AD8601,02,04 Datasheet

Analog Devices Inc.

View All Related Products | Download PDF Datasheet

Datasheet

Precision CMOS, Single-Supply, Rail-to-Rail,
Input/Output Wideband Operational Amplifiers
AD8601/AD8602/AD8604
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2000–2011 Analog Devices, Inc. All rights reserved.
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2000–2011 Analog Devices, Inc. All rights reserved.
FEATURES
Low offset voltage: 500 μV maximum
Single-supply operation: 2.7 V to 5.5 V
Low supply current: 750 μA/Amplifier
Wide bandwidth: 8 MHz
Slew rate: 5 V/μs
Low distortion
No phase reversal
Low input currents
Unity-gain stable
Qualified for automotive applications
APPLICATIONS
Current sensing
Barcode scanners
PA controls
Battery-powered instrumentation
Multipole filters
Sensors
ASIC input or output amplifiers
Audio
GENERAL DESCRIPTION
The AD8601, AD8602, and AD8604 are single, dual, and quad
rail-to-rail, input and output, single-supply amplifiers featuring
very low offset voltage and wide signal bandwidth. These amplifiers
use a new, patented trimming technique that achieves superior
performance without laser trimming. All are fully specified to
operate on a 3 V to 5 V single supply.
The combination of low offsets, very low input bias currents,
and high speed make these amplifiers useful in a wide variety
of applications. Filters, integrators, diode amplifiers, shunt
current sensors, and high impedance sensors all benefit from
the combination of performance features. Audio and other ac
applications benefit from the wide bandwidth and low distortion.
For the most cost-sensitive applications, the D grades offer this
ac performance with lower dc precision at a lower price point.
Applications for these amplifiers include audio amplification for
portable devices, portable phone headsets, bar code scanners,
portable instruments, cellular PA controls, and multipole filters.
The ability to swing rail-to-rail at both the input and output
enables designers to buffer CMOS ADCs, DACs, ASICs, and
other wide output swing devices in single-supply systems.
PIN CONFIGURATIONS
01525-001
OUT A
1
V–
2
+IN
3
V+
5
–IN
4
AD8601
TOP VIEW
(Not to Scale)
Figure 1. 5-Lead SOT-23 (RJ Suffix)
OUT A
1
–IN A
2
+IN A
3
V–
4
V+
8
OUT B
7
–IN B
6
+IN B
5
AD8602
TOP VIEW
(Not to Scale)
01525-002
Figure 2. 8-Lead MSOP (RM Suffix) and 8-Lead SOIC (R-Suffix)
01525-003
1
2
3
4
5
6
7
AD8604
–IN A
+IN A
V+
OUT B
–IN B
+IN B
OUT A
14
13
12
11
10
9
8
–IN D
+IN D
V–
OUT C
–IN C
+IN C
OUT D
TOP VIEW
(Not to Scale)
Figure 3. 14-Lead TSSOP (RU Suffix) and 14-Lead SOIC (R Suffix)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
–IN A
+IN A
V+
OUT B
–IN B
+IN B
OUT A
–IN D
+IN D
V–
OUT C
NC NC
NC = NO CONNECT
–IN C
+IN C
OUT D
TOP VIEW
(Not to Scale)
AD8604
01525-004
Figure 4. 16-Lead Shrink Small Outline QSOP (RQ Suffix)
The AD8601, AD8602, and AD8604 are specified over the
extended industrial (−40°C to +125°C) temperature range. The
AD8601, single, is available in a tiny, 5-lead SOT-23 package. The
AD8602, dual, is available in 8-lead MSOP and 8-lead, narrow
SOIC surface-mount packages. The AD8604, quad, is available
in 14-lead TSSOP, 14-lead SOIC, and 16-lead QSOP packages.
See the Ordering Guide for automotive grades.
AD8601/AD8602/AD8604
Rev. G | Page 2 of 24
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics............................................................. 3
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution.................................................................................. 5
Typical Performance Characteristics ............................................. 6
Theory of Operation ...................................................................... 15
Rail-to-Rail Input Stage ............................................................. 15
Input Overvoltage Protection................................................... 16
Overdrive Recovery ................................................................... 16
Power-On Time .......................................................................... 16
Using the AD8602 in High Source Impedance
Applications ................................................................................ 16
High Side and Low Side, Precision Current Monitoring ...... 16
Using the AD8601 in Single-Supply, Mixed Signal
Applications ................................................................................ 17
PC100 Compliance for Computer Audio Applications ........ 17
SPICE Model............................................................................... 18
Outline Dimensions....................................................................... 19
Ordering Guide .......................................................................... 22
Automotive Products ................................................................. 22
REVISION HISTORY
1/11—Rev. F to Rev. G
Changes to Ordering Guide .......................................................... 22
Change to Automotive Products Section .................................... 22
5/10—Rev. E to Rev. F
Changes to Features Section and General Description
Section................................................................................................ 1
Changes to Ordering Guide .......................................................... 22
Added Automotive Products Section .......................................... 22
2/10—Rev. D to Rev. E
Add 16-Lead QSOP............................................................Universal
Changes to Table 3 and Table 4....................................................... 5
Updated Outline Dimensions....................................................... 19
Changes to Ordering Guide .......................................................... 22
11/03—Rev. C to Rev. D
Changes to Features ..........................................................................1
Changes to Ordering Guide.............................................................4
3/03—Rev. B to Rev. C
Changes to Features ..........................................................................1
3/03—Rev. A to Rev. B
Change to Features ............................................................................1
Change to Functional Block Diagrams...........................................1
Change to TPC 39 .......................................................................... 11
Changes to Figures 4 and 5 ........................................................... 14
Changes to Equations 2 and 3................................................. 14, 15
Updated Outline Dimensions....................................................... 16
AD8601/AD8602/AD8604
Rev. G | Page 3 of 24
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 3 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 1.
A Grade D Grade
Parameter Symbol Conditions Min Typ Max Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage (AD8601/AD8602) VOS 0 V ≤ VCM ≤ 1.3 V 80 500 1100 6000 μV
−40°C TA ≤ +85°C 700 7000 μV
−40°C TA ≤ +125°C 1100 7000 μV
0 V ≤ VCM ≤ 3 V1 350 750 1300 6000 μV
−40°C TA ≤ +85°C 1800 7000 μV
−40°C TA ≤ +125°C 2100 7000 μV
Offset Voltage (AD8604) VOS VCM = 0 V to 1.3 V 80 600 1100 6000 μV
−40°C TA ≤ +85°C 800 7000 μV
−40°C TA ≤ +125°C 1600 7000 μV
VCM = 0 V to 3.0 V1 350 800 1300 6000 μV
−40°C TA ≤ +85°C 2200 7000 μV
−40°C TA ≤ +125°C 2400 7000 μV
Input Bias Current IB 0.2 60 0.2 200 pA
−40°C TA ≤ +85°C 25 100 25 200 pA
−40°C TA ≤ +125°C 150 1000 150 1000 pA
Input Offset Current IOS 0.1 30 0.1 100 pA
−40°C TA ≤ +85°C 50 100 pA
−40°C TA ≤ +125°C 500 500 pA
Input Voltage Range 0 3 0 3 V
Common-Mode Rejection Ratio CMRR VCM = 0 V to 3 V 68 83 52 65 dB
Large Signal Voltage Gain AVO V
O = 0.5 V to 2.5 V,
RL = 2 kΩ, VCM = 0 V
30 100 20 60 V/mV
Offset Voltage Drift ΔVOS/ΔT 2 2 μV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1.0 mA 2.92 2.95 2.92 2.95 V
–40°C TA +125°C 2.88 2.88 V
Output Voltage Low VOL IL = 1.0 mA 20 35 20 35 mV
−40°C TA +125°C 50 50 mV
Output Current IOUT ±30 ±30 mA
Closed-Loop Output Impedance ZOUT f = 1 MHz, AV = 1 12 12 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V 67 80 56 72 dB
Supply Current/Amplifier ISY VO = 0 V 680 1000 680 1000 μA
−40°C TA ≤ +125°C 1300 1300 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 5.2 5.2 V/μs
Settling Time tS To 0.01% <0.5 <0.5 μs
Gain Bandwidth Product GBP 8.2 8.2 MHz
Phase Margin Φo 50 50 Degrees
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 33 33 nV/√Hz
f = 10 kHz 18 18 nV/√Hz
Current Noise Density in 0.05 0.05 pA/√Hz
1 For VCM between 1.3 V and 1.8 V, VOS may exceed specified value.
AD8601/AD8602/AD8604
Rev. G | Page 4 of 24
VS = 5.0 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 2.
A Grade D Grade
Parameter Symbol Conditions Min Typ Max Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage (AD8601/AD8602) VOS 0 V ≤ VCM ≤ 5 V 80 500 1300 6000 μV
−40°C TA ≤ +125°C 1300 7000 μV
Offset Voltage (AD8604) VOS VCM = 0 V to 5 V 80 600 1300 6000 μV
−40°C TA ≤ +125°C 1700 7000 μV
Input Bias Current IB 0.2 60 0.2 200 pA
−40°C TA ≤ +85°C 100 200 pA
−40°C TA ≤ +125°C 1000 1000 pA
Input Offset Current IOS 0.1 30 0.1 100 pA
−40°C TA ≤ +85°C 6 50 6 100 pA
−40°C TA ≤ +125°C 25 500 25 500 pA
Input Voltage Range 0 5 0 5 V
Common-Mode Rejection Ratio CMRR VCM = 0 V to 5 V 74 89 56 67 dB
Large Signal Voltage Gain AVO VO = 0.5 V to 4.5 V,
RL = 2 kΩ, VCM = 0 V
30 80 20 60 V/mV
Offset Voltage Drift ΔVOS/ΔT 2 2 μV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1.0 mA 4.925 4.975 4.925 4.975 V
I
L = 10 mA 4.7 4.77 4.7 4.77 V
−40°C TA ≤ +125°C 4.6 4.6 V
Output Voltage Low VOL IL = 1.0 mA 15 30 15 30 mV
I
L = 10 mA 125 175 125 175 mV
−40°C TA ≤ +125°C 250 250 mV
Output Current IOUT ±50 ±50 mA
Closed-Loop Output Impedance ZOUT f = 1 MHz, AV = 1 10 10 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V 67 80 56 72 dB
Supply Current/Amplifier ISY V
O = 0 V 750 1200 750 1200 μA
−40°C TA ≤ +125°C 1500 1500 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 6 6 V/μs
Settling Time tS To 0.01% <1.0 <1.0 μs
Full Power Bandwidth BWp <1% distortion 360 360 kHz
Gain Bandwidth Product GBP 8.4 8.4 MHz
Phase Margin Φo 55 55 Degrees
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 33 33 nV/√Hz
f = 10 kHz 18 18 nV/√Hz
Current Noise Density in f = 1 kHz 0.05 0.05 pA/√Hz
AD8601/AD8602/AD8604
Rev. G | Page 5 of 24
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter Rating
Supply Voltage 6 V
Input Voltage GND to VS
Differential Input Voltage ±6 V
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −40°C to +125°C
Junction Temperature Range −65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) 300°C
ESD 2 kV HBM
θJA is specified for worst-case conditions, that is, a device
soldered onto a circuit board for surface-mount packages using
a standard 4-layer board.
Table 4. Thermal Resistance
Package Type θJA θ
JC Unit
5-Lead SOT-23 (RJ) 190 92 °C/W
8-Lead SOIC (R) 120 45 °C/W
8-Lead MSOP (RM) 142 45 °C/W
14-Lead SOIC (R) 115 36 °C/W
14-Lead TSSOP (RU) 112 35 °C/W
16-Lead QSOP (RQ) 115 36 °C/W
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
AD8601/AD8602/AD8604
Rev. G | Page 6 of 24
TYPICAL PERFORMANCE CHARACTERISTICS
3,000
2,500
2,000
1,500
1,000
500
0
V
S
= 3V
T
A
= 25°C
V
CM
= 0V TO 3V
–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
INPUT OFFSET VOLTAGE (mV)
QUANTITY (Amplifiers)
01525-005
Figure 5. Input Offset Voltage Distribution
3,000
2,500
2,000
1,500
1,000
500
0
V
S
= 5V
T
A
= 25°C
V
CM
= 0V TO 5V
–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
INPUT OFFSET VOLTAGE (mV)
QUANTITY (Amplifiers)
01525-006
Figure 6. Input Offset Voltage Distribution
60
50
40
30
20
10
0
V
S
= 3V
T
A
= 25°C TO 85°C
012345678910
TCVOS (µV/°C)
QUANTITY (Amplifiers)
01525-007
Figure 7. Input Offset Voltage Drift Distribution
60
50
40
30
20
10
0
V
S
= 5V
T
A
= 25°C TO 85°C
012345678910
TCVOS (µV/°C)
QUANTITY (Amplifiers)
01525-008
Figure 8. Input Offset Voltage Drift Distribution
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
–2.0 0 0.5 1.0 1.5 2.0 2.5 3.0
COMMON-MODE VOLTAGE (V)
INPUT OFFSET VOLTAGE (mV)
01525-009
V
S
= 3V
T
A
= 25°C
Figure 9. Input Offset Voltage vs. Common-Mode Voltage
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
–2.0 01234
COMMON-MODE VOLTAGE (V)
INPUT OFFSET VOLTAGE (mV)
01525-010
5
V
S
= 5V
T
A
= 25°C
Figure 10. Input Offset Voltage vs. Common-Mode Voltage
AD8601/AD8602/AD8604
Rev. G | Page 7 of 24
300
250
200
150
100
50
0
–40 –25 105 203550658095110125
TEMPERATURE (°C)
INPUT BIAS CURRENT (pA)
01525-011
V
S
= 3V
Figure 11. Input Bias Current vs. Temperature
300
250
200
150
100
50
0
–40 –25 105 203550658095110125
TEMPERATURE (°C)
INPUT BIAS CURRENT (pA)
01525-012
V
S
= 5V
Figure 12. Input Bias Current vs. Temperature
5
4
3
2
1
00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
COMMON-MODE VOLTAGE (V)
INPUT BIAS CURRENT (pA)
01525-013
V
S
= 5V
T
A
= 25°C
Figure 13. Input Bias Current vs. Common-Mode Voltage
30
25
20
15
10
5
0
–40 –25 105 203550658095110125
TEMPERATURE (°C)
INPUT OFFSET CURRENT (pA)
01525-014
V
S
= 3V
Figure 14. Input Offset Current vs. Temperature
30
25
20
15
10
5
0
–40 –25 105 203550658095110125
TEMPERATURE (°C)
INPUT OFFSET CURRENT (pA)
01525-015
V
S
= 5V
Figure 15. Input Offset Current vs. Temperature
10k
1k
100
10
1
0.1
0.001 0.01 0.1 1 10 100
LOAD CURRENT (mA)
OUTPUT VOLTAGE (mV)
01525-016
V
S
= 2.7V
T
A
= 25°C
SOURCE SINK
Figure 16. Output Voltage to Supply Rail vs. Load Current
AD8601/AD8602/AD8604
Rev. G | Page 8 of 24
10k
1k
100
10
1
0.1
0.001 0.01 0.1 1 10 100
LOAD CURRENT (mA)
OUTPUT VOLTAGE (mV)
01525-017
V
S
= 5V
T
A
= 25°C
SOURCE
SINK
Figure 17. Output Voltage to Supply Rail vs. Load Current
5.1
5.0
4.9
4.8
4.7
4.6
4.5
–40 –25 105 203550658095110125
TEMPERATURE (°C)
OUTPUT VOLTAGE (V)
01525-018
V
S
= 5V
V
OH
@ 1mA LOAD
V
OH
@ 10mA LOAD
Figure 18. Output Voltage Swing vs. Temperature
250
200
150
100
50
0
–40 –25 –10 5 20 35 50 65 80 95 110 125
TEMPERATUREC)
OUTPUT VOLTAGE (mV)
01525-019
V
S
= 5V
V
OH
@ 1mA LOAD
V
OH
@ 10mA LOAD
Figure 19. Output Voltage Swing vs. Temperature
35
30
25
20
15
10
5
0
–40 –25 –10 5 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
OUTPUT VOLTAGE (mV)
01525-020
V
S
= 2.7V
V
OH
@ 1mA LOAD
Figure 20. Output Voltage Swing vs. Temperature
2.67
2.66
2.65
2.64
2.63
2.62
–40 –25 –10 5 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
OUTPUT VOLTAGE (V)
01525-021
V
S
= 2.7V
V
OH
@ 1mA LOAD
Figure 21. Output Voltage Swing vs. Temperature
120
45
0
–45
–90
90
135
180
225
270
315
360
100
80
60
40
20
0
–20
–40
–60
–801k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
GAIN (dB)
PHASE SHIFT (Degrees)
01525-022
V
S
= 3V
R
L
= NO LOAD
T
A
= 25°C
PHASE
GAIN
Figure 22. Open-Loop Gain and Phase vs. Frequency
AD8601/AD8602/AD8604
Rev. G | Page 9 of 24
120
45
0
–45
–90
90
135
180
225
270
315
360
100
80
60
40
20
0
–20
–40
–60
–801k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
GAIN (dB)
PHASE SHIFT (Degrees)
01525-023
V
S
= 5V
R
L
= NO LOAD
T
A
= 25°C
PHASE
GAIN
Figure 23. Open-Loop Gain and Phase vs. Frequency
40
20
0
1k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
CLOSD-LOOP GAIN (dB)
01525-024
V
S
= 3V
T
A
= 25°C
A
V
= 100
A
V
= 10
A
V
= 1
Figure 24. Closed-Loop Gain vs. Frequency
40
20
0
1k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
CLOSD-LOOP GAIN (dB)
01525-025
V
S
= 5V
T
A
= 25°C
A
V
= 100
A
V
= 10
A
V
= 1
Figure 25. Closed-Loop Gain vs. Frequency
3.0
2.5
2.0
1.5
1.0
0.5
01k 10k 100k 1M 10M
FREQUENCY (Hz)
OUTPUT SWING (V p-p)
01525-026
V
S
= 2.7V
V
IN
= 2.6V p-p
R
L
= 2k
T
A
= 25°C
A
V
= 1
Figure 26. Closed-Loop Output Voltage Swing vs. Frequency
6
5
4
3
2
1
01k 10k 100k 1M 10M
FREQUENCY (Hz)
OUTPUT SWING (V p-p)
01525-027
V
S
= 5V
V
IN
= 4.9V p-p
R
L
= 2k
T
A
= 25°C
A
V
= 1
Figure 27. Closed-Loop Output Voltage Swing vs. Frequency
160
140
200
180
120
100
80
60
40
20
01k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
01525-028
VS = 3V
TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 28. Output Impedance vs. Frequency
AD8601/AD8602/AD8604
Rev. G | Page 10 of 24
160
140
200
180
120
100
80
60
40
20
0
100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
01525-029
V
S
= 5V
T
A
= 25°C
A
V
= 100
A
V
= 10
A
V
= 1
Figure 29. Output Impedance vs. Frequency
160
140
120
100
80
60
40
20
0
–20
–401k 10k 100k 1M 10M 20M
FREQUENCY (Hz)
COMMON-MODE REJECTION (dB)
01525-030
V
S
= 3V
T
A
= 25°C
Figure 30. Common-Mode Rejection Ratio vs. Frequency
160
140
120
100
80
60
40
20
0
–20
–401k 10k 100k 1M 10M 20M
FREQUENCY (Hz)
COMMON-MODE REJECTION (dB)
01525-031
V
S
= 5V
T
A
= 25°C
Figure 31. Common-Mode Rejection Ratio vs. Frequency
160
140
120
100
80
60
40
20
0
–20
–40 1k100 10k 100k 1M 10M
FREQUENCY (Hz)
POWER SUPPLY REJECTION (dB)
01525-032
V
S
= 5V
T
A
= 25°C
Figure 32. Power Supply Rejection Ratio vs. Frequency
70
–OS
+OS
60
50
40
30
20
10
010 100 1k
CAPACITANCE (pF)
SMALL SIGNAL OVERSHOOT (%)
01525-033
V
S
= 2.7V
R
L
=
T
A
= 25°C
A
V
= 1
Figure 33. Small Signal Overshoot vs. Load Capacitance
70
–OS
+OS
60
50
40
30
20
10
010 100 1k
CAPACITANCE (pF)
SMALL SIGNAL OVERSHOOT (%)
01525-034
V
S
= 5V
R
L
=
T
A
= 25°C
A
V
= 1
Figure 34. Small Signal Overshoot vs. Load Capacitance
AD8601/AD8602/AD8604
Rev. G | Page 11 of 24
1.2
1.0
0.8
0.6
0.4
0.2
0
–40 –25 105 203550658095110125
TEMPERATURE (°C)
SUPPLY CURRENT PER AMPLIFIER (mA)
01525-035
V
S
= 5V
Figure 35. Supply Current per Amplifier vs. Temperature
1.0
0.8
0.6
0.4
0.2
0
–40 –25 105 203550658095110125
TEMPERATURE (°C)
SUPPLY CURRENT PER AMPLIFIER (mA)
01525-036
V
S
= 3V
Figure 36. Supply Current per Amplifier vs. Temperature
0.8
0.6
0.7
0.5
0.4
0.3
0.2
0.1
0012345
SUPPLY VOLTAGE (V)
SUPPLY CURRENT PER AMPLIFIER (mA)
01525-037
6
Figure 37. Supply Current per Amplifier vs. Supply Voltage
0.1
0.01
0.001
0.000120 100 1k 10k 20k
FREQUENCY (Hz)
THD + N (%)
01525-038
V
S
= 5V
T
A
= 25°C
G = 10
R
L
= 600
R
L
= 600
R
L
= 2k
R
L
= 2k
R
L
= 10k
R
L
= 10k
G = 1
Figure 38. Total Harmonic Distortion + Noise vs. Frequency
64
56
48
40
32
24
16
8
00 5 10 15 20 25
FREQUENCY (kHz)
VOLTAGE NOISE DENSITY (nV/ Hz)
01525-039
V
S
= 2.7V
T
A
= 25°C
Figure 39. Voltage Noise Density vs. Frequency
208
182
156
130
104
78
52
26
00 0.5 1.0 1.5 2.0 2.5
FREQUENCY (kHz)
VOLTAGE NOISE DENSITY (nV/ Hz)
01525-040
V
S
= 2.7V
T
A
= 25°C
Figure 40. Voltage Noise Density vs. Frequency
AD8601/AD8602/AD8604
Rev. G | Page 12 of 24
208
182
156
130
104
78
52
26
00 0.5 1.0 1.5 2.0 2.5
FREQUENCY (kHz)
VOLTAGE NOISE DENSITY (nV/ Hz)
01525-041
V
S
= 5V
T
A
= 25°C
Figure 41. Voltage Noise Density vs. Frequency
64
56
48
40
32
24
16
8
00 5 10 15 20 25
FREQUENCY (kHz)
VOLTAGE NOISE DENSITY (nV/ Hz)
01525-042
V
S
= 5V
T
A
= 25°C
Figure 42. Voltage Noise Density vs. Frequency
TIME (1s/DIV)
VOLTAGE (2.5µV/DIV)
01525-043
V
S
= 2.7V
T
A
= 25°C
Figure 43. 0.1 Hz to 10 Hz Input Voltage Noise
TIME (1s/DIV)
VOLTAGE (2.5µV/DIV)
01525-044
V
S
= 5V
T
A
= 25°C
Figure 44. 0.1 Hz to 10 Hz Input Voltage Noise
01525-045
V
S
= 5V
R
L
= 10k
C
L
= 200pF
T
A
= 25°C
50mV/DIV 200ns/DIV
Figure 45. Small Signal Transient Response
01525-046
V
S
= 2.7V
R
L
= 10k
C
L
= 200pF
T
A
= 25°C
50mV/DIV 200ns/DIV
Figure 46. Small Signal Transient Response
AD8601/AD8602/AD8604
Rev. G | Page 13 of 24
TIME (400ns/DIV)
VOLTAGE (1V/DIV)
01525-047
V
S
= 5V
R
L
= 10k
C
L
= 200pF
A
V
= 1
T
A
= 25°C
Figure 47. Large Signal Transient Response
TIME (400ns/DIV)
VOLTAGE (500mV/DIV)
01525-048
V
S
= 2.7V
R
L
= 10k
C
L
= 200pF
A
V
= 1
T
A
= 25°C
Figure 48. Large Signal Transient Response
TIME (2µs/DIV)
VOLTAGE (1V/DIV)
01525-049
V
S
= 2.7V
R
L
= 10k
A
V
= 1
T
A
= 25°C
V
IN
V
OUT
Figure 49. No Phase Reversal
TIME (2µs/DIV)
VOLTAGE (1V/DIV)
01525-050
V
S
= 5V
R
L
= 10k
A
V
= 1
T
A
= 25°C
V
IN
V
OUT
Figure 50. No Phase Reversal
TIME (100ns/DIV)
+0.1%
ERROR
–0.1%
ERROR
VOLTAGE (V)
01525-051
VS = 5V
RL = 10k
VO = 2V p-p
TA = 25°C
VIN TRACE – 0.5V/DIV
VOUT TRACE – 10mV/DIV
VIN
VOUT
Figure 51. Settling Time
2.0
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
–2.0
300 350 400 450 500 550 600
SETTLING TIME (ns)
OUTPUT SWING (V)
01525-052
V
S
= 2.7V
T
A
= 25°C
0.1% 0.01%
0.1% 0.01%
Figure 52. Output Swing vs. Settling Time
AD8601/AD8602/AD8604
Rev. G | Page 14 of 24
5
4
3
2
1
0
–1
–2
–3
–4
–50 200 400 600 800 1,000
SETTLING TIME (ns)
OUTPUT SWING (V)
01525-053
V
S
= 5V
T
A
= 25°C
0.1% 0.01%
0.1% 0.01%
Figure 53. Output Swing vs. Settling Time
AD8601/AD8602/AD8604
Rev. G | Page 15 of 24
THEORY OF OPERATION
The AD8601/AD8602/AD8604 family of amplifiers are rail-to-rail
input and output, precision CMOS amplifiers that operate from
2.7 V to 5.0 V of the power supply voltage. These amplifiers use
Analog Devices, Inc., DigiTrim® technology to achieve a higher
degree of precision than available from most CMOS amplifiers.
DigiTrim technology is a method of trimming the offset voltage
of the amplifier after it has been assembled. The advantage in post-
package trimming lies in the fact that it corrects any offset voltages
due to the mechanical stresses of assembly. This technology is
scalable and used with every package option, including the 5-lead
SOT-23, providing lower offset voltages than previously achieved in
these small packages.
The DigiTrim process is completed at the factory and does not
add additional pins to the amplifier. All AD860x amplifiers are
available in standard op amp pinouts, making DigiTrim completely
transparent to the user. The AD860x can be used in any precision
op amp application.
The input stage of the amplifier is a true rail-to-rail architecture,
allowing the input common-mode voltage range of the op amp
to extend to both positive and negative supply rails. The voltage
swing of the output stage is also rail-to-rail and is achieved by
using an NMOS and PMOS transistor pair connected in a
common-source configuration. The maximum output voltage
swing is proportional to the output current, and larger currents
limit how close the output voltage can get to the supply rail,
which is a characteristic of all rail-to-rail output amplifiers.
With 1 mA of output current, the output voltage can reach
within 20 mV of the positive rail and within 15 mV of the
negative rail. At light loads of >100 kΩ, the output swings
within ~1 mV of the supplies.
The open-loop gain of the AD860x is 80 dB, typical, with a load
of 2 kΩ. Because of the rail-to-rail output configuration, the gain
of the output stage and the open-loop gain of the amplifier are
dependent on the load resistance. Open-loop gain decreases with
smaller load resistances. Again, this is a characteristic inherent
to all rail-to-rail output amplifiers.
RAIL-TO-RAIL INPUT STAGE
The input common-mode voltage range of the AD860x extends
to both the positive and negative supply voltages. This maximizes
the usable voltage range of the amplifier, an important feature
for single-supply and low voltage applications. This rail-to-rail
input range is achieved by using two input differential pairs, one
NMOS and one PMOS, placed in parallel. The NMOS pair is
active at the upper end of the common-mode voltage range, and
the PMOS pair is active at the lower end.
The NMOS and PMOS input stages are separately trimmed using
DigiTrim to minimize the offset voltage in both differential pairs.
Both NMOS and PMOS input differential pairs are active in a
500 mV transition region, when the input common-mode voltage
is between approximately 1.5 V and 1 V below the positive supply
voltage. The input offset voltage shifts slightly in this transition
region, as shown in Figure 9 and Figure 10 .The common-mode
rejection ratio is also slightly lower when the input common-
mode voltage is within this transition band. Compared to the
Burr-Brown OPA2340UR rail-to-rail input amplifier, shown in
Figure 54, the AD860x, shown in Figure 55, exhibits lower
offset voltage shift across the entire input common-mode
range, including the transition region.
0.7
0.4
0.1
–0.2
–0.5
–0.8
–1.1
–1.4012345
V
CM
(V)
V
OS
(mV)
01525-054
Figure 54. Burr-Brown OPA2340UR Input Offset Voltage vs.
Common-Mode Voltage, 24 SOIC Units @ 25°C
0.7
0.4
0.1
–0.2
–0.5
–0.8
–1.1
–1.4012345
V
CM
(V)
V
OS
(mV)
01525-055
Figure 55. AD8602AR Input Offset Voltage vs. Common-Mode Voltage,
300 SOIC Units @ 25°C
AD8601/AD8602/AD8604
Rev. G | Page 16 of 24
INPUT OVERVOLTAGE PROTECTION
As with any semiconductor device, if a condition could exist
that could cause the input voltage to exceed the power supply,
the devices input overvoltage characteristic must be considered.
Excess input voltage energizes the internal PN junctions in the
AD860x, allowing current to flow from the input to the supplies.
This input current does not damage the amplifier, provided it is
limited to 5 mA or less. This can be ensured by placing a resistor in
series with the input. For example, if the input voltage could
exceed the supply by 5 V, the series resistor should be at least
(5 V/5 mA) = 1 kΩ. With the input voltage within the supply
rails, a minimal amount of current is drawn into the inputs,
which, in turn, causes a negligible voltage drop across the series
resistor. Therefore, adding the series resistor does not adversely
affect circuit performance.
OVERDRIVE RECOVERY
Overdrive recovery is defined as the time it takes the output of
an amplifier to come off the supply rail when recovering from
an overload signal. This is tested by placing the amplifier in a
closed-loop gain of 10 with an input square wave of 2 V p-p
while the amplifier is powered from either 5 V or 3 V.
The AD860x has excellent recovery time from overload conditions.
The output recovers from the positive supply rail within 200 ns
at all supply voltages. Recovery from the negative rail is within
500 ns at a 5 V supply, decreasing to within 350 ns when the
device is powered from 2.7 V.
POWER-ON TIME
The power-on time is important in portable applications where
the supply voltage to the amplifier may be toggled to shut down
the device to improve battery life. Fast power-up behavior ensures
that the output of the amplifier quickly settles to its final voltage,
improving the power-up speed of the entire system. When the
supply voltage reaches a minimum of 2.5 V, the AD860x settles to
a valid output within 1 µs. This turn-on response time is faster
than many other precision amplifiers, which can take tens or
hundreds of microseconds for their outputs to settle.
USING THE AD8602 IN HIGH SOURCE IMPEDANCE
APPLICATIONS
The CMOS rail-to-rail input structure of the AD860x allows
these amplifiers to have very low input bias currents, typically
0.2 pA. This allows the AD860x to be used in any application
that has a high source impedance or must use large value
resistances around the amplifier. For example, the photodiode
amplifier circuit shown in Figure 56 requires a low input bias
current op amp to reduce output voltage error. The AD8601
minimizes offset errors due to its low input bias current and low
offset voltage.
The current through the photodiode is proportional to the incident
light power on its surface. The 4.7 MΩ resistor converts this current
into a voltage, with the output of the AD8601 increasing at 4.7 V/µA.
The feedback capacitor reduces excess noise at higher frequencies
by limiting the bandwidth of the circuit to
()
F
Cπ
BW M7.42
1
= (1)
Using a 10 pF feedback capacitor limits the bandwidth to
approximately 3.3 kHz.
AD8601
10p
F
(OPTIONAL)
V
OUT
4.7VA
4.7M
D1
01525-056
Figure 56. Amplifier Photodiode Circuit
HIGH SIDE AND LOW SIDE, PRECISION CURRENT
MONITORING
Because of its low input bias current and low offset voltage, the
AD860x can be used for precision current monitoring. The true
rail-to-rail input feature of the AD860x allows the amplifier to
monitor current on either the high side or the low side. Using both
amplifiers in an AD8602 provides a simple method for monitoring
both current supply and return paths for load or fault detection.
Figure 57 and Figure 58 demonstrate both circuits.
01525-057
1/2 AD8602
RETURN TO
GROUND
R
SENSE
0.1
R1
100
R2
249k
Q1
2N3904
MONITOR
OUTPUT
3
V
3V
Figure 57. Low-Side Current Monitor
01525-058
3V
I
L
V+
3V
MONITOR
OUTPUT
R1
100
R2
2.49k
R
SENSE
0.1
Q1
2N3905
1/2 AD8602
Figure 58. High-Side Current Monitor
AD8601/AD8602/AD8604
Rev. G | Page 17 of 24
Voltage drop is created across the 0.1 Ω resistor that is
proportional to the load current. This voltage appears at the
inverting input of the amplifier due to the feedback correction
around the op amp. This creates a current through R1, which
in turn, pulls current through R2. For the low side monitor, the
monitor output voltage is given by
×
×= L
SENSE I
R1
R
R2VOutputMonitor 3 (2)
For the high side monitor, the monitor output voltage is
L
SENSE I
R1
R
R2OutputMonitor ×
×= (3)
Using the components shown, the monitor output transfer
function is 2.5 V/A.
USING THE AD8601 IN SINGLE-SUPPLY, MIXED
SIGNAL APPLICATIONS
Single-supply, mixed signal applications requiring 10 or more
bits of resolution demand both a minimum of distortion and a
maximum range of voltage swing to optimize performance. To
ensure that the ADCs or DACs achieve their best performance, an
amplifier often must be used for buffering or signal conditioning.
The 750 µV maximum offset voltage of the AD8601 allows the
amplifier to be used in 12-bit applications powered from a 3 V
single supply, and its rail-to-rail input and output ensure no
signal clipping.
Figure 59 shows the AD8601 used as an input buffer amplifier
to the AD7476, a 12-bit, 1 MSPS ADC. As with most ADCs,
total harmonic distortion (THD) increases with higher source
impedances. By using the AD8601 in a buffer configuration, the
low output impedance of the amplifier minimizes THD while
the high input impedance and low bias current of the op amp
minimizes errors due to source impedance. The 8 MHz gain
bandwidth product of the AD8601 ensures no signal attenua-
tion up to 500 kHz, which is the maximum Nyquist frequency
for the AD7476.
V
DD
GND
SCLK
SDATA
V
IN
CS
AD7476/AD7477
R
S
AD8601
4
32
51
1µF
TANT
SERIAL
INTERFACE
5V
SUPPLY
0.1µF 0.1µF10µF
680nF
REF193
µC/µP
01525-059
Figure 59. A Complete 3 V 12-Bit 1 MHz Analog-to-Digital Conversion System
Figure 60 demonstrates how the AD8601 can be used as an
output buffer for the DAC for driving heavy resistive loads. The
AD5320 is a 12-bit DAC that can be used with clock frequencies
up to 30 MHz and signal frequencies up to 930 kHz. The rail-
to-rail output of the AD8601 allows it to swing within 100 mV
of the positive supply rail while sourcing 1 mA of current. The
total current drawn from the circuit is less than 1 mA, or 3 mW
from a 3 V single supply.
AD8601
4
32
51
1
01525-060
V
OUT
0V TO 3V
3-WIRE
SERIAL
INTERFACE R
L
AD5320
4
5
6
3
V
1µF
Figure 60. Using the AD8601 as a DAC Output Buffer to Drive Heavy Loads
The AD8601, AD7476, and AD5320 are all available in space-
saving SOT-23 packages.
PC100 COMPLIANCE FOR COMPUTER AUDIO
APPLICATIONS
Because of its low distortion and rail-to-rail input and output,
the AD860x is an excellent choice for low cost, single-supply
audio applications, ranging from microphone amplification
to line output buffering. Figure 38 shows the total harmonic
distortion plus noise (THD + N) figures for the AD860x. In
unity gain, the amplifier has a typical THD + N of 0.004%, or
−86 dB, even with a load resistance of 600 Ω. This is compliant
with the PC100 specification requirements for audio in both
portable and desktop computers.
Figure 61 shows how an AD8602 can be interfaced with an AC’97
codec to drive the line output. Here, the AD8602 is used as a
unity-gain buffer from the left and right outputs of the AC’97
codec. The 100 µF output coupling capacitors block dc current
and the 20 Ω series resistors protect the amplifier from short
circuits at the jack.
NOTES
1. ADDITIONAL PINS OMITTED FOR CLARITY.
01525-061
2
34
81
V
DD
V
SS
V
DD
LEFT
OUT
RIGHT
OUT
5V
5
V
AD1881
(AC’97)
A
R4
20
C1
100µF
R2
2k
+
5
67R5
20
C2
100µF
R3
2k
+
B
35
29
26
36
25
AD8602
AD8602
Figure 61. A PC100-Compliant Line Output Amplifier
AD8601/AD8602/AD8604
Rev. G | Page 18 of 24
SPICE MODEL
The SPICE macro-model for the AD860x amplifier can be down-
loaded at www.analog.com. The model accurately simulates a
number of both dc and ac parameters, including open-loop gain,
bandwidth, phase margin, input voltage range, output voltage
swing vs. output current, slew rate, input voltage noise, CMRR,
PSRR, and supply current vs. supply voltage. The model is
optimized for performance at 2C. Although it functions at
different temperatures, it may lose accuracy with respect to the
actual behavior of the AD860x.
AD8601/AD8602/AD8604
Rev. G | Page 19 of 24
OUTLINE DIMENSIONS
COMPLIANT TO JEDEC STANDARDS MO-178-AA
10°
SEATING
PLANE
1.90
BSC
0.95 BSC
0.60
BSC
5
123
4
3.00
2.90
2.80
3.00
2.80
2.60
1.70
1.60
1.50
1.30
1.15
0.90
0
.15 MAX
0
.05 MIN
1.45 MAX
0.95 MIN
0.20 MAX
0.08 MIN
0.50 MAX
0.35 MIN
0.55
0.45
0.35
11-01-2010-A
Figure 62. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
COMPLIANT TO JEDEC STANDARDS MO-187-AA
0.80
0.55
0.40
4
8
1
5
0.65 BSC
0.40
0.25
1.10 MAX
3.20
3.00
2.80
COPLANARITY
0.10
0.23
0.09
3.20
3.00
2.80
5.15
4.90
4.65
PIN 1
IDENTIFIER
15° MAX
0.95
0.85
0.75
0.15
0.05
10-07-2009-B
Figure 63. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
AD8601/AD8602/AD8604
Rev. G | Page 20 of 24
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AA
012407-A
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099) 45°
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
4
1
85
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500)
BSC
6.20 (0.2441)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
Figure 64. 8-Lead Standard Small Outline Package [SOIC_N]
(R-8)
Dimensions shown in millimeters and (inches)
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AB
060606-A
14 8
7
1
6.20 (0.2441)
5.80 (0.2283)
4.00 (0.1575)
3.80 (0.1496)
8.75 (0.3445)
8.55 (0.3366)
1.27 (0.0500)
BSC
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0039)
0.51 (0.0201)
0.31 (0.0122)
1.75 (0.0689)
1.35 (0.0531)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
0.25 (0.0098)
0.17 (0.0067)
COPLANARITY
0.10
45°
Figure 65. 14-Lead Standard Small Outline Package [SOIC_N]
(R-14)
Dimensions shown in millimeters and (inches)
AD8601/AD8602/AD8604
Rev. G | Page 21 of 24
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
061908-A
4.50
4.40
4.30
14 8
7
1
6.40
BSC
PIN 1
5.10
5.00
4.90
0.65 BSC
0.15
0.05 0.30
0.19
1.20
MAX
1.05
1.00
0.80 0.20
0.09 0.75
0.60
0.45
COPLANARITY
0.10
SEATING
PLANE
Figure 66. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
16 9
8
1
SEATING
PLANE
0.010 (0.25)
0.004 (0.10)
0.012 (0.30)
0.008 (0.20)
0.025 (0.64)
BSC
0.041 (1.04)
REF
0.010 (0.25)
0.006 (0.15)
0.050 (1.27)
0.016 (0.41)
0.020 (0.51)
0.010 (0.25)
COPLANARITY
0.004 (0.10)
0.065 (1.65)
0.049 (1.25) 0.069 (1.75)
0.053 (1.35)
0.197 (5.00)
0.193 (4.90)
0.189 (4.80)
0.158 (4.01)
0.154 (3.91)
0.150 (3.81) 0.244 (6.20)
0.236 (5.99)
0.228 (5.79)
01-28-2008-A
Figure 67. 16-Lead Shrink Small Outline Package [QSOP]
(RQ-16)
Dimensions shown in inches and (millimeters)
AD8601/AD8602/AD8604
Rev. G | Page 22 of 24
ORDERING GUIDE
Model1, 2 Temperature Range Package Description Package Option Branding
AD8601ARTZ-R2 −40°C to +125°C 5-Lead SOT-23 RJ-5 AAA
AD8601ARTZ-REEL −40°C to +125°C 5-Lead SOT-23 RJ-5 AAA
AD8601ARTZ-REEL7 −40°C to +125°C 5-Lead SOT-23 RJ-5 AAA
AD8601WARTZ-RL −40°C to +125°C 5-Lead SOT-23 RJ-5 AAA
AD8601WARTZ-R7 −40°C to +125°C 5-Lead SOT-23 RJ-5 AAA
AD8601WDRTZ-REEL −40°C to +125°C 5-Lead SOT-23 RJ-5 AAD
AD8601WDRTZ-REEL7 −40°C to +125°C 5-Lead SOT-23 RJ-5 AAD
AD8602AR −40°C to +125°C 8-Lead SOIC_N R-8
AD8602AR-REEL −40°C to +125°C 8-Lead SOIC_N R-8
AD8602AR-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8602ARZ −40°C to +125°C 8-Lead SOIC_N R-8
AD8602ARZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8
AD8602ARZ-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8602WARZ-RL −40°C to +125°C 8-Lead SOIC_N R-8
AD8602WARZ-R7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8602ARM-REEL −40°C to +125°C 8-Lead MSOP RM-8 ABA
AD8602ARMZ −40°C to +125°C 8-Lead MSOP RM-8 ABA
AD8602ARMZ-REEL −40°C to +125°C 8-Lead MSOP RM-8 ABA
AD8602DR −40°C to +125°C 8-Lead SOIC_N R-8
AD8602DR-REEL −40°C to +125°C 8-Lead SOIC_N R-8
AD8602DR-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8602DRZ −40°C to +125°C 8-Lead SOIC_N R-8
AD8602DRZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8
AD8602DRZ-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8602DRM-REEL −40°C to +125°C 8-Lead MSOP RM-8 ABD
AD8602DRMZ-REEL −40°C to +125°C 8-Lead MSOP RM-8 ABD
AD8604ARZ −40°C to +125°C 14-Lead SOIC_N R-14
AD8604ARZ-REEL −40°C to +125°C 14-Lead SOIC_N R-14
AD8604ARZ-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14
AD8604DRZ −40°C to +125°C 14-Lead SOIC_N R-14
AD8604DRZ-REEL −40°C to +125°C 14-Lead SOIC_N R-14
AD8604ARUZ −40°C to +125°C 14-Lead TSSOP RU-14
AD8604ARUZ-REEL −40°C to +125°C 14-Lead TSSOP RU-14
AD8604DRU −40°C to +125°C 14-Lead TSSOP RU-14
AD8604DRU -REEL −40°C to +125°C 14-Lead TSSOP RU-14
AD8604DRUZ −40°C to +125°C 14-Lead TSSOP RU-14
AD8604DRUZ-REEL −40°C to +125°C 14-Lead TSSOP RU-14
AD8604ARQZ −40°C to +125°C 16-Lead QSOP RQ-16
AD8604ARQZ-RL −40°C to +125°C 16-Lead QSOP RQ-16
AD8604ARQZ-R7 −40°C to +125°C 16-Lead QSOP RQ-16
1 Z = RoHS Compliant Part.
2 W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The AD8601W/AD8602W models are available with controlled manufacturing to support the quality and reliability requirements of
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for
use in automotive applications. Contact your local Analog Devices Account Representative for specific product ordering information and
to obtain the specific Automotive Reliability reports for these models.
AD8601/AD8602/AD8604
Rev. G | Page 23 of 24
NOTES
AD8601/AD8602/AD8604
Rev. G | Page 24 of 24
NOTES
©200–2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D01525-0-1/11(G)

Products

IC INST AMP 1 CIRCUIT SOT23-5
Cantidad disponible16726
Precio por unidad1.17
IC INST AMP 2 CIRCUIT 8MSOP
Cantidad disponible19970
Precio por unidad1.44
IC INST AMP 1 CIRCUIT SOT23-5
Cantidad disponible12393
Precio por unidad1.84
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible5112
Precio por unidad2.58
IC INST AMP 4 CIRCUIT 14TSSOP
Cantidad disponible8386
Precio por unidad2.88
IC INST AMP 4 CIRCUIT 14TSSOP
Cantidad disponible17492
Precio por unidad3.25
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible7850
Precio por unidad1.54
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible3206
Precio por unidad2.7
IC INST AMP 4 CIRCUIT 16QSOP
Cantidad disponible392
Precio por unidad3.16
IC INST AMP 1 CIRCUIT SOT23-5
Cantidad disponible1892
Precio por unidad2.33
IC INST AMP 4 CIRCUIT 14SOIC
Cantidad disponible188
Precio por unidad3.2
IC INST AMP 4 CIRCUIT 14SOIC
Cantidad disponible0
Precio por unidad2.8
IC INST AMP 4 CIRCUIT 14SOIC
Cantidad disponible0
Precio por unidad1.28169
IC INST AMP 4 CIRCUIT 16QSOP
Cantidad disponible0
Precio por unidad1.5851
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible0
Precio por unidad0
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible0
Precio por unidad0
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible0
Precio por unidad0
IC INST AMP 2 CIRCUIT 8MSOP
Cantidad disponible0
Precio por unidad0
IC INST AMP 4 CIRCUIT 14TSSOP
Cantidad disponible0
Precio por unidad0
IC INST AMP 2 CIRCUIT 8SOIC
Cantidad disponible0
Precio por unidad0