XA2C256 Datasheet by AMD

X XILINX®
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 1
© 2006–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.
Features
AEC-Q100 device qualification and full PPAP support
available in both I-grade and extended temperature
Q-grade
Guaranteed to meet full electrical specifications over
TA = –40°C to +105°C with TJ Maximum = +125°C
(Q-grade)
Optimized for 1.8V systems
Industry’s best 0.18 micron CMOS CPLD
- Optimized architecture for effective logic synthesis.
Refer to the CoolRunner™-II family data sheet for
architecture description.
- Multi-voltage I/O operation — 1.5V to 3.3V
Available in multiple package options
- 100-pin VQFP with 80 user I/O
- 144-pin TQFP with 118 user I/O
- Pb-free only for all packages
Advanced system features
- Fastest in system programming
· 1.8V ISP using IEEE 1532 (JTAG) interface
- IEEE1149.1 JTAG Boundary Scan Test
- Optional Schmitt-trigger input (per pin)
- Unsurpassed low power management
· DataGATE enable (DGE) signal control
- Two separate I/O banks
- RealDigital 100% CMOS product term generation
- Flexible clocking modes
· Optional DualEDGE triggered registers
· Clock divider (divide by 2, 4, 6, 8, 10, 12, 14, 16)
· CoolCLOCK
- Global signal options with macrocell control
· Multiple global clocks with phase selection per
macrocell
· Multiple global output enables
· Global set/reset
- Advanced design security
- PLA architecture
· Superior pinout retention
· 100% product term routability across function
block
- Open-drain output option for Wired-OR and LED
drive
- Optional bus-hold, 3-state or weak pull-up on
selected I/O pins
- Optional configurable grounds on unused I/Os
- Mixed I/O voltages compatible with 1.5V, 1.8V,
2.5V, and 3.3V logic levels
- Hot pluggable
WARNING: Programming temperature range of
TA = 0°C to +70°C.
Description
The CoolRunner-II Automotive 256-macrocell device is
designed for both high performance and low power applica-
tions. This lends power savings to high-end communication
equipment and high speed to battery operated devices. Due
to the low power stand-by and dynamic operation, overall
system reliability is improved.
This device consists of sixteen Function Blocks inter-con-
nected by a low power Advanced Interconnect Matrix (AIM).
The AIM feeds 40 true and complement inputs to each
Function Block. The Function Blocks consist of a 40 by 56
P-term PLA and 16 macrocells which contain numerous
configuration bits that allow for combinational or registered
modes of operation.
Additionally, these registers can be globally reset or preset
and configured as a D or T flip-flop or as a D latch. There
are also multiple clock signals, both global and local product
term types, configured on a per macrocell basis. Output pin
configurations include slew rate limit, bus hold, pull-up,
open drain and programmable grounds. A Schmitt-trigger
input is available on a per input pin basis. In addition to stor-
ing macrocell output states, the macrocell registers may be
configured as “direct input” registers to store signals directly
from input pins.
Clocking is available on a global or Function Block basis.
Three global clocks are available for all Function Blocks as a
synchronous clock source. Macrocell registers can be indi-
vidually configured to power up to the zero or one state. A
global set/reset control line is also available to asynchro-
nously set or reset selected registers during operation.
Additional local clock, synchronous clock-enable, asynchro-
nous set/reset and output enable signals can be formed
using product terms on a per-macrocell or per-Function
Block basis.
A DualEDGE flip-flop feature is also available on a per mac-
rocell basis. This feature allows high performance synchro-
nous operation based on lower frequency clocking to help
reduce the total power consumption of the device.
Circuitry has also been included to divide one externally
supplied global clock (GCK2) by eight different selections.
This yields divide by even and odd clock frequencies.
0
XA2C256 CoolRunner-II
Automotive CPLD
DS555 (v1.2) June 22, 2009 00 Product Specification
R
X XILINX‘” www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 2
R
The use of the clock divide (division by 2) and DualEDGE
flip-flop gives the resultant CoolCLOCK feature.
DataGATE is a method to selectively disable inputs of the
CPLD that are not of interest during certain points in time.
By mapping a signal to the DataGATE function, lower power
can be achieved due to reduction in signal switching.
Another feature that eases voltage translation is I/O bank-
ing. Two I/O banks are available on the CoolRunner-II Auto-
motive 256-macrocell device that permit easy interfacing to
3.3V, 2.5V, 1.8V, and 1.5V devices.
The CoolRunner-II Automotive 256-macrocell CPLD is I/O
compatible with various I/O standards (see Ta bl e 1 ). This
device is also 1.5V I/O compatible with the use of Schmitt-
trigger inputs.
RealDigital Design Technology
Xilinx® CoolRunner-II Automotive CPLDs are fabricated on
a 0.18 micron process technology which is derived from
leading edge FPGA product development. CoolRunner-II
Automotive CPLDs employ RealDigital, a design technique
that makes use of CMOS technology in both the fabrication
and design methodology. RealDigital design technology
employs a cascade of CMOS gates to implement sum of
products instead of traditional sense amplifier methodology.
Due to this technology, Xilinx CoolRunner-II Automotive
CPLDs achieve both high-performance and low power oper-
ation.
Supported I/O Standards
The CoolRunner-II Automotive 256-macrocell device fea-
tures LVCMOS and LVTTL I/O implementations. See
Tabl e 1 for I/O standard voltages. The LVTTL I/O standard is
a general-purpose EIA/JEDEC standard for 3.3V applica-
tions that use an LVTTL input buffer and Push-Pull output
buffer. The LVCMOS standard is used in 3.3V, 2.5V, 1.8V
applications. CoolRunner-II Automotive CPLDs are also
1.5V I/O compatible with the use of Schmitt-trigger inputs.
Tabl e 1 : I/O Standards for XA2C256
IOSTANDARD Attribute Output VCCIO Input VCCIO
LVTTL 3.3 3.3
LVCMOS33 3.3 3.3
LVCMOS25 2.5 2.5
LVCMOS18 1.8 1.8
LVCMOS15 (1) 1.5 1.5
(1) LVCMOS15 requires Schmitt-trigger inputs.
Figure 1: ICC vs Frequency
Tabl e 2 : ICC vs Frequency (LVCMOS 1.8V TA = 25°C)(1)
Frequency (MHz)
0 30 50 70 100 120 150
Typical ICC (mA) 0.021 11.68 19.40 27.01 38.18 45.54 56.32
Notes:
1. 16-bit up/down, resettable binary counter (one counter per function block).
Frequency (MHz)
DS555_01_092106
ICC (mA)
0
0
25
50
75
15010050
XXILINX" Dewce Package User Guide XAPP427 www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 3
R
Recommended Operating Conditions
DC Electrical Characteristics (Over Recommended Operating Conditions)
Absolute Maximum Ratings
Symbol Description Value Units
VCC Supply voltage relative to ground –0.5 to 2.0 V
VCCIO Supply voltage for output drivers –0.5 to 4.0 V
VJTAG(2) JTAG input voltage limits –0.5 to 4.0 V
VCCAUX JTAG input supply voltage –0.5 to 4.0 V
VIN(1) Input voltage relative to ground –0.5 to 4.0 V
VTS(1) Voltage applied to 3-state output –0.5 to 4.0 V
TSTG(3) Storage Temperature (ambient) –65 to +150 °C
TJJunction Temperature +125 °C
Notes:
1. Maximum DC undershoot below GND must be limited to either 0.5V or 10 mA, whichever is easiest to achieve. During transitions,
the device pins may undershoot to –2.0v or overshoot to +4.5V, provided this over or undershoot lasts less than 10 ns and with the
forcing current being limited to 200 mA.
2. Valid over commercial temperature range.
3. For soldering guidelines and thermal considerations, see the Device Package User Guide. For Pb-free packages, see XAPP427.
Symbol Parameter Min Max Units
VCC Supply voltage for internal logic and
input buffers
Industrial TA = –40°C to +85°C 1.7 1.9 V
Q-Grade TA = –40°C to +105°C
TJ Maximum = +125°C
1.7 1.9 V
VCCIO Supply voltage for output drivers @ 3.3V operation 3.0 3.6 V
Supply voltage for output drivers @ 2.5V operation 2.3 2.7 V
Supply voltage for output drivers @ 1.8V operation 1.7 1.9 V
Supply voltage for output drivers @ 1.5V operation 1.4 1.6 V
VCCAUX JTAG programming 1.7 3.6 V
Symbol Parameter Test Conditions Typical Max. Units
ICCSB Standby current Industrial VCC = 1.9V, VCCIO = 3.6V 54 300 μA
ICCSB Standby current Q-grade VCC = 1.9V, VCCIO = 3.6V 54 2.5 mA
ICC Dynamic current f = 1 MHz - 3.0 mA
f = 50 MHz - 30 mA
CJTAG JTAG input capacitance f = 1 MHz - 10 pF
CCLK Global clock input capacitance f = 1 MHz - 12 pF
CIO I/O capacitance f = 1 MHz - 10 pF
IIL(2) Input leakage current VIN = 0V or VCCIO to 3.9V - ±10 μA
IIH(2) I/O High-Z leakage VIN = 0V or VCCIO to 3.9V - ±10 μA
Notes:
1. 16-bit up/down, resettable binary counter (one counter per function block) tested at VCC= VCCIO = 1.9V
XXILINX" www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 4
R
LVCMOS 3.3V and LVTTL 3.3V DC Voltage Specifications
LVCMOS 2.5V DC Voltage Specifications
1. The VIH Max value represents the JEDEC specification for LVCMOS25. The CoolRunner-II input buffer can tolerate up
to 3.9V without physical damage.
LVCMOS 1.8V DC Voltage Specifications
Symbol Parameter Test Conditions Min. Max. Units
VCCIO Input source voltage - 3.0 3.6 V
VIH High level input voltage - 2 3.9 V
VIL Low level input voltage - –0.3 0.8 V
VOH High level output voltage,
Industrial grade
IOH = –8 mA, VCCIO = 3V VCCIO – 0.4V - V
IOH = –0.1 mA, VCCIO = 3V VCCIO – 0.2V - V
High level output voltage,
Q-grade
IOH = –4 mA, VCCIO = 3V VCCIO – 0.4V - V
IOH = –0.1 mA, VCCIO = 3V VCCIO – 0.2V - V
VOL High level output voltage,
Industrial grade
IOL = 8 mA, VCCIO = 3V - 0.4 V
IOL = 0.1 mA, VCCIO = 3V - 0.2 V
High level output voltage,
Q-grade
IOL = 4 mA, VCCIO = 3V - 0.4 V
IOL = 0.1 mA, VCCIO = 3V - 0.2 V
Symbol Parameter Test Conditions Min. Max. Units
VCCIO Input source voltage - 2.3 2.7 V
VIH High level input voltage - 1.7 VCCIO + 0.3(1) V
VIL Low level input voltage - –0.3 0.7 V
VOH High level output voltage,
Industrial grade
IOH = –8 mA, VCCIO = 2.3V VCCIO – 0.4V - V
IOH = –0.1 mA, VCCIO = 2.3V VCCIO – 0.2V - V
High level output voltage, Q-grade IOH = –4 mA, VCCIO = 2.3V VCCIO – 0.4V - V
IOH = –0.1 mA, VCCIO = 2.3V VCCIO – 0.2V - V
VOL High level output voltage,
Industrial grade
IOL = 8 mA, VCCIO = 2.3V - 0.4 V
IOL = 0.1 mA, VCCIO = 2.3V - 0.2 V
High level output voltage, Q-grade IOL = 4 mA, VCCIO = 2.3V - 0.4 V
IOL = 0.1 mA, VCCIO = 2.3V - 0.2 V
Symbol Parameter Test Conditions Min. Max. Units
VCCIO Input source voltage - 1.7 1.9 V
VIH High level input voltage - 0.65 x VCCIO VCCIO + 0.3(1) V
VIL Low level input voltage - –0.3 0.35 x VCCIO V
VOH High level output voltage,
Industrial grade
IOH = –8 mA, VCCIO = 1.7V VCCIO – 0.45 - V
IOH = –0.1 mA, VCCIO = 1.7V VCCIO – 0.2 - V
High level output voltage, Q-grade IOH = –4 mA, VCCIO = 1.7V VCCIO – 0.45 - V
IOH = –0.1 mA, VCCIO = 1.7V VCCIO – 0.2 - V
XXILINX‘“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 5
R
1. The VIH Max value represents the JEDEC specification for LVCMOS18. The CoolRunner-II input buffer can tolerate up
to 3.9V without physical damage.
LVCM OS 1.5V DC Voltage Specifications(1)
Schmitt Trigger Input DC Voltage Specifications
AC Electrical Characteristics Over Recommended Operating Conditions
VOL High level output voltage, Industrial
grade
IOL = 8 mA, VCCIO = 1.7V - 0.45 V
IOL = 0.1 mA, VCCIO = 1.7V - 0.2 V
High level output voltage, Q-grade IOL = 4 mA, VCCIO = 1.7V - 0.45 V
IOL = 0.1 mA, VCCIO = 1.7V - 0.2 V
Symbol Parameter Test Conditions Min. Max. Units
VCCIO Input source voltage - 1.4 1.6 V
VT+ Input hysteresis threshold voltage - 0.5 x VCCIO 0.8 x VCCIO V
VT- -0.2 x V
CCIO 0.5 x VCCIO V
VOH High level output voltage,
Industrial grade
IOH = –8 mA, VCCIO = 1.4V VCCIO – 0.45 - V
IOH = –0.1 mA, VCCIO = 1.4V VCCIO – 0.2 - V
High level output voltage, Q-grade IOH = –4 mA, VCCIO = 1.4V VCCIO – 0.45 - V
IOH = –0.1 mA, VCCIO = 1.4V VCCIO – 0.2 - V
VOL High level output voltage,
Industrial grade
IOL = 8 mA, VCCIO = 1.4V - 0.4 V
IOL = 0.1 mA, VCCIO = 1.4V - 0.2 V
High level output voltage, Q-grade IOL = 4 mA, VCCIO = 1.4V - 0.4 V
IOL = 0.1 mA, VCCIO = 1.4V - 0.2 V
Notes:
1. Hysteresis used on 1.5V inputs.
Symbol Parameter Test Conditions Min. Max. Units
VCCIO Input source voltage - 1.4 3.9 V
VT+ Input hysteresis threshold voltage - 0.5 x VCCIO 0.8 x VCCIO V
VT- -0.2 x V
CCIO 0.5 x VCCIO V
Symbol Parameter
-7 -8
UnitsMin. Max. Min. Max.
TPD1 Propagation delay single p-term - 7.0 - 7.0 ns
TPD2 Propagation delay OR array - 7.5 - 7.5 ns
TSUD Direct input register clock setup time 3.0 - 3.0 - ns
TSU1 Setup time (single p-term) 2.8 - 3.4 - ns
TSU2 Setup time (OR array) 3.3 - 3.9 - ns
THD Direct input register hold time 0 - 0.4 - ns
THP-term hold time 0 - 0.4 - ns
TCO Clock to output - 6.0 - 6.0 ns
Symbol Parameter Test Conditions Min. Max. Units
XXILINX“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 6
R
FTOGGLE(1) Internal toggle rate - 300 - 300 MHz
FSYSTEM1(2) Maximum system frequency - 152 - 139 MHz
FSYSTEM2(2) Maximum system frequency - 141 - 130 MHz
FEXT1(3) Maximum external frequency - 114 - 106 MHz
FEXT2(3) Maximum external frequency - 108 - 101 MHz
TPSUD Direct input register p-term clock setup time 1.7 - 2.0 - ns
TPSU1 P-term clock setup time (single p-term) 1.5 - 1.9 - ns
TPSU2 P-term clock setup time (OR array) 2.0 - 2.4 - ns
TPHD Direct input register p-term clock hold time 1.2 - 1.8 - ns
TPH P-term clock hold 1.0 - 1.3 - ns
TPCO P-term clock to output - 7.3 8.4 ns
TOE/TOD Global OE to output enable/disable - 7.0 - 7.0 ns
TPOE/TPOD P-term OE to output enable/disable - 8.0 - 9.1 ns
TMOE/TMOD Macrocell driven OE to output enable/disable - 9.9 - 9.9 ns
TPAO P-term set/reset to output valid - 8.1 - 8.6 ns
TAO Global set/reset to output valid - 7.6 - 7.6 ns
TSUEC Register clock enable setup time 3.1 - 3.5 - ns
THEC Register clock enable hold time 0.0 - 0.0 - ns
TCW Global clock pulse width High or Low 1.6 - 1.6 - ns
TPCW P-term pulse width High or Low 7.5 - 7.5 - ns
TAPRPW Asynchronous preset/reset pulse width (High or Low) 7.5 - 7.5 - ns
TDGSU Set-up before DataGATE latch assertion 0.0 - 0.0 - ns
TDGH Hold to DataGATE latch assertion 6.0 - 6.0 - ns
TDGR DataGATE recovery to new data - 9.0 - 9.3 ns
TDGW DataGATE low pulse width 3.5 - 3.5 - ns
TCDRSU CDRST setup time before falling edge GCLK2 2.0 - 2.0 - ns
TCDRH Hold time CDRST after falling edge GCLK2 0.0 - 0.0 - ns
TCONFIG(4) Configuration time - 150 - 150 μs
Notes:
1. FTOGGLE is the maximum clock frequency to which a T flip-flop can reliably toggle (see the CoolRunner-II Automotive CPLD family
data sheet for more information).
2. FSYSTEM1 (1/TCYCLE) is the internal operating frequency for a device fully populated with one 16-bit counter through one p-term per
macrocell while FSYSTEM2 is through the OR array.
3. FEXT1 (1/TSU1+TCO) is the maximum external frequency using one p-term while FEXT2 is through the OR array.
4. Typical configuration current during TCONFIG is approximately 7.7 mA.
Symbol Parameter
-7 -8
UnitsMin. Max. Min. Max.
XXILINX“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 7
R
(
Internal Timing Parameters
Symbol Parameter(2)
-7 -8
UnitsMin. Max. Min. Max.
Buffer Delays
TIN Input buffer delay - 2.6 - 2.6 ns
TDIN Direct data register input delay - 3.9 - 3.3 ns
TGCK Global Clock buffer delay - 2.7 - 2.7 ns
TGSR Global set/reset buffer delay - 3.5 - 4.1 ns
TGTS Global 3-state buffer delay - 3.0 - 3.0 ns
TOUT Output buffer delay - 2.6 - 2.6 ns
TEN Output buffer enable/disable delay - 4.0 - 4.0 ns
P-term Delays
TCT Control term delay - 1.4 - 2.5 ns
TLOGI1 Single P-term delay adder - 1.1 - 1.1 ns
TLOGI2 Multiple P-term delay adder - 0.5 - 0.5 ns
Macrocell Delay
TPDI Input to output valid - 0.7 - 0.7 ns
TLDI Setup before clock (transparent latch) - 2.5 - 2.5 ns
TSUI Setup before clock 1.8 - 2.4 - ns
THI Hold after clock 0.0 - 0.0 - ns
TECSU Enable clock setup time 1.8 - 1.1 - ns
TECHO Enable clock hold time 0.0 - 0.0 - ns
TCOI Clock to output valid - 0.7 - 0.7 ns
TAOI Set/reset to output valid - 1.5 - 0.9 ns
Feedback Delays
TFFeedback delay - 3.0 - 3.0 ns
TOEM Macrocell to global OE delay - 2.5 - 2.5 ns
I/O Standard Time Adder Delays 1.5V CMOS
THYS15 Hysteresis input adder - 4.0 - 4.0 ns
TOUT15 Output adder - 1.0 - 1.0 ns
TSLEW15 Output slew rate adder - 5.0 - 5.0 ns
I/O Standard Time Adder Delays 1.8V CMOS
THYS18 Hysteresis input adder - 3.0 - 3.0 ns
TOUT18 Output adder - 0.0 - 0.0 ns
TSLEW Output slew rate adder - 4.0 - 4.0 ns
XXILINX" www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 8
R
Switching Characteristics AC Test Circuit
I/O Standard Time Adder Delays 2.5V CMOS
TIN25 Standard input adder - 0.7 - 0.7 ns
THYS25 Hysteresis input adder - 3.0 - 3.0 ns
TOUT25 Output adder - 1.0 - 1.0 ns
TSLEW25 Output slew rate adder - 4.0 - 4.0 ns
I/O Standard Time Adder Delays 3.3V CMOS/TTL
TIN33 Standard input adder - 0.7 - 0.7 ns
THYS33 Hysteresis input adder - 3.0 - 3.0 ns
TOUT33 Output adder - 1.6 - 1.6 ns
TSLEW33 Output slew rate adder - 4.0 - 4.0 ns
Notes:
1. 1.5 ns input pin signal rise/fall.
Internal Timing Parameters (Continued)
Symbol Parameter(2)
-7 -8
UnitsMin. Max. Min. Max.
Figure 2: Derating Curve for TPD
Number of Outputs Switching
12 4 8 16
3.0
4.0
5.0
V
CC
= V
CCIO
= 1.8V, T = 25
o
C
T
PD2
(ns)
5.5
4.5
3.5
DS092_02_092302
Figure 3: AC Load Circuit
R1
VCC
CL
R2
Device
Under Test
Output Type
LVTTL33
LVCMOS33
LVCMOS25
LVCMOS18
LVCMOS15
CL includes test fixtures and probe capacitance.
1.5 nsec maximum rise/fall times on inputs.
R1
268Ω
275Ω
188Ω
112.5Ω
150Ω
R2
235Ω
275Ω
188Ω
112.5Ω
150Ω
CL
35 pF
35 pF
35pF
35pF
35pF
DS ACT 08 14 02
Test Point
XXILINX" www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 9
R
Figure 4: Typical I/V Curve for XA2C256
VO (Output Volts) XC256_VoIo_all_020703
IO (Output Current mA)
0
0
40
10
50
20
30
60
3.02.52.01.51.0.5 3.5
3.3V
1.5V
1.8V
2.5V
Iol
XXILINX“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 10
R
11
Pin Descriptions
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
11--2
12--2
1(GSR) 3 99 143 2
1 4 - 142 2
15--2
1 6 97 140 2
17---
18---
19---
110---
111---
1 12 96 139 2
1 13 95 138 2
1 14 94 137 2
115--2
116--2
2(GTS2) 1 1 2 2
22--2
2(GTS3) 3 2 3 2
24-42
2(GTS0) 5 3 5 2
26--2
27---
28---
29---
210---
211---
2(GTS1) 12 4 6 2
213-72
214692
2157102
216--2
31-1362
32-1352
33-1342
34--2
35931332
36 2
37---
38---
39---
310---
311---
31292-2
313-- 2
314911322
315--2
316901312
418112
429122
4310132
44-142
4511152
4612162
47---
48---
49---
410---
411---
412-172
41313-2
414-182
415--2
416--2
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
XXILINX“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 11
R
51--1
52-331
53--1
5(GCK1) 4 23 32 1
55 311
5(GCK0) 6 22 30 1
57---
58---
59---
510---
511---
512--1
513--1
514-281
515--1
516--1
61-341
6 (CDRST) 2 24 35 1
63--1
6(GCK2) 4 27 38 1
65--1
66--1
67---
68---
69---
610---
611---
6(DGE) 12 28 39 1
613-401
61429411
615-421
61630431
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
71--1
72--1
73--1
74--1
7519261
7618251
77---
78---
79---
710---
71117241
71216231
71315221
71414211
715-201
716-191
81-441
82-451
83-461
84--1
85-481
8632491
87---
88---
89---
810---
81133501
81234511
81335521
81436-1
81537-1
816--1
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
XXILINX“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 12
R
9 1 78 112 2
9 2 79 113 2
93--2
9 4 80 114 2
95 2
9 6 81 115 2
97---
98---
99---
910---
911--2
9 12 82 116 2
9 13 - 117 2
9 14 - 118 2
9 15 - 119 2
916--2
10 1 77 111 2
10 2 76 110 2
10 3 74 107 2
10 4 73 106 2
10 5 72 105 2
10 6 71 104 2
10 7 - - -
10 8 - - -
10 9 - - -
10 10 - - -
10 11 2
10 12 70 103 2
10 13 - - 2
10 14 - 102 2
10 15 - - 2
10 16 - 101 2
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
11 1 - - 2
11 2 - - 2
11 3 - - 2
11 4 - - 2
11 5 - 120 2
11 6 - 121 2
11 7 - - -
11 8 - - -
11 9 - - -
11 10 - - -
11 11 85 124 2
11 12 86 125 2
11 13 87 126 2
11 14 89 128 2
11 15 - 129 2
11 16 - 130 2
12 1 - - 2
12 2 - 100 2
12 3 - - 2
12 4 - - 2
12 5 - - 2
12 6 - - 2
12 7 - - -
12 8 - - -
12 9 - - -
12 10 - - -
12 11 68 98 2
12 12 - 97 2
12 13 67 96 2
12 14 66 95 2
12 15 65 94 2
12 16 - - 2
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
XXILINX“ www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 13
R
13 1 - 75 1
13 2 53 76 1
13 3 - 77 1
13 4 54 - 1
13 5 - 78 1
13 6 55 79 1
13 7 - - -
13 8 - - -
13 9 - - -
13 10 - - -
13 11 - - -
13 12 - 80 1
13 13 56 81 1
13 14 - 82 1
13 15 - - 1
13 16 - - 1
14 1 52 74 1
14 2 - 71 1
14 3 50 70 1
14 4 - 69 1
14 5 49 - 1
14 6 - 68 1
14 7 - - -
14 8 - - -
14 9 - - -
14 10 - - -
14 11 - - -
14 12 - - 1
14 13 - 66 1
14 14 46 64 1
14 15 44 - 1
14 16 - 61 1
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
15 1 - - 1
15 2 - 83 1
15 3 - - 1
15 4 - - 1
15 5 - - 1
15 6 - - 1
15 7 - - -
15 8 - - -
15 9 - - -
15 10 - - -
15 11 58 85 1
15 12 59 86 1
15 13 60 87 1
15 14 61 88 1
15 15 63 91 1
15 16 64 92 1
16 1 - - 1
16 2 - - 1
16 3 - - 1
16 4 - - 1
16 5 43 60 1
16 6 42 59 1
16 7 - - -
16 8 - - -
16 9 - - -
16 10 - - -
16 11 41 58 1
16 12 40 57 1
16 13 39 56 1
16 14 - - 1
16 15 - 54 1
16 16 - 53 1
Notes:
1. GTS = global output enable, GSR = global reset/set, GCK =
global clock, CDRST = clock divide reset, DGE = DataGATE
enable.
2. GTS, GSR and GCK pins can be used for general purpose
I/O.
Pin Descriptions (Continued)
Function Block
Macro-
cell VQG100 TQG144 I/O Bank
Xxmw www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 14
R
XA2C256 JTAG, Power/Ground, No Connect Pins and Total User I/O
Ordering Information
Pin Type VQG100 TQG144
TCK 48 67
TDI 45 63
TDO 83 122
TMS 47 65
VCCAUX (JTAG supply voltage) 5 8
Power internal (VCC) 26, 57 1, 37, 84
Power Bank 1 I/O (VCCIO1) 20, 38, 51 27, 55, 73, 93
Power Bank 2 I/O (VCCIO2) 88, 98 109, 127, 141
Ground 21, 25, 31, 62, 69, 75, 84,
100
29, 36, 47, 62, 72, 89, 90, 99,
108, 123, 144
No connects - -
Total user I/O 80 118
Part Number
Pin/Ball
Spacing
θJA
(C/Watt)
θJC
(C/Watt) Package Type
Package Body
Dimensions I/O
Industrial
(I)(1)
Hi-T (Q)
XA2C256-7VQG100I 0.5mm 43.1 10.9 Very Thin Quad Flat
Pack; Pb-free
14mm x 14mm 80 I
XA2C256-8VQG100Q 0.5mm 43.1 10.9 Very Thin Quad Flat
Pack; Pb-free
14mm x 14mm 80 Q
XA2C256-7TQG144I 0.5mm 37.2 7.2 Thin Quad Flat Pack;
Pb-free
20mm x 20mm 118 I
XA2C256-8TQG144Q 0.5mm 37.2 7.2 Thin Quad Flat Pack;
Pb-free
20mm x 20mm 118 Q
Notes:
1. I = Industrial (TA = –40°C to +85°C); Q = Automotive (TA = –40°C to +105°C with TJ Maximum = +125°C).
Pb-Free Example: XA2C256 TQ G144 I
Device
Speed Grade
Package Type
Pb-Free
Number of Pins
-7
Temperature Range
X XILINX‘” WWI HMMMMWHMW www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 15
R
Device Part Marking
Figure 5: Sample Package with Part Marking
XA2Cxxx
TQG144
7 I
Device Type
Package
Speed
Operating Range
This line not
related to device
part number
Part Marking for all non chip scale packages
R
X XILINX‘” www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 16
R
Figure 6: VQG100 Very Thin Quad Flat Pack
VQG100
Top View
GND
I/O(3)
VCCIO2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO2
I/O
I/O
I/O
GND
TDO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
I/O(2)
I/O(5)
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO1
I/O
I/O
I/O
I/O
I/O
I/O
TDI
I/O
TMS
TCK
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O
I/O
VCCIO1
I/O(1)
I/O(1)
I/O(1)
I/O(1)
VAUX
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO1
GND
I/O(2)
I/O(2)
I/O(4)
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
(1) - Global Output Enable
(2) - Global Clock
(3) - Global Set/Reset
(4) - Clock Divide Reset
(5) - Data Gate
X XILINX‘” www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 17
R
CoolRunner-II Automotive Requirements and Recommendations
Requirements
The following requirements are for all automotive applica-
tions:
1. Use a monotonic, fast ramp power supply to power up
CoolRunner-II. A VCC ramp time of less than 1 ms is
required.
2. Do not float I/O pins during device operation. Floating
I/O pins can increase ICC as input buffers will draw
1–2 mA per floating input. In addition, when I/O pins are
floated, noise can propagate to the center of the CPLD.
I/O pins should be appropriately terminated with bus-
hold or pull-up. Unused I/Os can also be configured as
CGND (programmable GND).
3. Do not drive I/O pins without VCC/VCCIO powered.
4. Sink current when driving LEDs. Because all Xilinx
CPLDs have N-channel pull-down transistors on
outputs, it is required that an LED anode is sourced
through a resistor externally to VCC. Consequently, this
will give the brightest solution.
Figure 7: TQG144 Thin Quad Flat Pack
V
CC
I/O
(1)
I/O
(1)
I/O
I/O
(1)
I/O
(1)
I/O
V
AUX
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
V
CCIO1
I/O
GND
I/O
(2)
I/O
I/O
(2)
I/O
I/O
I/O
(4)
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
TQG144
Top View
VCC
I/O(2)
I/O(5)
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO1
I/O
I/O
I/O
I/O
I/O
I/O
GND
TDI
I/O
TMS
I/O
TCK
I/O
I/O
I/O
I/O
GND
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
V
CCIO1
I/O
I/O
GND
GND
I/O
I/O
I/O
I/O
V
CC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
V
CCIO1
GND
I/O(3)
I/O
VCCIO2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO2
I/O
I/O
I/O
GND
TDO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO2
(1) - Global Output Enable
(2) - Global Clock
(3) - Global Set/Reset
(4) - Clock Divide Reset
(5) - DataGATE Enable
X XILINX‘” XAPP784 m CoolRunner—ll Documemaiion XAPP376 XAPP378 XAPP382 XAPP389 XAPP399 mg www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 18
R
5. Avoid pull-down resistors. Always use external pull-up
resistors if external termination is required. This is
because the CoolRunner-II Automotive CPLD, which
includes some I/O driving circuits beyond the input and
output buffers, may have contention with external pull-
down resistors, and, consequently, the I/O will not
switch as expected.
6. Do not drive I/Os pins above the VCCIO assigned to its
I/O bank.
a. The current flow can go into VCCIO and affect a user
voltage regulator.
b. It can also increase undesired leakage current
associated with the device.
c. If done for too long, it can reduce the life of the
device.
7. Do not rely on the I/O states before the CPLD
configures. During power up, the CPLD I/Os may be
affected by internal or external signals.
8. Use a voltage regulator which can provide sufficient
current during device power up. As a rule of thumb, the
regulator needs to provide at least three times the peak
current while powering up a CPLD in order to guarantee
the CPLD can configure successfully.
9. Ensure external JTAG terminations for TMS, TCK, TDI,
TDO should comply with the IEEE 1149.1. All Xilinx
CPLDs have internal weak pull-ups on TDI, TMS, and
TCK.
10. Attach all CPLD VCC and GND pins in order to have
necessary power and ground supplies around the
CPLD.
11. Decouple all VCC and VCCIO pins with capacitors of
0.01 μF and 0.1 μF closest to the pins for each
VCC/VCCIO-GND pair.
12. Configure I/Os properly. CoolRunner-II Automotive
CPLDs have I/O banks; therefore, signals must be
assigned to appropriate banks (LVCMOS33,
LVCMOS18 ) .
Recommendations
The following recommendations are for all automotive appli-
cations.
1. Use strict synchronous design (only one clocking event)
if possible. A synchronous system is more robust than
an asynchronous one.
2. Include JTAG stakes on the PCB. JTAG stakes can be
used to test the part on the PCB. They add benefit in
reprogramming part on the PCB, inspecting chip
internals with INTEST, identifying stuck pins, and
inspecting programming patterns (if not secured).
3. CoolRunner-II Automotive CPLDs work with any power
sequence, but it is preferable to power the VCCI (internal
VCC) before the VCCIO for the applications in which any
glitches from device I/Os are unwanted.
4. Do not disregard report file warnings. Software
identifies potential problems when compiling, so the
report file is worth inspecting to see exactly how your
design is mapped onto the logic.
5. Understand the Timing Report. This report file provides
a speed summary along with warnings. Read the timing
file (*.tim) carefully. Analyze key signal chains to
determine limits to given clock(s) based on logic
analysis.
6. Review Fitter Report equations. Equations can be
shown in ABEL-like format, or can also be displayed in
Verilog or VHDL formats. The Fitter Report also
includes switch settings that are very informative of
other device behaviors.
7. Let design software define pinouts if possible. Xilinx
CPLD software works best when it selects the I/O pins
and manages resources for users. It can spread signals
around and improve pin-locking. If users must define
pins, plan resources in advance.
8. Perform a post-fit simulation for all speeds to identify
any possible problems (such as race conditions) that
might occur when fast-speed silicon is used instead of
slow-speed silicon.
9. Distribute SSOs (Simultaneously Switching Outputs)
evenly around the CPLD to reduce switching noise.
10. Terminate high speed outputs to eliminate noise caused
by very fast rising/falling edges.
Additional Information
Additional information is available for the following CoolRunner-II topics:
XAPP784: Bulletproof CPLD Design Practices
XAPP375: Timing Model
XAPP376: Logic Engine
XAPP378: Advanced Features
XAPP382: I/O Characteristics
XAPP389: Powering CoolRunner-II
XAPP399: Assigning VREF Pins
These and other application notes can be accessed at:
CoolRunner-II Documentation
Package specifications can be accessed at:
Device Packages
X XILINX‘” .com warrant .hlm www.xilinx.com
XA2C256 CoolRunner-II Automotive CPLD
DS555 (v1.2) June 22, 2009 www.xilinx.com
Product Specification 19
R
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE
TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT
http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN
AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA
SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR
INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS
LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT
TO APPLICABLE LAWS AND REGULATIONS.
Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION
REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF
AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH
DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A
WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL
INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH
APPLICATIONS.
Date Version Revision
10/31/06 1.0 Initial Xilinx release.
05/05/07 1.1 Change to VIH specification for 3.3V, 2.5V and 1.8V LVCMOS.
06/22/09 1.2 Updated Figure 7.