC -
N7 PB3A 1 PCLK1_1** T N7 PB5B 2 PCLK2_1**
P8 PB3B 1 C P8 PB5D 2
N8 PB3C 1 PCLK1_0** T N8 PB6B 2 PCLK2_0**
P9 PB3D 1 C P9 PB6C 2
N10 GNDIO1 1 N10 GNDIO2 2
P11 PB4A 1 T P11 PB8B 2
N11 PB4B 1 C N11 PB8C 2 T
P12 PB4C 1 T P12 PB8D 2 C
N12 PB4D 1 C N12 PB9A 2
4-12
Pinout Information
MachXO Family Data Sheet
P13 PB5A 1 P13 PB9C 2 T
M12* SLEEPN - SLEEPN M12* SLEEPN - SLEEPN
P14 PB5C 1 T P14 PB9D 2 C
N13 PB5D 1 C N13 PB9F 2
N14 PR9B 0 C N14 PR11D 1 C
M14 PR9A 0 T M14 PR11B 1 C
L13 PR8B 0 C L13 PR11C 1 T
L14 PR8A 0 T L14 PR11A 1 T
M13 PR7D 0 C M13 PR10D 1 C
K14 PR7C 0 T K14 PR10C 1 T
K13 PR7B 0 C K13 PR10B 1 C
J14 PR7A 0 T J14 PR10A 1 T
J13 PR6B 0 C J13 PR9D 1
H13 PR6A 0 T H13 PR9B 1
G14 GNDIO0 0 G14 GNDIO1 1
G13 PR5D 0 C G13 PR7B 1
F14 PR5C 0 T F14 PR6C 1
F13 PR5B 0 C F13 PR6B 1
E14 PR5A 0 T E14 PR5D 1
E13 PR4B 0 C E13 PR5B 1
D14 PR4A 0 T D14 PR4D 1
D13 PR3D 0 C D13 PR4B 1
C14 PR3C 0 T C14 PR3D 1
C13 PR3B 0 C C13 PR3B 1
B14 PR3A 0 T B14 PR2D 1
C12 PR2B 0 C C12 PR2B 1
B13GNDIO0 0 B13GNDIO1 1
A13 PR2A 0 T A13 PT9F 0 C
A12 PT5C 0 A12 PT9E 0 T
B11 PT5B 0 C B11 PT9C 0
A11 PT5A 0 T A11 PT9A 0
B12 PT4F 0 C B12 VCCIO0 0
A10 PT4E 0 T A10 GNDIO0 0
B10 PT4D 0 C B10 PT7E 0
A9 PT4C 0 T A9 PT7A 0
A8 PT4B 0 PCLK0_1** C A8 PT6B 0 PCLK0_1**
B8 PT4A 0 PCLK0_0** T B8 PT5B 0 PCLK0_0** C
A7 PT3D 0 C A7 PT5A 0 T
B7 VCCAUX - B7 VCCAUX -
A6 PT3C 0 T A6 PT4F 0
B6 VCC - B6 VCC -
A5 PT3B 0 C A5 PT3F 0
LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)
LCMXO256 LCMXO640
Ball
Number
Ball
Function Bank
Dual
Function
Differen-
tial
Ball
Number
Ball
Function Bank
Dual
Function
Differen-
tial
4-13
Pinout Information
MachXO Family Data Sheet
A4 GNDIO0 0 A4 GNDIO0 0
B4 PT3A 0 T B4 PT3B 0 C
A3 PT2F 0 C A3 PT3A 0 T
B3 PT2E 0 T B3 PT2F 0 C
A2 PT2D 0 C A2 PT2E 0 T
C3 PT2C 0 T C3 PT2B 0 C
A1 PT2B 0 C A1 PT2C 0
B2 PT2A 0 T B2 PT2A 0 T
N9 GND - N9 GND -
B9 GND - B9 GND -
B5 VCCIO0 0 B5 VCCIO0 0
A14 VCCIO0 0 A14 VCCIO1 1
H14 VCCIO0 0 H14 VCCIO1 1
P10 VCCIO1 1 P10 VCCIO2 2
G1 VCCIO1 1 G1 VCCIO3 3
P1 VCCIO1 1 P1 VCCIO3 3
*NC for “E” devices.
**Primary clock inputs are single-ended.
LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)
LCMXO256 LCMXO640
Ball
Number
Ball
Function Bank
Dual
Function
Differen-
tial
Ball
Number
Ball
Function Bank
Dual
Function
Differen-
tial
4-14
Pinout Information
MachXO Family Data Sheet
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
132 csBGA
LCMXO640 LCMXO1200 LCMXO2280
Ball #
Ball
Function Bank
Dual
Function Differential Ball #
Ball
Function Bank
Dual
Function Differential Ball #
Ball
Function Bank
Dual
Function Differential
B1 PL2A 3 T B1 PL2A 7 T B1 PL2A 7 LUM0_PLLT_FB_A T
C1 PL2B 3 C C1 PL3C 7 T C1 PL3C 7 LUM0_PLLT_IN_A T
B2 PL2C 3 T B2 PL2B 7 C B2 PL2B 7 LUM0_PLLC_FB_A C
C2 PL2D 3 C C2 PL4A 7 T* C2 PL4A 7 T*
C3 PL3A 3 T C3 PL3D 7 C C3 PL3D 7 LUM0_PLLC_IN_A C
D1 PL3B 3 C D1 PL4B 7 C* D1 PL4B 7 C*
D3 PL3D 3 D3 PL4C 7 D3 PL4C 7
E1 GNDIO3 3 E1 GNDIO7 7 E1 GNDIO7 7
E2 PL5A 3 T E2 PL6A 7 T* E2 PL7A 7 T*
E3 PL5B 3 GSRN C E3 PL6B 7 GSRN C* E3 PL7B 7 GSRN C*
F2 PL5D 3 F2 PL6D 7 F2 PL7D 7
F3 PL6B 3 F3 PL7C 7 T F3 PL9C 7 T
G1 PL6C 3 T G1 PL7D 7 C G1 PL9D 7 C
G2 PL6D 3 C G2 PL8C 7 T G2 PL10C 7 T
G3 PL7A 3 T G3 PL8D 7 C G3 PL10D 7 C
H2 PL7B 3 C H2 PL10A 6 T* H2 PL12A 6 T*
H1 PL7C 3 H1 PL10B 6 C* H1 PL12B 6 C*
H3 VCC - H3 VCC - H3 VCC -
J1 PL8A 3 J1 PL11B 6 J1 PL14D 6 C
J2 PL8C 3 TSALL J2 PL11C 6 TSALL T J2 PL14C 6 TSALL T
J3 PL9A 3 T J3 PL11D 6 C J3 PL14B 6
K2 PL9B 3 C K2 PL12A 6 T* K2 PL15A 6 T*
K1 PL9C 3 K1 PL12B 6 C* K1 PL15B 6 C*
L2 GNDIO3 3 L2 GNDIO6 6 L2 GNDIO6 6
L1 PL10A 3 T L1 PL14A 6 LLM0_PLLT_FB_A T* L1 PL17A 6 LLM0_PLLT_FB_A T*
L3 PL10B 3 C L3 PL14B 6 LLM0_PLLC_FB_A C* L3 PL17B 6 LLM0_PLLC_FB_A C*
M1 PL11A 3 T M1 PL15A 6 LLM0_PLLT_IN_A T* M1 PL18A 6 LLM0_PLLT_IN_A T*
N1 PL11B 3 C N1 PL16A 6 T N1 PL19A 6 T
M2 PL11C 3 T M2 PL15B 6 LLM0_PLLC_IN_A C* M2 PL18B 6 LLM0_PLLC_IN_A C*
P1 PL11D 3 C P1 PL16B 6 C P1 PL19B 6 C
P2 GNDIO2 2 P2 GNDIO5 5 P2 GNDIO5 5
P3 TMS 2 TMS P3 TMS 5 TMS P3 TMS 5 TMS
M3 PB2C 2 T M3 PB2C 5 T M3 PB2A 5 T
N3 PB2D 2 C N3 PB2D 5 C N3 PB2B 5 C
P4 TCK 2 TCK P4 TCK 5 TCK P4 TCK 5 TCK
M4 PB3B 2 M4 PB3B 5 M4 PB3B 5
N4 PB3C 2 T N4 PB4A 5 T N4 PB4A 5 T
P5 PB3D 2 C P5 PB4B 5 C P5 PB4B 5 C
N5 TDO 2 TDO N5 TDO 5 TDO N5 TDO 5 TDO
M5 TDI 2 TDI M5 TDI 5 TDI M5 TDI 5 TDI
N6 PB4E 2 T N6 PB5C 5 N6 PB6C 5
P6 VCC - P6 VCC - P6 VCC -
M6 PB4F 2 C M6 PB6A 5 M6 PB8A 5
P7 VCCAUX - P7 VCCAUX - P7 VCCAUX -
N7 PB5A 2 T N7 PB6F 5 N7 PB8F 5
M7 PB5B 2 PCLK2_1*** C M7 PB7B 4 PCLK4_1*** M7 PB10F 4 PCLK4_1***
N8 PB5D 2 N8 PB7C 4 T N8 PB10C 4 T
P8 PB6A 2 T P8 PB7D 4 C P8 PB10D 4 C
M8 PB6B 2 PCLK2_0*** C M8 PB7F 4 PCLK4_0*** M8 PB10B 4 PCLK4_0***
N9 PB7A 2 T N9 PB9A 4 T N9 PB12A 4 T
4-15
Pinout Information
MachXO Family Data Sheet
M9 PB7B 2 C M9 PB9B 4 C M9 PB12B 4 C
N10 PB7E 2 T N10 PB9C 4 T N10 PB12C 4 T
P10 PB7F 2 C P10 PB9D 4 C P10 PB12D 4 C
N11 GNDIO2 2 N11 GNDIO4 4 N11 GNDIO4 4
P11 PB8C 2 T P11 PB10A 4 T P11 PB13C 4 T
M11 PB8D 2 C M11 PB10B 4 C M11 PB13D 4 C
P12 PB9C 2 T P12 PB10C 4 P12 PB15B 4
P13 PB9D 2 C P13 PB11C 4 T P13 PB16C 4 T
N12** SLEEPN - SLEEPN N12** SLEEPN - SLEEPN N12** SLEEPN - SLEEPN
P14 PB9F 2 P14 PB11D 4 C P14 PB16D 4 C
N14 PR11D 1 C N14 PR16B 3 C N14 PR19B 3 C
M14 PR11C 1 T M14 PR15B 3 C* M14 PR18B 3 C*
N13 PR11B 1 C N13 PR16A 3 T N13 PR19A 3 T
M12 PR11A 1 T M12 PR15A 3 T* M12 PR18A 3 T*
M13 PR10B 1 C M13 PR14B 3 C* M13 PR17B 3 C*
L14 PR10A 1 T L14 PR14A 3 T* L14 PR17A 3 T*
L13 GNDIO1 1 L13 GNDIO3 3 L13 GNDIO3 3
K14 PR8D 1 C K14 PR12B 3 C* K14 PR15B 3 C*
K13 PR8C 1 T K13 PR12A 3 T* K13 PR15A 3 T*
K12 PR8B 1 C K12 PR11B 3 C* K12 PR14B 3 C*
J13 PR8A 1 T J13 PR11A 3 T* J13 PR14A 3 T*
J12 PR7C 1 J12 PR10B 3 C* J12 PR13B 3 C*
H14 PR7B 1 C H14 PR10A 3 T* H14 PR13A 3 T*
H13 PR7A 1 T H13 PR9B 3 C* H13 PR11B 3 C*
H12 PR6D 1 C H12 PR9A 3 T* H12 PR11A 3 T*
G13 PR6C 1 T G13 PR8B 2 C* G13 PR10B 2 C*
G14 PR6B 1 G14 PR8A 2 T* G14 PR10A 2 T*
G12 VCC - G12 VCC - G12 VCC -
F14 PR5D 1 C F14 PR6C 2 F14 PR8C 2
F13 PR5C 1 T F13 PR6B 2 C* F13 PR8B 2 C*
F12 PR4D 1 C F12 PR6A 2 T* F12 PR8A 2 T*
E13 PR4C 1 T E13 PR5B 2 C* E13 PR7B 2 C*
E14 PR4B 1 E14 PR5A 2 T* E14 PR7A 2 T*
D13 GNDIO1 1 D13 GNDIO2 2 D13 GNDIO2 2
D14 PR3D 1 C D14 PR4B 2 C* D14 PR5B 2 C*
D12 PR3C 1 T D12 PR4A 2 T* D12 PR5A 2 T*
C14 PR2D 1 C C14 PR3D 2 C C14 PR4D 2 C
B14 PR2C 1 T B14 PR2B 2 C B14 PR3B 2 C*
C13 PR2B 1 C C13 PR3C 2 T C13 PR4C 2 T
A14 PR2A 1 T A14 PR2A 2 T A14 PR3A 2 T*
A13 PT9F 0 C A13 PT11D 1 C A13 PT16D 1 C
A12 PT9E 0 T A12 PT11B 1 C A12 PT16B 1 C
B13 PT9D 0 C B13 PT11C 1 T B13 PT16C 1 T
B12 PT9C 0 T B12 PT10F 1 B12 PT15D 1
C12 PT9B 0 C C12 PT11A 1 T C12 PT16A 1 T
A11 PT9A 0 T A11 PT10D 1 C A11 PT14B 1 C
C11 PT8C 0 C11 PT10C 1 T C11 PT14A 1 T
A10 GNDIO0 0 A10 GNDIO1 1 A10 GNDIO1 1
B10 PT7F 0 C B10 PT9F 1 C B10 PT12F 1 C
C10 PT7E 0 T C10 PT9E 1 T C10 PT12E 1 T
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
132 csBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball #
Ball
Function Bank
Dual
Function Differential Ball #
Ball
Function Bank
Dual
Function Differential Ball #
Ball
Function Bank
Dual
Function Differential
4-16
Pinout Information
MachXO Family Data Sheet
B9 PT7B 0 C B9 PT9B 1 C B9 PT12D 1 C
A9 PT7A 0 T A9 PT9A 1 T A9 PT12C 1 T
A8 PT6B 0 PCLK0_1*** C A8 PT7D 1 PCLK1_1*** A8 PT10B 1 PCLK1_1***
B8 PT6A 0 T B8 PT7B 1 B8 PT9D 1
C8 PT5B 0 PCLK0_0*** C C8 PT6F 0 PCLK1_0*** C8 PT9B 1 PCLK1_0***
B7 PT5A 0 T B7 PT6D 0 B7 PT8D 0
A7 VCCAUX - A7 VCCAUX - A7 VCCAUX -
C7 VCC - C7 VCC - C7 VCC -
A6 PT4D 0 C A6 PT5D 0 C A6 PT7B 0 C
B6 PT4C 0 T B6 PT5C 0 T B6 PT7A 0 T
C6 PT3F 0 C C6 PT5B 0 C C6 PT6D 0
B5 PT3E 0 T B5 PT5A 0 T B5 PT6E 0 T
A5 PT3D 0 A5 PT4B 0 A5 PT6F 0 C
B4 GNDIO0 0 B4 GNDIO0 0 B4 GNDIO0 0
A4 PT3B 0 A4 PT3D 0 C A4 PT4B 0 C
C4 PT2F 0 C4 PT3C 0 T C4 PT4A 0 T
A3 PT2D 0 C A3 PT3B 0 C A3 PT3B 0 C
A2 PT2C 0 T A2 PT2B 0 C A2 PT2B 0 C
B3 PT2B 0 C B3 PT3A 0 T B3 PT3A 0 T
A1 PT2A 0 T A1 PT2A 0 T A1 PT2A 0 T
F1 GND - F1 GND - F1 GND -
P9 GND - P9 GND - P9 GND -
J14 GND - J14 GND - J14 GND -
C9 GND - C9 GND - C9 GND -
C5 VCCIO0 0 C5 VCCIO0 0 C5 VCCIO0 0
B11 VCCIO0 0 B11 VCCIO1 1 B11 VCCIO1 1
E12 VCCIO1 1 E12 VCCIO2 2 E12 VCCIO2 2
L12 VCCIO1 1 L12 VCCIO3 3 L12 VCCIO3 3
M10 VCCIO2 2 M10 VCCIO4 4 M10 VCCIO4 4
N2 VCCIO2 2 N2 VCCIO5 5 N2 VCCIO5 5
D2 VCCIO3 3 D2 VCCIO7 7 D2 VCCIO7 7
K3 VCCIO3 3 K3 VCCIO6 6 K3 VCCIO6 6
*Supports true LVDS outputs.
**NC for “E” devices.
***Primary clock inputs arer single-ended.
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
132 csBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball #
Ball
Function Bank
Dual
Function Differential Ball #
Ball
Function Bank
Dual
Function Differential Ball #
Ball
Function Bank
Dual
Function Differential
4-17
Pinout Information
MachXO Family Data Sheet
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
144 TQFP
Pin
Number
LCMXO640 LCMXO1200 LCMXO2280
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
1 PL2A 3 T PL2A 7 T PL2A 7 LUM0_PLLT_FB_A T
2 PL2C 3 T PL2B 7 C PL2B 7 LUM0_PLLC_FB_A C
3 PL2B 3 C PL3A 7 T* PL3A 7 T*
4 PL3A 3 T PL3B 7 C* PL3B 7 C*
5 PL2D 3 C PL3C 7 T PL3C 7 LUM0_PLLT_IN_A T
6 PL3B 3 C PL3D 7 C PL3D 7 LUM0_PLLC_IN_A C
7 PL3C 3 T PL4A 7 T* PL4A 7 T*
8 PL3D 3 C PL4B 7 C* PL4B 7 C*
9 PL4A 3 PL4C 7 PL4C 7
10 VCCIO3 3 VCCIO7 7 VCCIO7 7
11 GNDIO3 3 GNDIO7 7 GNDIO7 7
12 PL4D 3 PL5C 7 PL6C 7
13 PL5A 3 T PL6A 7 T* PL7A 7 T*
14 PL5B 3 GSRN C PL6B 7 GSRN C* PL7B 7 GSRN C*
15 PL5D 3 PL6D 7 PL7D 7
16 GND - GND - GND -
17 PL6C 3 T PL7C 7 T PL9C 7 T
18 PL6D 3 C PL7D 7 C PL9D 7 C
19 PL7A 3 T PL10A 6 T* PL13A 6 T*
20 PL7B 3 C PL10B 6 C* PL13B 6 C*
21 VCC - VCC - VCC -
22 PL8A 3 T PL11A 6 T* PL13D 6
23 PL8B 3 C PL11B 6 C* PL14D 6 C
24 PL8C 3 TSALL PL11C 6 TSALL PL14C 6 TSALL T
25 PL9C 3 T PL12B 6 PL15B 6
26 VCCIO3 3 VCCIO6 6 VCCIO6 6
27 GNDIO3 3 GNDIO6 6 GNDIO6 6
28 PL9D 3 C PL13D 6 PL16D 6
29 PL10A 3 T PL14A 6 LLM0_PLLT_FB_A T* PL17A 6 LLM0_PLLT_FB_A T*
30 PL10B 3 C PL14B 6 LLM0_PLLC_FB_A C* PL17B 6 LLM0_PLLC_FB_A C*
31 PL10C 3 T PL14C 6 T PL17C 6 T
32 PL11A 3 T PL14D 6 C PL17D 6 C
33 PL10D 3 C PL15A 6 LLM0_PLLT_IN_A T* PL18A 6 LLM0_PLLT_IN_A T*
34 PL11C 3 T PL15B 6 LLM0_PLLC_IN_A C* PL18B 6 LLM0_PLLC_IN_A C*
35 PL11B 3 C PL16A 6 T PL19A 6 T
36 PL11D 3 C PL16B 6 C PL19B 6 C
37 GNDIO2 2 GNDIO5 5 GNDIO5 5
38 VCCIO2 2 VCCIO5 5 VCCIO5 5
39 TMS 2 TMS TMS 5 TMS TMS 5 TMS
40 PB2C 2 PB2C 5 T PB2A 5 T
41 PB3A 2 T PB2D 5 C PB2B 5 C
42 TCK 2 TCK TCK 5 TCK TCK 5 TCK
43 PB3B 2 C PB3A 5 T PB3A 5 T
44 PB3C 2 T PB3B 5 C PB3B 5 C
45 PB3D 2 C PB4A 5 T PB4A 5 T
46 PB4A 2 T PB4B 5 C PB4B 5 C
47 TDO 2 TDO TDO 5 TDO TDO 5 TDO
48 PB4B 2 C PB4D 5 PB4D 5
49 PB4C 2 T PB5A 5 T PB5A 5 T
50 PB4D 2 C PB5B 5 C PB5B 5 C
4-18
Pinout Information
MachXO Family Data Sheet
51 TDI 2 TDI TDI 5 TDI TDI 5 TDI
52 VCC - VCC - VCC -
53 VCCAUX - VCCAUX - VCCAUX -
54 PB5A 2 T PB6F 5 PB8F 5
55 PB5B 2 PCLKT2_1*** C PB7B 4 PCLK4_1*** PB10F 4 PCLK4_1***
56 PB5D 2 PB7C 4 T PB10C 4 T
57 PB6A 2 T PB7D 4 C PB10D 4 C
58 PB6B 2 PCLKT2_0*** C PB7F 4 PCLK4_0*** PB10B 4 PCLK4_0***
59 GND - GND - GND -
60 PB7C 2 PB9A 4 T PB12A 4 T
61 PB7E 2 PB9B 4 C PB12B 4 C
62 PB8A 2 PB9E 4 PB12E 4
63 VCCIO2 2 VCCIO4 4 VCCIO4 4
64 GNDIO2 2 GNDIO4 4 GNDIO4 4
65 PB8C 2 T PB10A 4 T PB13A 4 T
66 PB8D 2 C PB10B 4 C PB13B 4 C
67 PB9A 2 T PB10C 4 T PB13C 4 T
68 PB9C 2 T PB10D 4 C PB13D 4 C
69 PB9B 2 C PB10F 4 PB14D 4
70** SLEEPN - SLEEPN SLEEPN - SLEEPN SLEEPN - SLEEPN
71 PB9D 2 C PB11C 4 T PB16C 4 T
72 PB9F 2 PB11D 4 C PB16D 4 C
73 PR11D 1 C PR16B 3 C PR20B 3 C
74 PR11B 1 C PR16A 3 T PR20A 3 T
75 PR11C 1 T PR15B 3 C* PR19B 3 C
76 PR10D 1 C PR15A 3 T* PR19A 3 T
77 PR11A 1 T PR14D 3 C PR17D 3 C
78 PR10B 1 C PR14C 3 T PR17C 3 T
79 PR10C 1 T PR14B 3 C* PR17B 3 C*
80 PR10A 1 T PR14A 3 T* PR17A 3 T*
81 PR9D 1 PR13D 3 PR16D 3
82 VCCIO1 1 VCCIO3 3 VCCIO3 3
83 GNDIO1 1 GNDIO3 3 GNDIO3 3
84 PR9A 1 PR12B 3 C* PR15B 3 C*
85 PR8C 1 PR12A 3 T* PR15A 3 T*
86 PR8A 1 PR11B 3 C* PR14B 3 C*
87 PR7D 1 PR11A 3 T* PR14A 3 T*
88 GND - GND - GND -
89 PR7B 1 C PR10B 3 C* PR13B 3 C*
90 PR7A 1 T PR10A 3 T* PR13A 3 T*
91 PR6D 1 C PR8B 2 C* PR10B 2 C*
92 PR6C 1 T PR8A 2 T* PR10A 2 T*
93 VCC - VCC - VCC -
94 PR5D 1 PR6B 2 C* PR8B 2 C*
95 PR5B 1 PR6A 2 T* PR8A 2 T*
96 PR4D 1 PR5B 2 C* PR7B 2 C*
97 PR4B 1 C PR5A 2 T* PR7A 2 T*
98 VCCIO1 1 VCCIO2 2 VCCIO2 2
99 GNDIO1 1 GNDIO2 2 GNDIO2 2
100 PR4A 1 T PR4C 2 PR5C 2
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
144 TQFP (Cont.)
Pin
Number
LCMXO640 LCMXO1200 LCMXO2280
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
4-19
Pinout Information
MachXO Family Data Sheet
101 PR3D 1 C PR4B 2 C* PR5B 2 C*
102 PR3C 1 T PR4A 2 T* PR5A 2 T*
103 PR3B 1 C PR3D 2 C PR4D 2 C
104 PR2D 1 C PR3C 2 T PR4C 2 T
105 PR3A 1 T PR3B 2 C* PR4B 2 C*
106 PR2B 1 C PR3A 2 T* PR4A 2 T*
107 PR2C 1 T PR2B 2 C PR3B 2 C*
108 PR2A 1 T PR2A 2 T PR3A 2 T*
109 PT9F 0 C PT11D 1 C PT16D 1 C
110 PT9D 0 C PT11C 1 T PT16C 1 T
111 PT9E 0 T PT11B 1 C PT16B 1 C
112 PT9B 0 C PT11A 1 T PT16A 1 T
113 PT9C 0 T PT10F 1 C PT15D 1 C
114 PT9A 0 T PT10E 1 T PT15C 1 T
115 PT8C 0 PT10D 1 C PT14B 1 C
116 PT8B 0 C PT10C 1 T PT14A 1 T
117 VCCIO0 0 VCCIO1 1 VCCIO1 1
118 GNDIO0 0 GNDIO1 1 GNDIO1 1
119 PT8A 0 T PT9F 1 C PT12F 1 C
120 PT7E 0 PT9E 1 T PT12E 1 T
121 PT7C 0 PT9B 1 C PT12D 1 C
122 PT7A 0 PT9A 1 T PT12C 1 T
123 GND - GND - GND -
124 PT6B 0 PCLK0_1*** C PT7D 1 PCLK1_1*** PT10B 1 PCLK1_1***
125 PT6A 0 T PT7B 1 C PT9D 1 C
126 PT5C 0 PT7A 1 T PT9C 1 T
127 PT5B 0 PCLK0_0*** PT6F 0 PCLK1_0*** PT9B 1 PCLK1_0***
128 VCCAUX - VCCAUX - VCCAUX -
129 VCC - VCC - VCC -
130 PT4D 0 PT5D 0 C PT7B 0 C
131 PT4B 0 C PT5C 0 T PT7A 0 T
132 PT4A 0 T PT5B 0 C PT6D 0
133 PT3F 0 PT5A 0 T PT6E 0 T
134 PT3D 0 PT4B 0 PT6F 0 C
135 VCCIO0 0 VCCIO0 0 VCCIO0 0
136 GNDIO0 0 GNDIO0 0 GNDIO0 0
137 PT3B 0 C PT3D 0 C PT4B 0 T
138 PT2F 0 C PT3C 0 T PT4A 0 C
139 PT3A 0 T PT3B 0 C PT3B 0 C
140 PT2D 0 C PT3A 0 T PT3A 0 T
141 PT2E 0 T PT2D 0 C PT2D 0 C
142 PT2B 0 C PT2C 0 T PT2C 0 T
143 PT2C 0 T PT2B 0 C PT2B 0 C
144 PT2A 0 T PT2A 0 T PT2A 0 T
*Supports true LVDS outputs.
**NC for “E” devices.
***Primary clock inputs arer single-ended.
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
144 TQFP (Cont.)
Pin
Number
LCMXO640 LCMXO1200 LCMXO2280
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
Ball
Function Bank
Dual
Function Differential
4-20
Pinout Information
MachXO Family Data Sheet
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
256 caBGA / 256 ftBGA
LCMXO640 LCMXO1200 LCMXO2280
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
GND GNDIO3 3 GND GNDIO7 7 GND GNDIO7 7
VCCIO3 VCCIO3 3 VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7
E4 NC E4 PL2A 7 T E4 PL2A 7 LUM0_PLLT_FB_A T
E5 NC E5 PL2B 7 C E5 PL2B 7 LUM0_PLLC_FB_A C
F5 NC F5 PL3A 7 T* F5 PL3A 7 T*
F6 NC F6 PL3B 7 C* F6 PL3B 7 C*
F3 PL3A 3 T F3 PL3C 7 T F3 PL3C 7 LUM0_PLLT_IN_A T
F4 PL3B 3 C F4 PL3D 7 C F4 PL3D 7 LUM0_PLLC_IN_A C
E3 PL2C 3 T E3 PL4A 7 T* E3 PL4A 7 T*
E2 PL2D 3 C E2 PL4B 7 C* E2 PL4B 7 C*
C3 NC C3 PL4C 7 T C3 PL4C 7 T
C2 NC C2 PL4D 7 C C2 PL4D 7 C
B1 PL2A 3 T B1 PL5A 7 T* B1 PL5A 7 T*
C1 PL2B 3 C C1 PL5B 7 C* C1 PL5B 7 C*
VCCIO3 VCCIO3 3 VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7
GND GNDIO3 3 GND GNDIO7 7 GND GNDIO7 7
D2 PL3C 3 T D2 PL5C 7 T D2 PL6C 7 T
D1 PL3D 3 C D1 PL5D 7 C D1 PL6D 7 C
F2 PL5A 3 T F2 PL6A 7 T* F2 PL7A 7 T*
G2 PL5B 3 GSRN C G2 PL6B 7 GSRN C* G2 PL7B 7 GSRN C*
E1 PL4A 3 T E1 PL6C 7 T E1 PL7C 7 T
F1 PL4B 3 C F1 PL6D 7 C F1 PL7D 7 C
G4 NC G4 PL7A 7 T* G4 PL8A 7 T*
G5 NC G5 PL7B 7 C* G5 PL8B 7 C*
GND GND - GND GND - GND GND -
G3 PL4C 3 T G3 PL7C 7 T G3 PL8C 7 T
H3 PL4D 3 C H3 PL7D 7 C H3 PL8D 7 C
H4 NC H4 PL8A 7 T* H4 PL9A 7 T*
H5 NC H5 PL8B 7 C* H5 PL9B 7 C*
- - VCCIO7 VCCIO7 7 VCCIO7 VCCIO7 7
- - GND GNDIO7 7 GND GNDIO7 7
G1 PL5C 3 T G1 PL8C 7 T G1 PL10C 7 T
H1 PL5D 3 C H1 PL8D 7 C H1 PL10D 7 C
H2 PL6A 3 T H2 PL9A 6 T* H2 PL11A 6 T*
J2 PL6B 3 C J2 PL9B 6 C* J2 PL11B 6 C*
J3 PL7C 3 T J3 PL9C 6 T J3 PL11C 6 T
K3 PL7D 3 C K3 PL9D 6 C K3 PL11D 6 C
J1 PL6C 3 T J1 PL10A 6 T* J1 PL12A 6 T*
- - VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6
- - GND GNDIO6 6 GND GNDIO6 6
K1 PL6D 3 C K1 PL10B 6 C* K1 PL12B 6 C*
K2 PL9A 3 T K2 PL10C 6 T K2 PL12C 6 T
L2 PL9B 3 C L2 PL10D 6 C L2 PL12D 6 C
L1 PL7A 3 T L1 PL11A 6 T* L1 PL13A 6 T*
M1 PL7B 3 C M1 PL11B 6 C* M1 PL13B 6 C*
P1 PL8D 3 C P1 PL11D 6 C P1 PL14D 6 C
N1 PL8C 3 TSALL T N1 PL11C 6 TSALL T N1 PL14C 6 TSALL T
L3 PL10A 3 T L3 PL12A 6 T* L3 PL15A 6 T*
M3 PL10B 3 C M3 PL12B 6 C* M3 PL15B 6 C*
M2 PL9C 3 T M2 PL12C 6 T M2 PL15C 6 T
N2 PL9D 3 C N2 PL12D 6 C N2 PL15D 6 C
VCCIO3 VCCIO3 3 VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6
GND GNDIO3 3 GND GNDIO6 6 GND GNDIO6 6
4-21
Pinout Information
MachXO Family Data Sheet
J4 PL8A 3 T J4 PL13A 6 T* J4 PL16A 6 T*
J5 PL8B 3 C J5 PL13B 6 C* J5 PL16B 6 C*
R1 PL11A 3 T R1 PL13C 6 T R1 PL16C 6 T
R2 PL11B 3 C R2 PL13D 6 C R2 PL16D 6 C
--- --- GNDGND-
K5 NC K5 PL14A 6 LLM0_PLLT_FB_A T* K5 PL17A 6 LLM0_PLLT_FB_A T*
K4 NC K4 PL14B 6 LLM0_PLLC_FB_A C* K4 PL17B 6 LLM0_PLLC_FB_A C*
L5 PL10C 3 T L5 PL14C 6 T L5 PL17C 6 T
L4 PL10D 3 C L4 PL14D 6 C L4 PL17D 6 C
M5 NC M5 PL15A 6 LLM0_PLLT_IN_A T* M5 PL18A 6 LLM0_PLLT_IN_A T*
M4 NC M4 PL15B 6 LLM0_PLLC_IN_A C* M4 PL18B 6 LLM0_PLLC_IN_A C*
N4 PL11C 3 T N4 PL16A 6 T N4 PL19A 6 T
N3 PL11D 3 C N3 PL16B 6 C N3 PL19B 6 C
VCCIO3 VCCIO3 3 VCCIO6 VCCIO6 6 VCCIO6 VCCIO6 6
GND GNDIO3 3 GND GNDIO6 6 GND GNDIO6 6
GND GNDIO2 2 GND GNDIO5 5 GND GNDIO5 5
VCCIO2 VCCIO2 2 VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5
P4 TMS 2 TMS P4 TMS 5 TMS P4 TMS 5 TMS
P2 NC P2 PB2A 5 T P2 PB2A 5 T
P3 NC P3 PB2B 5 C P3 PB2B 5 C
N5 NC N5 PB2C 5 T N5 PB2C 5 T
R3 TCK 2 TCK R3 TCK 5 TCK R3 TCK 5 TCK
N6 NC N6 PB2D 5 C N6 PB2D 5 C
T2PB2A2 TT2PB3A5 TT2PB3A5 T
T3PB2B2 C T3PB3B5 C T3PB3B5 C
R4 PB2C 2 T R4 PB3C 5 T R4 PB3C 5 T
R5 PB2D 2 C R5 PB3D 5 C R5 PB3D 5 C
P5 PB3A 2 T P5 PB4A 5 T P5 PB4A 5 T
P6 PB3B 2 C P6 PB4B 5 C P6 PB4B 5 C
T5 PB3C 2 T T5 PB4C 5 T T5 PB4C 5 T
M6 TDO 2 TDO M6 TDO 5 TDO M6 TDO 5 TDO
T4 PB3D 2 C T4 PB4D 5 C T4 PB4D 5 C
R6PB4A2 TR6PB5A5 TR6PB5A5 T
GND GNDIO2 2 GND GNDIO5 5 GND GNDIO5 5
VCCIO2 VCCIO2 2 VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5
T6PB4B2 C T6PB5B5 C T6PB5B5 C
N7 TDI 2 TDI N7 TDI 5 TDI N7 TDI 5 TDI
T8 PB4C 2 T T8 PB5C 5 T T8 PB6A 5 T
T7 PB4D 2 C T7 PB5D 5 C T7 PB6B 5 C
M7 NC M7 PB6A 5 T M7 PB7C 5 T
M8 NC M8 PB6B 5 C M8 PB7D 5 C
T9 VCCAUX - T9 VCCAUX - T9 VCCAUX -
R7 PB4E 2 T R7 PB6C 5 T R7 PB8C 5 T
R8 PB4F 2 C R8 PB6D 5 C R8 PB8D 5 C
- - VCCIO5 VCCIO5 5 VCCIO5 VCCIO5 5
- - GND GNDIO5 5 GND GNDIO5 5
P7 PB5C 2 T P7 PB6E 5 T P7 PB9A 4 T
P8 PB5D 2 C P8 PB6F 5 C P8 PB9B 4 C
N8 PB5A 2 T N8 PB7A 4 T N8 PB10E 4 T
N9 PB5B 2 PCLK2_1*** C N9 PB7B 4 PCLK4_1*** C N9 PB10F 4 PCLK4_1*** C
P10 PB7B 2 C P10 PB7D 4 C P10 PB10D 4 C
P9 PB7A 2 T P9 PB7C 4 T P9 PB10C 4 T
M9 PB6B 2 PCLK2_0*** C M9 PB7F 4 PCLK4_0*** C M9 PB10B 4 PCLK4_0*** C
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
256 caBGA / 256 ftBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
4-22
Pinout Information
MachXO Family Data Sheet
- - VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4
- - GND GNDIO4 4 GND GNDIO4 4
M10 PB6A 2 T M10 PB7E 4 T M10 PB10A 4 T
R9 PB6C 2 T R9 PB8A 4 T R9 PB11C 4 T
R10 PB6D 2 C R10 PB8B 4 C R10 PB11D 4 C
T10 PB7C 2 T T10 PB8C 4 T T10 PB12A 4 T
T11 PB7D 2 C T11 PB8D 4 C T11 PB12B 4 C
N10 NC N10 PB8E 4 T N10 PB12C 4 T
N11 NC N11 PB8F 4 C N11 PB12D 4 C
VCCIO2 VCCIO2 2 VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4
GND GNDIO2 2 GND GNDIO4 4 GND GNDIO4 4
R11 PB7E 2 T R11 PB9A 4 T R11 PB13A 4 T
R12 PB7F 2 C R12 PB9B 4 C R12 PB13B 4 C
P11 PB8A 2 T P11 PB9C 4 T P11 PB13C 4 T
P12 PB8B 2 C P12 PB9D 4 C P12 PB13D 4 C
T13 PB8C 2 T T13 PB9E 4 T T13 PB14A 4 T
T12 PB8D 2 C T12 PB9F 4 C T12 PB14B 4 C
R13 PB9A 2 T R13 PB10A 4 T R13 PB14C 4 T
R14 PB9B 2 C R14 PB10B 4 C R14 PB14D 4 C
GND GND - GND GND - GND GND -
T14 PB9C 2 T T14 PB10C 4 T T14 PB15A 4 T
T15 PB9D 2 C T15 PB10D 4 C T15 PB15B 4 C
P13** SLEEPN - SLEEPN P13** SLEEPN - SLEEPN P13** SLEEPN - SLEEPN
P14 PB9F 2 P14 PB10F 4 P14 PB15D 4
R15 NC R15 PB11A 4 T R15 PB16A 4 T
R16 NC R16 PB11B 4 C R16 PB16B 4 C
P15 NC P15 PB11C 4 T P15 PB16C 4 T
P16 NC P16 PB11D 4 C P16 PB16D 4 C
VCCIO2 VCCIO2 2 VCCIO4 VCCIO4 4 VCCIO4 VCCIO4 4
GND GNDIO2 2 GND GNDIO4 4 GND GNDIO4 4
GND GNDIO1 1 GND GNDIO3 3 GND GNDIO3 3
VCCIO1 VCCIO1 1 VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3
M11 NC M11 PR16B 3 C M11 PR20B 3 C
L11 NC L11 PR16A 3 T L11 PR20A 3 T
N12 NC N12 PR15B 3 C* N12 PR18B 3 C*
N13 NC N13 PR15A 3 T* N13 PR18A 3 T*
M13 NC M13 PR14D 3 C M13 PR17D 3 C
M12 NC M12 PR14C 3 T M12 PR17C 3 T
N14 PR11D 1 C N14 PR14B 3 C* N14 PR17B 3 C*
N15 PR11C 1 T N15 PR14A 3 T* N15 PR17A 3 T*
L13 PR11B 1 C L13 PR13D 3 C L13 PR16D 3 C
L12 PR11A 1 T L12 PR13C 3 T L12 PR16C 3 T
M14 PR10B 1 C M14 PR13B 3 C* M14 PR16B 3 C*
VCCIO1 VCCIO1 1 VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3
GND GNDIO1 1 GND GNDIO3 3 GND GNDIO3 3
L14 PR10A 1 T L14 PR13A 3 T* L14 PR16A 3 T*
N16 PR10D 1 C N16 PR12D 3 C N16 PR15D 3 C
M16 PR10C 1 T M16 PR12C 3 T M16 PR15C 3 T
M15 PR9D 1 C M15 PR12B 3 C* M15 PR15B 3 C*
L15 PR9C 1 T L15 PR12A 3 T* L15 PR15A 3 T*
L16 PR9B 1 C L16 PR11D 3 C L16 PR14D 3 C
K16 PR9A 1 T K16 PR11C 3 T K16 PR14C 3 T
K13 PR8D 1 C K13 PR11B 3 C* K13 PR14B 3 C*
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
256 caBGA / 256 ftBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
4-23
Pinout Information
MachXO Family Data Sheet
J13 PR8C 1 T J13 PR11A 3 T* J13 PR14A 3 T*
GND GND - GND GND - GND GND -
K14 PR8B 1 C K14 PR10D 3 C K14 PR13D 3 C
J14 PR8A 1 T J14 PR10C 3 T J14 PR13C 3 T
K15 PR7D 1 C K15 PR10B 3 C* K15 PR13B 3 C*
J15 PR7C 1 T J15 PR10A 3 T* J15 PR13A 3 T*
- - GND GNDIO3 3 GND GNDIO3 3
- - VCCIO3 VCCIO3 3 VCCIO3 VCCIO3 3
K12 NC K12 PR9D 3 C K12 PR11D 3 C
J12 NC J12 PR9C 3 T J12 PR11C 3 T
J16 PR7B 1 C J16 PR9B 3 C* J16 PR11B 3 C*
H16 PR7A 1 T H16 PR9A 3 T* H16 PR11A 3 T*
H15 PR6B 1 C H15 PR8D 2 C H15 PR10D 2 C
G15 PR6A 1 T G15 PR8C 2 T G15 PR10C 2 T
H14 PR5D 1 C H14 PR8B 2 C* H14 PR10B 2 C*
G14 PR5C 1 T G14 PR8A 2 T* G14 PR10A 2 T*
GND GNDIO1 1 GND GNDIO2 2 GND GNDIO2 2
VCCIO1 VCCIO1 1 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2
H13PR6D1 CH13PR7D2 CH13PR9D2 C
H12 PR6C 1 T H12 PR7C 2 T H12 PR9C 2 T
G13 PR4D 1 C G13 PR7B 2 C* G13 PR9B 2 C*
G12 PR4C 1 T G12 PR7A 2 T* G12 PR9A 2 T*
G16 PR5B 1 C G16 PR6D 2 C G16 PR7D 2 C
F16 PR5A 1 T F16 PR6C 2 T F16 PR7C 2 T
F15 PR4B 1 C F15 PR6B 2 C* F15 PR7B 2 C*
E15 PR4A 1 T E15 PR6A 2 T* E15 PR7A 2 T*
E16 PR3B 1 C E16 PR5D 2 C E16 PR6D 2 C
D16 PR3A 1 T D16 PR5C 2 T D16 PR6C 2 T
VCCIO1 VCCIO1 1 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2
GND GNDIO1 1 GND GNDIO2 2 GND GNDIO2 2
D15 PR2D 1 C D15 PR5B 2 C* D15 PR6B 2 C*
C15 PR2C 1 T C15 PR5A 2 T* C15 PR6A 2 T*
C16PR2B1 CC16PR4D2 CC16PR5D2 C
B16 PR2A 1 T B16 PR4C 2 T B16 PR5C 2 T
F14 PR3D 1 C F14 PR4B 2 C* F14 PR5B 2 C*
E14 PR3C 1 T E14 PR4A 2 T* E14 PR5A 2 T*
--- --- GNDGND-
F12 NC F12 PR3D 2 C F12 PR4D 2 C
F13 NC F13 PR3C 2 T F13 PR4C 2 T
E12 NC E12 PR3B 2 C* E12 PR4B 2 C*
E13 NC E13 PR3A 2 T* E13 PR4A 2 T*
D13 NC D13 PR2B 2 C D13 PR3B 2 C*
D14 NC D14 PR2A 2 T D14 PR3A 2 T*
VCCIO0 VCCIO0 0 VCCIO2 VCCIO2 2 VCCIO2 VCCIO2 2
GND GNDIO0 0 GND GNDIO2 2 GND GNDIO2 2
GND GNDIO0 0 GND GNDIO1 1 GND GNDIO1 1
VCCIO0 VCCIO0 0 VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1
B15 NC B15 PT11D 1 C B15 PT16D 1 C
A15 NC A15 PT11C 1 T A15 PT16C 1 T
C14 NC C14 PT11B 1 C C14 PT16B 1 C
B14 NC B14 PT11A 1 T B14 PT16A 1 T
C13 PT9F 0 C C13 PT10F 1 C C13 PT15D 1 C
B13 PT9E 0 T B13 PT10E 1 T B13 PT15C 1 T
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
256 caBGA / 256 ftBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
4-24
Pinout Information
MachXO Family Data Sheet
E11 NC E11 PT10D 1 C E11 PT15B 1 C
E10 NC E10 PT10C 1 T E10 PT15A 1 T
D12 PT9D 0 C D12 PT10B 1 C D12 PT14D 1 C
D11 PT9C 0 T D11 PT10A 1 T D11 PT14C 1 T
A14 PT7F 0 C A14 PT9F 1 C A14 PT14B 1 C
A13 PT7E 0 T A13 PT9E 1 T A13 PT14A 1 T
C12 PT8B 0 C C12 PT9D 1 C C12 PT13D 1 C
C11 PT8A 0 T C11 PT9C 1 T C11 PT13C 1 T
- - VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1
- - GND GNDIO1 1 GND GNDIO1 1
B12 PT7B 0 C B12 PT9B 1 C B12 PT12D 1 C
B11 PT7A 0 T B11 PT9A 1 T B11 PT12C 1 T
A12 PT7D 0 C A12 PT8F 1 C A12 PT12B 1 C
A11 PT7C 0 T A11 PT8E 1 T A11 PT12A 1 T
GND GND - GND GND - GND GND -
B10 PT5D 0 C B10 PT8D 1 C B10 PT11B 1 C
B9 PT5C 0 T B9 PT8C 1 T B9 PT11A 1 T
D10 PT8D 0 C D10 PT8B 1 C D10 PT10F 1 C
D9PT8C0 TD9PT8A1 TD9PT10E1 T
- - VCCIO1 VCCIO1 1 VCCIO1 VCCIO1 1
- - GND GNDIO1 1 GND GNDIO1 1
C10 PT6D 0 C C10 PT7F 1 C C10 PT10D 1 C
C9PT6C0 TC9PT7E1 TC9PT10C1 T
A9 PT6B 0 PCLK0_1*** C A9 PT7D 1 PCLK1_1*** C A9 PT10B 1 PCLK1_1*** C
A10 PT6A 0 T A10 PT7C 1 T A10 PT10A 1 T
E9 PT9B 0 C E9 PT7B 1 C E9 PT9D 1 C
E8PT9A0 TE8PT7A1 TE8PT9C1 T
D7 PT5B 0 PCLK0_0*** C D7 PT6F 0 PCLK1_0*** C D7 PT9B 1 PCLK1_0*** C
D8PT5A0 TD8PT6E0 TD8PT9A1 T
VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0
GND GNDIO0 0 GND GNDIO0 0 GND GNDIO0 0
C8 PT4F 0 C C8 PT6D 0 C C8 PT8D 0 C
B8PT4E0 TB8PT6C0 TB8PT8C0 T
A8 VCCAUX - A8 VCCAUX - A8 VCCAUX -
A7 PT4D 0 C A7 PT6B 0 C A7 PT7D 0 C
A6 PT4C 0 T A6 PT6A 0 T A6 PT7C 0 T
VCC VCC - VCC VCC - VCC VCC -
B7 PT4B 0 C B7 PT5F 0 C B7 PT7B 0 C
B6PT4A0 TB6PT5E0 TB6PT7A0 T
C6PT3C0 TC6PT5C0 TC6PT6A0 T
C7 PT3D 0 C C7 PT5D 0 C C7 PT6B 0 C
A5PT3E0 TA5PT5A0 TA5PT6C0 T
A4 PT3F 0 C A4 PT5B 0 C A4 PT6D 0 C
E7 NC E7 PT4C 0 T E7 PT6E 0 T
E6 NC E6 PT4D 0 C E6 PT6F 0 C
B5 PT3B 0 C B5 PT3F 0 C B5 PT5D 0 C
B4PT3A0 TB4PT3E0 TB4PT5C0 T
D5 PT2D 0 C D5 PT3D 0 C D5 PT5B 0 C
D6PT2C0 TD6PT3C0 TD6PT5A0 T
C4PT2E0 TC4PT4A0 TC4PT4A0 T
C5 PT2F 0 C C5 PT4B 0 C C5 PT4B 0 C
--- --- GNDGND-
D4 NC D4 PT2D 0 C D4 PT3D 0 C
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
256 caBGA / 256 ftBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
4-25
Pinout Information
MachXO Family Data Sheet
D3 NC D3 PT2C 0 T D3 PT3C 0 T
A3PT2B0 C A3PT3B0 C A3PT3B0 C
A2PT2A0 TA2PT3A0 TA2PT3A0 T
B3 NC B3 PT2B 0 C B3 PT2D 0 C
B2 NC B2 PT2A 0 T B2 PT2C 0 T
VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0 VCCIO0 VCCIO0 0
GND GNDIO0 0 GND GNDIO0 0 GND GNDIO0 0
A1 GND - A1 GND - A1 GND -
A16 GND - A16 GND - A16 GND -
F11 GND - F11 GND - F11 GND -
G8 GND - G8 GND - G8 GND -
G9 GND - G9 GND - G9 GND -
H7 GND- H7 GND- H7 GND-
H8 GND- H8 GND- H8 GND-
H9 GND- H9 GND- H9 GND-
H10 GND - H10 GND - H10 GND -
J7 GND - J7 GND - J7 GND -
J8 GND - J8 GND - J8 GND -
J9 GND - J9 GND - J9 GND -
J10 GND - J10 GND - J10 GND -
K8 GND - K8 GND - K8 GND -
K9 GND - K9 GND - K9 GND -
L6 GND- L6 GND- L6 GND-
T1 GND - T1 GND - T1 GND -
T16 GND - T16 GND - T16 GND -
G7 VCC - G7 VCC - G7 VCC -
G10VCC- G10VCC- G10VCC -
K7 VCC - K7 VCC - K7 VCC -
K10 VCC - K10 VCC - K10 VCC -
H6 VCCIO3 3 H6 VCCIO7 7 H6 VCCIO7 7
G6 VCCIO3 3 G6 VCCIO7 7 G6 VCCIO7 7
K6 VCCIO3 3 K6 VCCIO6 6 K6 VCCIO6 6
J6 VCCIO3 3 J6 VCCIO6 6 J6 VCCIO6 6
L8 VCCIO2 2 L8 VCCIO5 5 L8 VCCIO5 5
L7 VCCIO2 2 L7 VCCIO5 5 L7 VCCIO5 5
L9 VCCIO2 2 L9 VCCIO4 4 L9 VCCIO4 4
L10 VCCIO2 2 L10 VCCIO4 4 L10 VCCIO4 4
K11 VCCIO1 1 K11 VCCIO3 3 K11 VCCIO3 3
J11 VCCIO1 1 J11 VCCIO3 3 J11 VCCIO3 3
H11 VCCIO1 1 H11 VCCIO2 2 H11 VCCIO2 2
G11VCCIO11 G11VCCIO22 G11VCCIO22
F9 VCCIO0 0 F9 VCCIO1 1 F9 VCCIO1 1
F10 VCCIO0 0 F10 VCCIO1 1 F10 VCCIO1 1
F8 VCCIO0 0 F8 VCCIO0 0 F8 VCCIO0 0
F7 VCCIO0 0 F7 VCCIO0 0 F7 VCCIO0 0
* Supports true LVDS outputs.
** NC for “E” devices.
*** Primary clock inputs are single-ended.
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections:
256 caBGA / 256 ftBGA (Cont.)
LCMXO640 LCMXO1200 LCMXO2280
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
Ball
Number
Ball
Function Bank
Dual
Function Differential
4-26
Pinout Information
MachXO Family Data Sheet
LCMXO2280 Logic Signal Connections: 324 ftBGA
LCMXO2280
Ball Number Ball Function Bank Dual Function Differential
GND GNDIO7 7
VCCIO7 VCCIO7 7
D4 PL2A 7 LUM0_PLLT_FB_A T
F5 PL2B 7 LUM0_PLLC_FB_A C
B3 PL3A 7 T*
C3 PL3B 7 C*
E4 PL3C 7 LUM0_PLLT_IN_A T
G6 PL3D 7 LUM0_PLLC_IN_A C
A1 PL4A 7 T*
B1 PL4B 7 C*
F4 PL4C 7 T
VCC VCC -
E3 PL4D 7 C
D2 PL5A 7 T*
D3 PL5B 7 C*
G5 PL5C 7 T
F3 PL5D 7 C
C2 PL6A 7 T*
VCCIO7 VCCIO7 7
GND GNDIO7 7
C1 PL6B 7 C*
H5 PL6C 7 T
G4 PL6D 7 C
E2 PL7A 7 T*
D1 PL7B 7 GSRN C*
J6 PL7C 7 T
H4 PL7D 7 C
F2 PL8A 7 T*
E1 PL8B 7 C*
GND GND -
J3 PL8C 7 T
J5 PL8D 7 C
G3 PL9A 7 T*
H3 PL9B 7 C*
K3 PL9C 7 T
K5 PL9D 7 C
F1 PL10A 7 T*
VCCIO7 VCCIO7 7
GND GNDIO7 7
G1 PL10B 7 C*
K4 PL10C 7 T
K6 PL10D 7 C
4-27
Pinout Information
MachXO Family Data Sheet
G2 PL11A 6 T*
H2 PL11B 6 C*
L3 PL11C 6 T
L5 PL11D 6 C
H1 PL12A 6 T*
VCCIO6 VCCIO6 6
GND GNDIO6 6
J2 PL12B 6 C*
L4 PL12C 6 T
L6 PL12D 6 C
K2 PL13A 6 T*
K1 PL13B 6 C*
J1 PL13C 6 T
VCC VCC -
L2 PL13D 6 C
M5 PL14D 6 C
M3 PL14C 6 TSALL T
L1 PL14B 6 C*
M2 PL14A 6 T*
M1 PL15A 6 T*
N1 PL15B 6 C*
M6 PL15C 6 T
M4 PL15D 6 C
VCCIO6 VCCIO6 6
GND GNDIO6 6
P1 PL16A 6 T*
P2 PL16B 6 C*
N3 PL16C 6 T
N4 PL16D 6 C
GND GND -
T1 PL17A 6 LLM0_PLLT_FB_A T*
R1 PL17B 6 LLM0_PLLC_FB_A C*
P3 PL17C 6 T
N5 PL17D 6 C
R3 PL18A 6 LLM0_PLLT_IN_A T*
R2 PL18B 6 LLM0_PLLC_IN_A C*
P4 PL19A 6 T
N6 PL19B 6 C
U1 PL20A 6 T
VCCIO6 VCCIO6 6
GND GNDIO6 6
GND GNDIO5 5
VCCIO5 VCCIO5 5
LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LCMXO2280
Ball Number Ball Function Bank Dual Function Differential
4-28
Pinout Information
MachXO Family Data Sheet
T2 PL20B 6 C
P6 TMS 5 TMS
V1 PB2A 5 T
U2 PB2B 5 C
T3 PB2C 5 T
N7 TCK 5 TCK
R4 PB2D 5 C
R5 PB3A 5 T
T4 PB3B 5 C
VCC VCC -
R6 PB3C 5 T
P7 PB3D 5 C
U3 PB4A 5 T
T5 PB4B 5 C
V2 PB4C 5 T
N8 TDO 5 TDO
V3 PB4D 5 C
T6 PB5A 5 T
GND GNDIO5 5
VCCIO5 VCCIO5 5
U4 PB5B 5 C
P8 PB5C 5 T
T7 PB5D 5 C
V4 TDI 5 TDI
R8 PB6A 5 T
N9 PB6B 5 C
U5 PB6C 5 T
V5 PB6D 5 C
U6 PB7A 5 T
VCC VCC -
V6 PB7B 5 C
P9 PB7C 5 T
T8 PB7D 5 C
U7 PB8A 5 T
V7 PB8B 5 C
M10 VCCAUX -
U8 PB8C 5 T
V8 PB8D 5 C
VCCIO5 VCCIO5 5
GND GNDIO5 5
T9 PB8E 5 T
U9 PB8F 5 C
V9 PB9A 4 T
LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LCMXO2280
Ball Number Ball Function Bank Dual Function Differential
4-29
Pinout Information
MachXO Family Data Sheet
V10 PB9B 4 C
N10 PB9C 4 T
R10 PB9D 4 C
P10 PB10F 4 PCLK4_1*** C
T10 PB10E 4 T
U10 PB10D 4 C
V11 PB10C 4 T
U11 PB10B 4 PCLK4_0*** C
VCCIO4 VCCIO4 4
GND GNDIO4 4
T11 PB10A 4 T
U12 PB11A 4 T
R11 PB11B 4 C
GND GND -
T12 PB11C 4 T
P11 PB11D 4 C
V12 PB12A 4 T
V13 PB12B 4 C
R12 PB12C 4 T
N11 PB12D 4 C
U13 PB12E 4 T
VCCIO4 VCCIO4 4
GND GNDIO4 4
V14 PB12F 4 C
T13 PB13A 4 T
P12 PB13B 4 C
R13 PB13C 4 T
N12 PB13D 4 C
V15 PB14A 4 T
U14 PB14B 4 C
V16 PB14C 4 T
GND GND -
T14 PB14D 4 C
U15 PB15A 4 T
V17 PB15B 4 C
P13** SLEEPN - SLEEPN
T15 PB15D 4
U16 PB16A 4 T
V18 PB16B 4 C
N13 PB16C 4 T
R14 PB16D 4 C
VCCIO4 VCCIO4 4
GND GNDIO4 4
LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LCMXO2280
Ball Number Ball Function Bank Dual Function Differential
4-30
Pinout Information
MachXO Family Data Sheet
GND GNDIO3 3
VCCIO3 VCCIO3 3
P15 PR20B 3 C
N14 PR20A 3 T
N15 PR19B 3 C
M13 PR19A 3 T
R15 PR18B 3 C*
T16 PR18A 3 T*
N16 PR17D 3 C
M14 PR17C 3 T
U17 PR17B 3 C*
VCC VCC -
U18 PR17A 3 T*
R17 PR16D 3 C
R16 PR16C 3 T
P16 PR16B 3 C*
VCCIO3 VCCIO3 3
GND GNDIO3 3
P17 PR16A 3 T*
L13 PR15D 3 C
M15 PR15C 3 T
T17 PR15B 3 C*
T18 PR15A 3 T*
L14 PR14D 3 C
L15 PR14C 3 T
R18 PR14B 3 C*
P18 PR14A 3 T*
GND GND -
K15 PR13D 3 C
K13 PR13C 3 T
N17 PR13B 3 C*
N18 PR13A 3 T*
K16 PR12D 3 C
K14 PR12C 3 T
M16 PR12B 3 C*
L16 PR12A 3 T*
GND GNDIO3 3
VCCIO3 VCCIO3 3
J16 PR11D 3 C
J14 PR11C 3 T
M17 PR11B 3 C*
L17 PR11A 3 T*
J15 PR10D 2 C
LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LCMXO2280
Ball Number Ball Function Bank Dual Function Differential
4-31
Pinout Information
MachXO Family Data Sheet
J13 PR10C 2 T
M18 PR10B 2 C*
L18 PR10A 2 T*
GND GNDIO2 2
VCCIO2 VCCIO2 2
H16 PR9D 2 C
H14 PR9C 2 T
K18 PR9B 2 C*
J18 PR9A 2 T*
J17 PR8D 2 C
VCC VCC -
H18 PR8C 2 T
H17 PR8B 2 C*
G17 PR8A 2 T*
H13 PR7D 2 C
H15 PR7C 2 T
G18 PR7B 2 C*
F18 PR7A 2 T*
G14 PR6D 2 C
G16 PR6C 2 T
VCCIO2 VCCIO2 2
GND GNDIO2 2
E18 PR6B 2 C*
F17 PR6A 2 T*
G13 PR5D 2 C
G15 PR5C 2 T
E17 PR5B 2 C*
E16 PR5A 2 T*
GND GND -
F15 PR4D 2 C
E15 PR4C 2 T
D17 PR4B 2 C*
D18 PR4A 2 T*
B18 PR3D 2 C
C18 PR3C 2 T
C16 PR3B 2 C*
D16 PR3A 2 T*
C17 PR2B 2 C
D15 PR2A 2 T
VCCIO2 VCCIO2 2
GND GNDIO2 2
GND GNDIO1 1
VCCIO1 VCCIO1 1
LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LCMXO2280
Ball Number Ball Function Bank Dual Function Differential
4-32
Pinout Information
MachXO Family Data Sheet
E13 PT16D 1 C
C15 PT16C 1 T
F13 PT16B 1 C
D14 PT16A 1 T
A18 PT15D 1 C
B17 PT15C 1 T
A16 PT15B 1 C
A17 PT15A 1 T
VCC VCC -
D13 PT14D 1 C
F12 PT14C 1 T
C14 PT14B 1 C
E12 PT14A 1 T
C13 PT13D 1 C