IRF1010NPbF Datasheet by Infineon Technologies Americas Corp.

International 122R Rectitier .33
IRF1010NPbF
HEXFET® Power MOSFET
07/06/10
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.85
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
Thermal Resistance
www.irf.com 1
VDSS = 55V
RDS(on) = 11m
ID = 85A
S
D
G
TO-220AB
Advanced HEXFET® Power MOSFETs from International
Rectifier utilize advanced processing techniques to
achieve extremely low on-resistance per silicon area.
This benefit, combined with the fast switching speed and
ruggedized device design that HEXFET power MOSFETs
are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of
applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
lAdvanced Process Technology
lUltra Low On-Resistance
lDynamic dv/dt Rating
l175°C Operating Temperature
lFast Switching
lFully Avalanche Rated
lLead-Free
Description
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 85
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 60 A
IDM Pulsed Drain Current 290
PD @TC = 25°C Power Dissipation 180 W
Linear Derating Factor 1.2 W/°C
VGS Gate-to-Source Voltage ± 20 V
IAR Avalanche Current43 A
EAR Repetitive Avalanche Energy18 mJ
dv/dt Peak Diode Recovery dv/dt 3.6 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)
PD - 94966A
Internationd 19R Rectifier
IRF1010NPbF
2www.irf.com
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode)––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 43A, VGS = 0V
trr Reverse Recovery Time ––– 69 100 ns TJ = 25°C, IF = 43A
Qrr Reverse Recovery Charge ––– 220 230 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
85
290
A
Starting TJ = 25°C, L = 270µH
RG = 25, IAS = 43A, VGS=10V (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
ISD 43A, di/dt 210A/µs, VDD V(BR)DSS,
TJ 175°C
Pulse width 400µs; duty cycle 2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to TJ = 175°C .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 55 –– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.058 – V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 11 mVGS = 10V, ID = 43A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 32 ––– ––– S VDS = 25V, ID = 43A
––– ––– 25 µA VDS = 55V, VGS = 0V
––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V
QgTotal Gate Charge –– –– 120 ID = 43A
Qgs Gate-to-Source Charge ––– –– 19 nC VDS = 44V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 41 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 13 ––– VDD = 28V
trRise Time ––– 76 ––– ID = 43A
td(off) Turn-Off Delay Time –– 39 ––– RG = 3.6
tfFall Time ––– 48 ––– VGS = 10V, See Fig. 10
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 3210 ––– VGS = 0V
Coss Output Capacitance –– 690 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 140 ––– pF ƒ = 1.0MHz, See Fig. 5
EAS Single Pulse Avalanche Energy––– 1030250mJ IAS = 4.3A, L = 270µH
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
\Nermt'om‘ 122R Rccflher zous PULS T c 20u5 PULS T Fig 1. Typical Oulpul Characterislics Fig 3. Typxcal Transfer Characterislics
IRF1010NPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
4 6 8 10 12
V = 25V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 175 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
85A
\nte'nu'bpf)‘ I R ndfler FOR TEST C‘HCUIT SEE F‘GUHE 0 Fig 6. Typical Gate Charge Vs.
IRF1010NPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
020 40 60 80 100 120
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
43A
V = 11V
DS
V = 27V
DS
V = 44V
DS
0.1
1
10
100
1000
0.0 0.6 1.2 1.8 2.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
110 100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
6000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss
= C
gs + C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
1 10 100 1000
VDS , Drain-toSource Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
\Nermt'om‘ 122R Rccflher SINGLE PULSE um
IRF1010NPbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
25 50 75 100 125 150 175
0
20
40
60
80
100
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
\nte'nu'bpf)‘ IEZR Rncn‘wer In (C 1 Slamng T
IRF1010NPbF
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VGS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
25 50 75 100 125 150 175
0
100
200
300
400
500
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
18A
30A
43A
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Internationd 19R Rectifier 6} :PW
IRF1010NPbF
www.irf.com 7
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
RG
VDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 14. For N-channel HEXFET® power MOSFETs
TO»220AB Pan Marking Info EXANFLE' ms is ANIRFimD LOT owe me ASSENELEDONWWW, 2 iNTHE ASSEMBLY UNE ‘C‘ Nae “P“ in essemv iire pcsmm mm “Lscdr Fl§‘ i mmm.mmm ' A WWMMWW mmmammm- mm” s mix in“ w um wumzmw um Wm WM . U 4 um .i m. mm um o um mm m mas-m W mm m mu m in am 3 an“... ”9‘me v r: RNATiON V CHFiER LOGO \ RVVJVO’ ASSENELV / [OT OCDE see at m m: w a: Data and speci This pvoduct has been design Quaiificalion IR WORLD HEADQUARTERS: 233 Kansas 81., El Segundo, C Visit us al www.irf.c Iniernaiioncli 19R Reciifier SE 5'5; 3 I Iniemoiionol Isak Rectifier
IRF1010NPbF
8www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
LOT CODE 1789
EXAMPLE : T HIS IS AN IRF1010
Note: "P" in as sembly line position
indi cates "L ead - F r ee"
IN THE ASSEMBLY LINE "C"
ASS EMBLE D ON WW 19, 2000
INT ERNATIONAL PART NUMBER
RECTIFIER
LOT CODE
ASSEMBLY
LOGO
YEAR 0 = 2000
DAT E CODE
WEE K 19
LINE C
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/