MCP1700 Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
MICRQICHIP MC P1 700
2005-2018 Microchip Technology Inc. DS20001826E-page 1
MCP1700
Features
AEC-Q100 Qualified and PPAP Capable
1.6 µA Typical Quiescent Current
Input Operating Voltage Range: 2.3V to 6.0V
Output Voltage Range: 1.2V to 5.0V
250 mA Output Current for Output
Voltages 2.5V
200 mA Output Current for Output
Voltages < 2.5V
Low Dropout (LDO) Voltage
- 178 mV Typical @ 250 mA for VOUT =2.8V
0.4% Typical Output Voltage Tolerance
Standard Output Voltage Options:
- 1.2V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.3V, 5.0V
Stable with 1.0 µF Ceramic Output Capacitor
Short Circuit Protection
Overtemperature Protection
Applications
Battery-Powered Devices
Battery-Powered Alarm Circuits
Smoke Detectors
•CO
2 Detectors
Pagers and Cellular Phones
Smart Battery Packs
Low Quiescent Current Voltage Reference
•PDAs
Digital Cameras
Microcontroller Power
Related Literature
AN765, “Using Microchip’s Micropower LDOs”
(DS00765), Microchip Technology Inc., 2002
AN766, “Pin-Compatible CMOS Upgrades to
BiPolar LDOs” (DS00766),
Microchip Technology Inc., 2002
AN792, “A Method to Determine How Much
Power a SOT23 Can Dissipate in an Application”
(DS00792), Microchip Technology Inc., 2001
General Description
The MCP1700 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 250 mA of
current while consuming only 1.6 µA of quiescent
current (typical). The input operating range is specified
from 2.3V to 6.0V, making it an ideal choice for two and
three primary cell battery-powered applications, as well
as single cell Li-Ion-powered applications.
The MCP1700 is capable of delivering 250 mA with
only 178 mV of input to output voltage differential
(VOUT = 2.8V). The output voltage tolerance of the
MCP1700 is typically ±0.4% at +25°C and ±3%
maximum over the operating junction temperature
range of -40°C to +125°C.
Output voltages available for the MCP1700 range from
1.2V to 5.0V. The LDO output is stable when using only
1 µF output capacitance. Ceramic, tantalum or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit and overtemperature
shutdown provide a robust solution for any application.
Package options include SOT-23, SOT-89, TO-92 and
2x2 DFN-6.
Package Types
1
3
2
VIN
GND VOUT
MCP1700
123
VIN
GND VOUT
MCP1700
3-Pin SOT-23 3-Pin SOT-89
321
GND VIN VOUT
MCP1700
3-Pin TO-92
VIN
VIN 1
2
3
EP
7
* Includes Exposed Thermal Pad (EP); see Table 3-1.
6
5
4
NC
GND NC
NC
VOUT
2x2 DFN-6*
Low Quiescent Current LDO
2005-2018 Microchip Technology Inc. DS20001826E-page 2
MCP1700
Functional Block Diagrams
Typical Application Circuits
+
-
VIN VOUT
GND
+VIN
Error Amplifier
Voltage
Reference
Overcurrent
Overtemperature
MCP1700
GND
VOUT
VIN
CIN
1 µF Ceramic
COUT
1 µF Ceramic
VOUT
VIN
(2.3V to 3.2V)
1.8V
IOUT
150 mA
MCP1700
2005-2018 Microchip Technology Inc. DS20001826E-page 3
MCP1700
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VDD............................................................................................+6.5V
All inputs and outputs w.r.t. ......... (VSS - 0.3V) to (VIN +0.3V)
Peak Output Current ....................................Internally Limited
Storage Temperature ....................................-65°C to +150°C
Maximum Junction Temperature................................... 150°C
Operating Junction Temperature...................-40°C to +125°C
ESD protection on all pins (HBM;MM)  4kV; 400V
† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only, and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods
may affect device reliability.
DC CHARACTERISTICS
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT =1µF (X7R), C
IN =1µF(X7R), T
A= +25°C.
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Input/Output Characteristics
Input Operating
Voltage
VIN 2.3 6.0 VNote 1
Input Quiescent
Current
Iq—1.64µA IL=0mA, V
IN =V
R+1V
Maximum Output
Current
IOUT_mA 250
200
mA For VR2.5V
For VR2.5V
Output Short
Circuit Current
IOUT_SC 408 mA VIN =V
R+1V, V
OUT =GND
Current (peak current) measured 10 ms
after short is applied.
Output Voltage
Regulation
VOUT VR-2.0%
VR-3.0%
VR±0.4% V
R+2.0%
VR+3.0%
VNote 2
VOUT Temperature
Coefficient
TCVOUT 50 ppm/°C Note 3
Line Regulation VOUT/
(VOUTXVIN)
-1.0 ±0.75 +1.0 %/V (VR+1)V VIN 6V
Load Regulation VOUT/VOUT -1.5 ±1.0 +1.5 %I
L= 0.1 mA to 250 mA for VR2.5V
IL= 0.1 mA to 200 mA for VR2.5V
Note 4
Dropout Voltage
VR2.5V
VIN -V
OUT 178 350 mV IL= 250 mA, (Note 1, Note 5)
Dropout Voltage
VR2.5V
VIN -V
OUT 150 350 mV IL= 200 mA, (Note 1, Note 5)
Output Rise Time TR 500 µs 10% VR to 90% VR VIN = 0V to 6V,
RL=50 resistive
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN  VR+3.0%VDROPOUT
.
2: VR is the nominal regulator output voltage. For example: VR= 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.3V, 4.0V, 5.0V.
The input voltage VIN =V
R+ 1.0V; IOUT = 100 µA.
3: TCVOUT =(V
OUT-HIGH -V
OUT-LOW) *106 / (VR*Temperature), VOUT-HIGH = highest voltage measured over the
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output
voltage due to heating effects are determined using thermal regulation specification TCVOUT
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured
value with a VR+ 1V differential applied.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
ambient temperature is not significant.
2005-2018 Microchip Technology Inc. DS20001826E-page 4
MCP1700
Output Noise eN—3µV/(Hz)
1/2 IL= 100 mA, f = 1 kHz, COUT =1µF
Power Supply
Ripple Rejection
Ratio
PSRR 44 dB f = 100 Hz, COUT =1µF, I
L=50mA,
VINAC = 100 mV pk-pk, CIN =0µF,
VR=1.2V
Thermal
Shutdown
Protection
TSD 140 °C VIN =V
R+1V, I
L= 100 µA
TEMPERATURE SPECIFICATIONS
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT =1µF (X7R), C
IN =1µF (X7R), T
A= +25°C.
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Specified Temperature Range TA-40 +125 °C
Operating Temperature Range TJ-40 +125 °C
Storage Temperature Range TA-65 +150 °C
Thermal Package Resistance
Thermal Resistance, 2x2 DFN JA —91—°C/W
EIA/JEDEC® JESD51-7
FR-4 4-Layer Board
JC(Top) —286—°C/W
JC(Bottom) — 28.57 — °C/W
JT 8.95 — °C/W
Thermal Resistance, SOT-23 JA —212—°C/W
EIA/JEDEC JESD51-7
FR-4 4-Layer Board
JC(Top) —139—°C/W
JC(Bottom) 11.95 — °C/W
JT 6.15 — °C/W
Thermal Resistance, SOT-89 JA —104—°C/W
EIA/JEDEC JESD51-7
FR-4 4-Layer Board
JC(Top) —74°C/W
JT —30°C/W
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
DC CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT =1µF (X7R), C
IN =1µF(X7R), T
A= +25°C.
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN  VR+3.0%VDROPOUT
.
2: VR is the nominal regulator output voltage. For example: VR= 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.3V, 4.0V, 5.0V.
The input voltage VIN =V
R+ 1.0V; IOUT = 100 µA.
3: TCVOUT =(V
OUT-HIGH -V
OUT-LOW) *106 / (VR*Temperature), VOUT-HIGH = highest voltage measured over the
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output
voltage due to heating effects are determined using thermal regulation specification TCVOUT
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured
value with a VR+ 1V differential applied.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
ambient temperature is not significant.
2005-2018 Microchip Technology Inc. DS20001826E-page 5
MCP1700
Thermal Resistance, TO-92 JA —92°C/W
EIA/JEDEC JESD51-7
FR-4 4-Layer Board
JC(Top) —74°C/W
TEMPERATURE SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT =1µF (X7R), C
IN =1µF (X7R), T
A= +25°C.
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
es = 1.196 )L rm W Ewan 5c
2005-2018 Microchip Technology Inc. DS20001826E-page 6
MCP1700
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated: VR= 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL= 100 µA,
TA= +25°C, VIN =V
R+1V.
Note: Junction Temperature (TJ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.
FIGURE 2-1: Input Quiescent Current vs.
Input Voltage.
FIGURE 2-2: Ground Current vs. Load
Current.
FIGURE 2-3: Quiescent Current vs.
Junction Temperature.
FIGURE 2-4: Output Voltage vs. Input
Voltage (VR=1.2V).
FIGURE 2-5: Output Voltage vs. Input
Voltage (VR=1.8V).
FIGURE 2-6: Output Voltage vs. Input
Voltage (VR=2.8V).
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
1.8
2.0
2.2
2.4
2.6
2.8
3.0
s
cent Current (µA)
TJ= - 40°C
TJ= +25°C
TJ= +125°C
VR= 1.2V
IOUT = 0 µA
1.0
1.2
1.4
1.6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Quie
s
Input Voltage (V)
20
25
30
35
40
45
50
u
nd Current (µA)
VR= 2.8V
TJ= - 40°C
TJ= +25°C
TJ= +125°C
0
5
10
15
0 25 50 75 100 125 150 175 200 225 250
Gro
u
Load Current (mA)
1.75
2.00
2.25
2.50
c
ent Current (µA)
VR= 5.0V
VR= 1.2V
VIN = VR+ 1V
IOUT = 0 µA
1.25
1.50
-40-25-105 203550658095110125
Quies
c
Junction Temperature (°C)
VR= 2.8V
1.196
1.198
1.200
1.202
1.204
1.206
1.208
u
tput Voltage (V)
TJ= +25°C
TJ= +125°C
VR= 1.2V
IOUT = 0.1 mA
1.190
1.192
1.194
1.196
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
O
u
Input Voltage (V)
TJ= - 40°C
1 780
1.785
1.790
1.795
1.800
p
ut Voltage (V)
TJ= - 40°C TJ= +125°C
VR= 1.8V
IOUT = 0.1 mA
1.770
1.775
1
.
780
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Out
p
Input Voltage (V)
TJ= +25°C
2.786
2.788
2.790
2.792
2.794
2.796
2.798
2.800
u
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 2.8V
IOUT = 0.1 mA
2.778
2.780
2.782
2.784
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0
O
u
Input Voltage (V)
TJ= +125°C
/ 4.9m = 2 7“ // fiv— / 1.11 L:¢1z§‘c 4 an x /\ /// Drnpr) r- «H:
2005-2018 Microchip Technology Inc. DS20001826E-page 7
MCP1700
Note: Unless otherwise indicated: VR= 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL= 100 µA,
TA= +25°C, VIN =V
R+1V.
FIGURE 2-7: Output Voltage vs. Input
Voltage (VR=5.0V).
FIGURE 2-8: Output Voltage vs. Load
Current (VR=1.2V).
FIGURE 2-9: Output Voltage vs. Load
Current (VR=1.8V).
FIGURE 2-10: Output Voltage vs. Load
Current (VR=2.8V).
FIGURE 2-11: Output Voltage vs. Load
Current (VR=5.0V).
FIGURE 2-12: Dropout Voltage vs. Load
Current (VR=2.8V).
4.970
4.975
4.980
4.985
4.990
4.995
5.000
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 5.0V
IOUT = 0.1 mA
4.955
4.960
4.965
4.970
5.0 5.2 5.4 5.6 5.8 6.0
Ou
Input Voltage (V)
TJ= +125°C
1.17
1.18
1.19
1.20
1.21
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
J
=
+125
°
C
VR= 1.2V
VIN = VR+ 1V
1.15
1.16
1.17
0 25 50 75 100 125 150 175 200
Ou
Load Current (mA)
J
+125
C
1.784
1.786
1.788
1.790
1.792
u
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
TJ= +125°C
1.778
1.780
1.782
0 25 50 75 100 125 150 175 200
O
u
Load Current (mA)
VR= 1.8V
VIN = VR+ 1V
2 784
2.786
2.788
2.790
2.792
2.794
2.796
2.798
u
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 2.8V
VIN = VR+ 1V
2.778
2.780
2.782
2
.
784
0 50 100 150 200 250
O
u
Load Current (mA)
TJ= +125°C
4 970
4.975
4.980
4.985
4.990
4.995
5.000
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 5.0V
VIN = VR+ 1V
4.955
4.960
4.965
4
.
970
0 50 100 150 200 250
Ou
Load Current (mA)
TJ= +125°C
0.10
0.15
0.20
0.25
p
out Votage (V)
=
40
°
C
TJ= +25°C
TJ= +125°C
VR= 2.8V
0.00
0.05
0 25 50 75 100 125 150 175 200 225 250
Dro
p
Load Current (mA)
J
=
-
40
°
C
Drona \ 2010 \ mY/RldEJF 5 a w mama H; a max 55.62: as saw 7417532 a 3 mix 7153a .19; FHSSE a]. .../ Ms M m m'omA :rmma- : o m me: mm H: max 2a Iaa as mm 73; 22;; (is “a max 15mm AegPHASL ~ w \ >7 : ,4
2005-2018 Microchip Technology Inc. DS20001826E-page 8
MCP1700
Note: Unless otherwise indicated: VR= 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL= 100 µA,
TA= +25°C, VIN =V
R+1V.
FIGURE 2-13: Dropout Voltage vs. Load
Current (VR=5.0V).
FIGURE 2-14: Power Supply Ripple
Rejection vs. Frequency (VR=1.2V).
FIGURE 2-15: Power Supply Ripple
Rejection vs. Frequency (VR=2.8V).
FIGURE 2-16: Noise vs. Frequency.
FIGURE 2-17: Dynamic Load Step
(VR=1.2V).
FIGURE 2-18: Dynamic Load Step
(VR=1.8V).
0.06
0.08
0.10
0.12
0.14
0.16
o
ut Voltage (V)
TJ= +25°C
TJ= +125°C
VR= 5.0V
0.00
0.02
0.04
0 25 50 75 100 125 150 175 200 225 250
Drop
o
Load Current (mA)
TJ= - 40°C
0.01 0.10 10.0 100 1000
1.00
Frequency (KHz)
PSRR (dB/decade)
0
-10
-20
-30
-40
-50
+10
+20
-60
-70
0.01 0.01 10.00 100 1000
Frequency (KHz)
PSRR (dB/Decade)
+20
+10
0
-10
-20
-30
-40
-50
-60
1
010
1.00
10.00
N
oise (µV/Hz)
VIN = 2.5V
VR= 1.2V
IOUT = 50 mA
VIN = 2.8V
VR= 1.8V
IOUT = 50 mA
VIN = 3.8V
VR= 2.8V
IOUT = 50 mA
0.01
0
.
10
0.01 0.1 1 10 100 1000
N
Frequency (kHz)
VIN =2.2V
VR=1.2V
I=100mA
Load
Step
CIN = 1µF Ceramic
COUT = 1µF Ceramic
VIN =2.8V
VR=1.8V
I=100mA
Load
Step
CIN = 1µF Ceramic
COUT = 1µF Ceramic
2005-2018 Microchip Technology Inc. DS20001826E-page 9
MCP1700
Note: Unless otherwise indicated: VR= 1.8V, COUT = 1 µF Ceramic (X7R), CIN = µF Ceramic (X7R), IL= 100 µA,
TA= +25°C, VIN =V
R+1V.
FIGURE 2-19: Dynamic Load Step
(VR=2.8V).
FIGURE 2-20: Dynamic Load Step
(VR=1.8V).
FIGURE 2-21: Dynamic Load Step
(VR=2.8V).
FIGURE 2-22: Dynamic Load Step
(VR=5.0V).
FIGURE 2-23: Dynamic Line Step
(VR=2.8V).
FIGURE 2-24: Start-up from VIN
(VR=1.2V).
VIN =3.8V
VR=2.8V
I=100mA
Load
Step
CIN = 1µF Ceramic
COUT =1µF Ceramic
VIN =2.8V
VR=1.8V
IOUT= 200 mA
Load Step
CIN = 1 µF Ceramic
COUT =2F (1 ESR)
VIN =3.8V
VR=2.8V
IOUT= 200 mA
Load Step
COUT =2F (1 ESR)
CIN = 1 µF Ceramic
VIN =6V
VR=5V
IOUT=200mA
Load Step
COUT =2F (1 ESR)
CIN = 1 µF Ceramic
VIN =3.8V to
4.8V
VR=2.8V
IOUT
100 mA
COUT = 1 µF Ceramic
VIN =0V to
2.2V
VR=1.2V
COUT = 1 µF Ceramic
RLOAD =25
. I“ Vm‘ 3.3V \ z \ \é -‘ \ u, \\ E ma Vm‘ 55v a A M man; In H“ Load 02 \\ \ \
2005-2018 Microchip Technology Inc. DS20001826E-page 10
MCP1700
Note: Unless otherwise indicated: VR= 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL= 100 µA,
TA= +25°C, VIN =V
R+1V.
FIGURE 2-25: Start-up from VIN
(VR=1.8V).
FIGURE 2-26: Start-up from VIN
(VR=2.8V).
FIGURE 2-27: Load Regulation vs.
Junction Temperature (VR=1.8V).
FIGURE 2-28: Load Regulation vs.
Junction Temperature (VR=2.8V).
FIGURE 2-29: Load Regulation vs.
Junction Temperature (VR=5.0V).
FIGURE 2-30: Line Regulation vs.
Temperature (VR= 1.2V, 1.8V, 2.8V).
VIN =0V to
2.8V
VR=1.8V
COUT =1µF Ceramic
RLOAD =25
VIN =0V to
3.8V
VR=2.8V
COUT = 1 µF Ceramic
RLOAD =25
02
-0.1
0.0
0.1
0.2
0.3
a
d Regulation (%)
VR= 1.8V
IOUT = 0 to 200 mA
VIN = 5.0V
VIN = 3.5V
-0.4
-0.3
-
0
.
2
-40 -25 -10 5 20 35 50 65 80 95 110 125
Lo
a
Junction Temperature (°C)
VIN = 2.2V
-0.4
-0.3
-0.2
-0.1
0.0
a
d Regulation (%)
VR= 2.8V
IOUT = 0 to 250 mA
VIN = 5.0V
VIN = 4.3V
V
IN
= 3.3
V
-0.7
-0.6
-0.5
-40 -25 -10 5 20 35 50 65 80 95 110 125
Lo
a
Junction Temperature (°C)
IN
010
-0.05
0.00
0.05
0.10
d
Regulation (%)
VR= 5.0V
IOUT = 0 to 250 mA
V
IN
=
5
.
5V
VIN = 6.0V
-0.20
-0.15
-
0
.
10
-40 -25 -10 5 20 35 50 65 80 95 110 125
Loa
d
Junction Temperature (°C)
IN
55
-0.15
-0.10
-0.05
0.00
0.05
0.10
Regulation (%/V)
VR= 1.8V
VR= 2.8V
-0.30
-0.25
-0.20
-40 -25 -10 5 20 35 50 65 80 95 110 125
Line
Junction Temperature (°C)
VR= 1.2V
2005-2018 Microchip Technology Inc. DS20001826E-page 11
MCP1700
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
3.1 Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (1.6 µA typical) flows out of
this pin; there is no high current. The LDO output
regulation is referenced to this pin. Minimize voltage
drops between this pin and the negative side of the
load.
3.2 Regulated Output Voltage (VOUT)
Connect VOUT to the positive side of the load and the
positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close to the LDO VOUT pin as is practical.
The current flowing out of this pin is equal to the DC
load current.
3.3 Unregulated Input Voltage Pin
(VIN)
Connect VIN to the input unregulated source voltage.
As with all low dropout linear regulators, low source
impedance is necessary for the stable operation of the
LDO. The amount of capacitance required to ensure
low source impedance will depend on the proximity of
the input source capacitors or battery type. For most
applications, 1 µF of capacitance will ensure stable
operation of the LDO circuit. For applications that have
load currents below 100 mA, the input capacitance
requirement can be lowered. The type of capacitor
used can be ceramic, tantalum or aluminum
electrolytic. The low ESR characteristics of the ceramic
will yield better noise and PSRR performance at high
frequency.
3.4 No Connect (NC)
No internal connection. The pins marked NC are true
“No Connect” pins.
3.5 Exposed Thermal Pad (EP)
There is an internal electrical connection between the
Exposed Thermal Pad (EP) and the GND pin; they
must be connected to the same potential on the Printed
Circuit Board (PCB).
TABLE 3-1: PIN FUNCTION TABLE
Pin No.
SOT-23
Pin No.
SOT-89
Pin No.
TO-92
Pin No.
2x2 DFN-6 Name Function
1 1 1 3 GND Ground Terminal
233 6V
OUT Regulated Voltage Output
322 1 V
IN Unregulated Supply Voltage
2, 4, 5 NC No Connect
7 EP Exposed Thermal Pad
2005-2018 Microchip Technology Inc. DS20001826E-page 12
MCP1700
4.0 DETAILED DESCRIPTION
4.1 Output Regulation
A portion of the LDO output voltage is fed back to the
internal error amplifier and compared with the precision
internal bandgap reference. The error amplifier output
will adjust the amount of current that flows through the
P-Channel pass transistor, thus regulating the output
voltage to the desired value. Any changes in input
voltage or output current will cause the error amplifier
to respond and adjust the output voltage to the target
voltage (refer to Figure 4-1).
4.2 Overcurrent
The MCP1700 internal circuitry monitors the amount of
current flowing through the P-Channel pass transistor.
In the event of a short circuit or excessive output
current, the MCP1700 will turn off the P-Channel
device for a short period, after which the LDO will
attempt to restart. If the excessive current remains, the
cycle will repeat itself.
4.3 Overtemperature
The internal power dissipation within the LDO is a
function of input-to-output voltage differential and load
current. If the power dissipation within the LDO is
excessive, the internal junction temperature will rise
above the typical shutdown threshold of 140°C. At that
point, the LDO will shut down and begin to cool to the
typical turn-on junction temperature of 130°C. If the
power dissipation is low enough, the device will
continue to cool and operate normally. If the power
dissipation remains high, the thermal shutdown
protection circuitry will again turn off the LDO,
protecting it from catastrophic failure.
FIGURE 4-1: Block Diagram.
+
-
VIN VOUT
GND
+VIN
Error Amplifier
Voltage
Reference
Overcurrent
Overtemperature
MCP1700
2005-2018 Microchip Technology Inc. DS20001826E-page 13
MCP1700
5.0 FUNCTIONAL DESCRIPTION
The MCP1700 CMOS low dropout linear regulator is
intended for applications that need the lowest current
consumption while maintaining output voltage
regulation. The operating continuous load of the
MCP1700 ranges from 0 mA to 250 mA (VR2.5V).
The input operating voltage ranges from 2.3V to 6.0V,
making it capable of operating from two, three or four
alkaline cells or a single Li-Ion cell battery input.
5.1 Input
The input of the MCP1700 is connected to the source
of the P-Channel PMOS pass transistor. As with all
LDO circuits, a relatively low source impedance (10)
is needed to prevent the input impedance from causing
the LDO to become unstable. The size and type of the
required capacitor depend heavily on the input source
type (battery, power supply) and the output current
range of the application. For most applications (up to
100 mA), a 1 µF ceramic capacitor will be sufficient to
ensure circuit stability. Larger values can be used to
improve circuit AC performance.
5.2 Output
The maximum rated continuous output current for the
MCP1700 is 250 mA (VR2.5V). For applications
where VR< 2.5V, the maximum output current is
200 mA.
A minimum output capacitance of 1.0 µF is required for
small signal stability in applications that have up to
250 mA output current capability. The capacitor type
can be ceramic, tantalum or aluminum electrolytic. The
ESR range on the output capacitor can range from 0
to 2.0.
5.3 Output Rise time
When powering up the internal reference output, the
typical output rise time of 500 µs is controlled to
prevent overshoot of the output voltage.
% H
2005-2018 Microchip Technology Inc. DS20001826E-page 14
MCP1700
6.0 APPLICATION CIRCUITS AND
ISSUES
6.1 Typical Application
The MCP1700 is most commonly used as a voltage
regulator. Its low quiescent current and low dropout
voltage make it ideal for many battery-powered
applications.
FIGURE 6-1: Typical Application Circuit.
6.1.1 APPLICATION INPUT CONDITIONS
6.2 Power Calculations
6.2.1 POWER DISSIPATION
The internal power dissipation of the MCP1700 is a
function of input voltage, output voltage and output
current. The power dissipation resulting from the
quiescent current draw is so low it is insignificant
(1.6 µA x VIN). The following equation can be used to
calculate the internal power dissipation of the LDO.
EQUATION 6-1:
The maximum continuous operating junction
temperature specified for the MCP1700 is +125°C. To
estimate the internal junction temperature of the
MCP1700, the total internal power dissipation is
multiplied by the thermal resistance from junction to
ambient (RJA). The thermal resistance from junction to
ambient for the SOT-23 pin package is estimated at
230°C/W.
EQUATION 6-2:
The maximum power dissipation capability for a
package can be calculated given the junction-to-
ambient thermal resistance and the maximum ambient
temperature for the application. The following equation
can be used to determine the maximum internal power
dissipation of the package.
EQUATION 6-3:
EQUATION 6-4:
Package Type = SOT-23
Input Voltage Range = 2.3V to 3.2V
VIN maximum = 3.2V
VOUT typical = 1.8V
IOUT = 150 mA maximum
GND
VOUT
VIN CIN
F Ceramic
COUT
1 µF Ceramic
VOUT
VIN
(2.3V to 3.2V)
1.8V
IOUT
150 mA
MCP1700
PLDO VIN MAX
VOUT MIN
IOUT MAX
=
PLDO = Internal power dissipation of the
LDO Pass device
VIN(MAX) = Maximum input voltage
VOUT(MIN) = Minimum output voltage of the
LDO
TJMAX
PTOTAL RJA
TAMAX
+=
TJ(MAX) = Maximum continuous junction
temperature
PTOTAL = Total power dissipation of the device
RJA = Thermal resistance from junction to
ambient
TA(MAX) = Maximum ambient temperature
PDMAX
TJMAX
TAMAX

RJA
---------------------------------------------------=
PD(MAX) = Maximum power dissipation of the
device
TJ(MAX) = Maximum continuous junction
temperature
TA(MAX) = Maximum ambient temperature
RJA = Thermal resistance from junction to
ambient
TJRISE
PDMAX
RJA
=
TJ(RISE) = Rise in the device’s junction
temperature over the ambient
temperature
PTOTAL = Maximum power dissipation of the
device
RJA = Thermal resistance from junction to
ambient
2005-2018 Microchip Technology Inc. DS20001826E-page 15
MCP1700
EQUATION 6-5:
6.3 Voltage Regulator
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation resulting from ground current is small
enough to be neglected.
6.3.1 POWER DISSIPATION EXAMPLE
Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction to ambient for the application. The thermal
resistance from junction to ambient (RJA) is derived
from an EIA/JEDEC® standard for measuring thermal
resistance for small surface mount packages. The EIA/
JEDEC specification is JESD51-7, “High Effective
Thermal Conductivity Test Board for Leaded Surface
Mount Packages”. The standard describes the test
method and board specifications for measuring the
thermal resistance from junction to ambient. The actual
thermal resistance for a particular application can vary
depending on many factors, such as copper area and
thickness. Refer to AN792, “A Method to Determine
How Much Power a SOT-23 Can Dissipate in an
Application” (DS00792), for more information regarding
this subject.
Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below.
Maximum Package Power Dissipation at +40°C
Ambient Temperature
Package
Package Type = SOT-23
Input Voltage
VIN = 2.3V to 3.2V
LDO Output Voltages and Currents
VOUT =1.8V
IOUT =150mA
Maximum Ambient Temperature
TA(MAX) = +40°C
Internal Power Dissipation
Internal Power dissipation is the product of the LDO
output current times the voltage across the LDO
(VIN to VOUT).
PLDO(MAX) =(V
IN(MAX) -V
OUT(MIN))xI
OUT(MAX)
PLDO = (3.2V - (0.97 x 1.8V)) x 150 mA
PLDO = 218.1 milliwatts
TJTJRISE
TA
+=
TJ= Junction Temperature
TJ(RISE) = Rise in the device’s junction
temperature over the ambient
temperature
TA= Ambient temperature
TJ(RISE) =P
TOTAL xRJA
TJ(RISE) = 218.1 milliwatts x 212.0°C/Watt
TJ(RISE) =46.2°C
TJ =T
J(RISE) +T
A(MAX)
TJ = 86.2°C
2x2 DFN-6 (91°C/Watt = JA)
PD(MAX) = (125°C - 40°C) / 91°C/W
PD(MAX) = 934 milliwatts
SOT-23 (212.0°C/Watt = JA)
PD(MAX) = (125°C - 40°C) / 212°C/W
PD(MAX) = 401 milliwatts
SOT-89 (104°C/Watt = JA)
PD(MAX) = (125°C - 40°C) / 104°C/W
PD(MAX) = 817 milliwatts
TO-92 (92°C/Watt = JA)
PD(MAX) = (125°C - 40°C) / 92°C/W
PD(MAX) = 924 milliwatts
2005-2018 Microchip Technology Inc. DS20001826E-page 16
MCP1700
6.4 Voltage Reference
The MCP1700 can be used not only as a regulator, but
also as a low quiescent current voltage reference. In
many microcontroller applications, the initial accuracy
of the reference can be calibrated using production test
equipment or by using a ratio measurement. When the
initial accuracy is calibrated, the thermal stability and
line regulation tolerance are the only errors introduced
by the MCP1700 LDO. The low cost, low quiescent
current and small ceramic output capacitor are all
advantages when using the MCP1700 as a voltage
reference.
FIGURE 6-2: Using the MCP1700 as a
voltage reference.
6.5 Pulsed Load Applications
For some applications, there are pulsed load current
events that may exceed the specified 250 mA
maximum specification of the MCP1700. The internal
current limit of the MCP1700 will prevent high peak
load demands from causing non-recoverable damage.
The 250 mA rating is a maximum average continuous
rating. As long as the average current does not exceed
250 mA, pulsed higher load currents can be applied to
the MCP1700. The typical current limit for the
MCP1700 is 550 mA (TA+25°C).
PIC®
GND
VIN
CIN
F COUT
F
Bridge Sensor
VOUT VREF
AD0
AD1
Ratio Metric Reference
1 µA Bias
Microcontroller
MCP1700
U U U A /\ UUU XXX NNN \nu 1 ‘4»: I NNN
2005-2018 Microchip Technology Inc. DS20001826E-page 17
MCP1700
7.0 PACKAGING INFORMATION
7.1 Package Marking Information
3-Pin SOT-23
CKNN
3-Pin SOT-89
CUYYWW
NNN
3-Pin TO-92
XXXXXX
XXXXXX
YWWNNN
Standard
Extended Temp
Symbol Voltage *
CK 1.2
CM 1.8
CP 2.5
CQ 2.8
GC 2.9
CR 3.0
CS 3.3
CU 5.0
Example
1700
1202E
322256
* Custom output voltages available upon request.
Contact your local Microchip sales office for more
information.
XXXXXX TO^^
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
3
e
6-Lead DFN (2x2x0.9 mm) Example
ABB
256
Part Number Code
MCP1700T-1202E/MAY ABB
MCP1700T-1802E/MAY ABC
MCP1700T-2502E/MAY ABD
MCP1700T-2802E/MAY ABF
MCP1700T-3002E/MAY ABE
MCP1700T-3302E/MAY AAZ
MCP1700T-5002E/MAY ABA
2005-2018 Microchip Technology Inc. DS20001826E-page 18
MCP1700
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU77>627@
1RWHV
   !"!#$!!% #$  !% #$   #&!' !
  !#"('
)*+ )  #&#,$ --#$## 
1RWH .# #$#/!- 1  #2/%##!#
##+33---3/
4# 55""
 5# 6 67 8
6$9%2 6 :
5!2#  ')*
7$# !5!2#  )*
7,;#   < 
!!2//   ' 
#!%%   < 
7,=!# "  < >
!!2/=!# " > : 
7,5#  >  :'
.#5# 5 : ' >
.# ? < ?
5!/  < 
5!=!# 9 : < '
b
N
E
E1
2
1
e
e1
D
A
A1
A2
c
L
φ
  - *)
3-Lead Plastic Small Outline Transistor (TT) [SOT-23] SlLK/ SCREEN «9| RECOMMENDED LAND PATTERN Unlls MlLLIMETERS Dlmension Limlts MIN | NOM l MAX Contact Pllch E 0 95 BSC Contacl Pad Spacing c 2.30 Contact Pad Wldlh (x3) x o 55 German Fad Length (x3) v 1.05 Dlstance Between Pads G 1 25 Overall Wldlh Z 3 35 Noles. 1 Dimenslonirrg and Iolerancmg perAsME Y‘l4 5M BSC. Basic Dlmension. Thearellcally exact value shown wllhout tolerances Mlcrochlp Tecnnology Drawing No CO4-ZlO4A
2005-2018 Microchip Technology Inc. DS20001826E-page 19
MCP1700
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
*—D—~>-D (—17 7 @_l_| H * H H i % 2X HE E 7 Q016C ‘ @H‘ E SEATING! H [I H A PLANE 7 3Xb .10]..- —»‘ ‘——m L H “ H H ’ H H H H r 1 m k_J 7 P) ‘D1A‘ OPTIONA PARTS ANY
2005-2018 Microchip Technology Inc. DS20001826E-page 20
MCP1700
%
$
0LFURFKLS7HFKQRORJ\'UDZLQJ&&6KHHWRI
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
Note:
$
&
SEATING
PLANE
F
'
+
(
/
'$ '% '&
237,21$/%$&.6,'(3$77(516²
3$5760$<%(6833/,(':,7+
$1<3$77(516+2:1
H
H
H
 &
;
 &
;
E
;E
 &
 & $ %
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]
(

Unils MlLLlMETERS Dimension lells MIN | MAX Number of Leads N 3 Pilch 1.50 BSC Oulside Lead Pilch 61 3.00 BSC Overall Heighl A 1.40 l 60 Overall Widlh H 3.94 4 25 Molded Package Widlh al Top E 2.13 I 2 29 Overall Lenglh D 4.50 BSC Tab Lenglh (Oplion C) Inc 1.62 1 83 Lead Thickness 0.35 0 44 Lead 2 Widlh b 0.41 0 56
2005-2018 Microchip Technology Inc. DS20001826E-page 21
MCP1700
0LFURFKLS7HFKQRORJ\'UDZLQJ&&6KHHWRI2
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
Note:

E
/HDG:LGWK

F
/HDG7KLFNQHVV
'&7DE/HQJWK2SWLRQ&
'2YHUDOO/HQJWK
(0ROGHG3DFNDJH:LGWKDW7RS
+2YHUDOO:LGWK
$2YHUDOO+HLJKW
%6&
H
2XWVLGH/HDG3LWFK
%6&
H
3LWFK
0$;0,1'LPHQVLRQ/LPLWV
0,//,0(7(568QLWV
)RRW/HQJWK /  
/HDGV:LGWK E  
0ROGHG3DFNDJH:LGWKDW%DVH (

%6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV

SURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
Notes:
1XPEHURI/HDGV 1
120



%6&





%6&
'% 
'$ 
7DE/HQJWK2SWLRQ%
7DE/HQJWK2SWLRQ$
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRU
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]
2005-2018 Microchip Technology Inc. DS20001826E-page 22
MCP1700
RECOMMENDED LAND PATTERN
Microchip Technology Drawing C04-2029C
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]
SILK SCREEN
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Notes:
Dimensioning and tolerancing per ASME Y14.5M1.
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
Y1
Y
X
C
X1
X2
Dimension Limits
Units
Y (2 PLACES)
Y1
X2 (2 PLACES)
X1
MILLIMETERS
MIN
X (3 PLACES)
MAX
1.300
3.125
Y3
Y2
Y4
NOM
1.50 (BSC)C
0.900
1.733
0.416
1.475
0.825
1.000
Y4
Y3
G
Y2
G (2 PLACES) 0.600
2005-2018 Microchip Technology Inc. DS20001826E-page 23
MCP1700
0LFURFKLS7HFKQRORJ\'UDZLQJ&5HY&6KHHWRI
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
1RWH
/HDG3ODVWLF7UDQVLVWRU2XWOLQH72>72@
'$780%
'$780$
9,(:$$
7239,(:
(
$/
;E
5
H
'
F
1
$
$
6,'(9,(:
Uni‘s INCHES Dimension LImIIs MIN MAX Numberoles N 3 P‘Ich .050 BSC Bollom Io Package Flat D .125 .165 Overal‘ Wwdlh E .175 .205 Overal‘ Length A .170 .210 Mo‘ded Package Radms R .080 .105 Lead Tmckness .014 .021 Lead Wwdlh b .014 .022
2005-2018 Microchip Technology Inc. DS20001826E-page 24
MCP1700
0LFURFKLS7HFKQRORJ\'UDZLQJ&5HY&6KHHWRI
/HDG3ODVWLF7UDQVLVWRU2XWOLQH72>72@
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
1RWH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRU
%6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
SURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
Notes:
E/HDG:LGWK

F
/HDG7KLFNQHVV
50ROGHG3DFNDJH5DGLXV
$2YHUDOO/HQJWK
(2YHUDOO:LGWK
'%RWWRPWR3DFNDJH)ODW
%6&
H
3LWFK
11XPEHURI3LQV
0$;0,1'LPHQVLRQ/LPLWV
,1&+(68QLWV
7LSWR6HDWLQJ3ODQH / 
120
6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - 2x2x0.9mm Body [DFN] Note: htlp //www mlcmchlpLom/packagmg For the mosl current package drawings, please see Ihe Mlcrochip Packagmg Spemficalmn located at \ \ \ X D 0.05 C \\\\\\\Q 1 yams c TOP VIEW SEATlNG PLANE (A3) — SIDE VlEW / (DATUM B) LT»; BOTTOM VIEW 6Xb ,FK 7 (DATUM A) om® CAla| 0 05® Mmmcmp Technolugy Drawing GOA-12m: Sheet 1 Of 2
2005-2018 Microchip Technology Inc. DS20001826E-page 25
MCP1700
G-Lead Plastic Dual Flat, No Lead Package (MA[fi) - 2x2x0.9mm Body [DFN] Note: For the most current package orawtngs, please see the Mlcrochlp Packaglng Speclficatlon located at htth/www mlcrochlp.com/packaglng NOTE 2 UNIS MlLLIMETERS Dimenslon lells MIN | NONI l MAX Number 0' Plns N 6 Pitch e 0.55 asc Overall Height A 0 30 0 85 D 90 Stanootl At 0 00 0.02 0.05 Contact Tnlckness A3 0 20 REF Ovevall Length D 2 00 ESE Overall wlotn E 2.00 35:: Exposed Pad Length D2 1 50 1 GD 1 70 Exposed Pad Wldm E2 0 90 1.00 1.10 Contact Width 0 0 25 0.30 0.35 Contact Length L D 20 0 25 O 30 ContactrtoVExposed Fad K o 20 . . Notes: 1 Pin 1 visual lndex feature may vary, but must be located within the natcneo area 2 Package may have one or more exposed tle bars at ends. 3 Package l5 saw slngulated 4 Dlmenslonlng and toleranclng per ASME v14 5M 55c. Baslc Dimenston Theoretically exact value shown wi|hou| tolerances. REF' Reterence Dlmenslun, usually wllhuul tolerance, toy lntonnatlon puvpuses only Mleroenlp Technology Drawlng 0044200 sneet 2 at 2
2005-2018 Microchip Technology Inc. DS20001826E-page 26
MCP1700
2005-2018 Microchip Technology Inc. DS20001826E-page 27
MCP1700
APPENDIX A: REVISION HISTORY
Revision E (November 2018)
The following is the list of modifications:
Added information related to the 2.9V option
throughout the document
Updated Features.
Updated DC Characteristics.
Updated Temperature Specifications.
Updated Power Dissipation example in
Section 6.3 “Voltage Regulator”.
Updated Package Marking Information in
Section 7.0 “Packaging Information”.
Updated Product Identification System.
Revision D (September 2016)
The following is the list of modifications:
Updated DC Characteristics.
Updated Product Identification System.
Minor typographical changes.
Revision C (October 2013)
The following is the list of modifications:
Added new package to the family (2x2 DFN-6)
and related information throughout the document.
Updated thermal package resistance information
in Temperature Specifications.
Updated Section 3.0 “Pin Descriptions”.
Added package markings and drawings for the
2x2 DFN-6 package.
Added information related to the 2.8V option
throughout the document.
Updated Product Identification System.
Minor typographical changes.
Revision B (February 2007)
Updated Packaging Information.
Corrected Product Identification System.
Changed X5R to X7R in Notes to DC
Characteristics, Temperature Specifications, and
Section 2.0 “Typical Performance Curves”.
Revision A (November 2005)
Original release of this document.
PART NO. P1 x. 41x 41x i ><>
2005-2018 Microchip Technology Inc. DS20001826E-page 28
MCP1700
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: MCP1700: Low Quiescent Current LDO
Tape and Reel: T: Tape and Reel only applies to SOT-23 and SOT-89
devices
Standard Output
Voltage: *
120 = 1.2V
180 = 1.8V
250 = 2.5V
280 = 2.8V
290 = 2.9V
300 = 3.0V
330 = 3.3V
500 = 5.0V
* Custom output voltages available upon request. Contact
your local Microchip sales office for more information
Tolerance: 2 = 2% (Standard)
Temperature Range: E = -40°C to +125°C (Extended)
Package: MAY = Plastic Small Outline Transistor (DFN), 6-lead
MB = Plastic Small Outline Transistor (SOT-89), 3-lead
TO = Plastic Small Outline Transistor (TO-92), 3-lead
TT = Plastic Small Outline Transistor (SOT-23), 3-lead
Examples:
2x2 DFN-6 Package:
a) MCP1700T-1202E/MAY: 1.2V VOUT
b) MCP1700T-1802E/MAY: 1.8V VOUT
c) MCP1700T-2502E/MAY: 2.5V VOUT
d) MCP1700T-2802E/MAY: 2.8V VOUT
e) MCP1700T-3002E/MAY: 3.0V VOUT
f) MCP1700T-3302E/MAY: 3.3V VOUT
g) MCP1700T-5002E/MAY: 5.0V VOUT
SOT-89 Package:
a) MCP1700T-1202E/MB: 1.2V VOUT
b) MCP1700T-1802E/MB: 1.8V VOUT
c) MCP1700T-2502E/MB: 2.5V VOUT
d) MCP1700T-2802E/MB: 2.8V VOUT
e) MCP1700T-3002E/MB: 3.0V VOUT
f) MCP1700T-3302E/MB: 3.3V VOUT
g) MCP1700T-5002E/MB: 5.0V VOUT
TO-92 Package:
a) MCP1700-1202E/TO: 1.2V VOUT
b) MCP1700-1802E/TO: 1.8V VOUT
c) MCP1700-2502E/TO: 2.5V VOUT
d) MCP1700-2802E/TO: 2.8V VOUT
e) MCP1700-3002E/TO: 3.0V VOUT
f) MCP1700-3302E/TO: 3.3V VOUT
g) MCP1700-5002E/TO: 5.0V VOUT
SOT-23 Package:
a) MCP1700T-1202E/TT: 1.2V VOUT
b) MCP1700T-1802E/TT: 1.8V VOUT
c) MCP1700T-2502E/TT: 2.5V VOUT
d) MCP1700T-2802E/TT: 2.8V VOUT
e) MCP1700T-2902E/TT: 2.9V VOUT
f) MCP1700T-3002E/TT: 3.0V VOUT
g) MCP1700T-3302E/TT: 3.3V VOUT
h) MCP1700T-5002E/TT: 5.0V VOUT
PART NO. X- XXX
VoltageTape &
Reel
MCP1700
X
Tolerance
X
Temp.
Range
/XX
Package
Output
YSTEM
2005-2018 Microchip Technology Inc. DS20001826E-page 29
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.
ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity,
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3876-2
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITYMANAGEMENTS
YSTEM
CERTIFIEDBYDNV
== ISO/TS16949==
6‘ ‘MICROCHIP AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
2005-2018 Microchip Technology Inc. DS20001826E-page 30
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
08/15/18

Products related to this Datasheet

IC REG LINEAR 3V 250MA 6DFN
Available Quantity: 8,684
Unit Price: 0.48
IC REG LINEAR 2V 200MA SOT23-3
Available Quantity: 2,962
Unit Price: 0.46
IC REG LINEAR 1.8V 200MA 6DFN
Available Quantity: 2,225
Unit Price: 0.48
IC REG LINEAR 3.5V 250MA SOT23-3
Available Quantity: 1,495
Unit Price: 0.48
IC REG LINEAR 1.5V 200MA SOT89-3
Available Quantity: 1,986
Unit Price: 0.48
IC REG LINEAR 4.5V 250MA SOT89-3
Available Quantity: 806
Unit Price: 0.45
IC REG LINEAR 2.7V 250MA SOT23-3
Available Quantity: 3,527
Unit Price: 0.46
IC REG LINEAR 3.1V 250MA SOT23-3
Available Quantity: 404
Unit Price: 0.46
IC REG LINEAR 1.2V 200MA SOT23-3
Available Quantity: 235
Unit Price: 0.46
IC REG LINEAR 3V 250MA SOT89-3
Available Quantity: 1,056
Unit Price: 0.46
IC REG LINEAR 2.8V 250MA SOT89-3
Available Quantity: 67
Unit Price: 0.43
IC REG LINEAR 1.8V 200MA SOT23-3
Available Quantity: 11,412
Unit Price: 0.46
IC REG LINEAR 3.3V 250MA SOT23-3
Available Quantity: 0
Unit Price: 0.46
IC REG LINEAR 1.8V 200MA SOT89-3
Available Quantity: 0
Unit Price: 0.46
IC REG LINEAR 5V 250MA SOT89-3
Available Quantity: 6,799
Unit Price: 0.46
IC REG LINEAR 2.5V 250MA SOT23-3
Available Quantity: 0
Unit Price: 0.46
IC REG LINEAR 3V 250MA SOT23-3
Available Quantity: 0
Unit Price: 0.46
IC REG LINEAR 2.5V 250MA SOT89-3
Available Quantity: 0
Unit Price: 0.46
IC REG LINEAR 1.2V 200MA SOT89-3
Available Quantity: 7,027
Unit Price: 0.46
IC REG LINEAR 2.8V 250MA SOT23-3
Available Quantity: 3,000
Unit Price: 0.46
IC REG LINEAR 3.1V 250MA SOT23-3
Available Quantity: 404
Unit Price: 0.46
IC REG LINEAR 3.3V 250MA 6DFN
Available Quantity: 1,250
Unit Price: 0.48
IC REG LINEAR 3.6V 250MA SOT23-3
Available Quantity: 2,975
Unit Price: 0.46
IC REG LINEAR 1.5V 200MA SOT23-3
Available Quantity: 0
Unit Price: 0.46
IC REG LINEAR 2.3V 200MA SOT23-3
Available Quantity: 0
Unit Price: 0.48
IC REG LINEAR 3.6V 250MA SOT89-3
Available Quantity: 405
Unit Price: 0.46
IC REG LINEAR 3.5V 250MA SOT89-3
Available Quantity: 895
Unit Price: 0.48
IC REG LINEAR 2.3V 200MA SOT23-3
Available Quantity: 0
Unit Price: 0.48
IC REG LINEAR 3.5V 250MA SOT23-3
Available Quantity: 1,495
Unit Price: 0.48
IC REG LINEAR 1.5V 200MA SOT89-3
Available Quantity: 1,986
Unit Price: 0.48