MAX1179,87,89 Datasheet by Rochester Electronics, LLC

[VI/JXI/VI , 3333333333333] M x m EECEEEEECEEEEC , 7 lM/JXIIVI
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
________________________________________________________________ Maxim Integrated Products 1
19-2675; Rev 1; 1/03
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
General Description
The MAX1179/MAX1187/MAX1189 16-bit, low-power,
successive-approximation analog-to-digital converters
(ADCs) feature automatic power-down, a factory-
trimmed internal clock, and a 16-bit wide parallel inter-
face. The devices operate from a single +4.75V to
+5.25V analog supply and feature a separate digital
supply input for direct interface with +2.7V to +5.25V
digital logic.
The MAX1179 accepts a bipolar input voltage range of
±5V. The MAX1187 accepts an analog input voltage
range from 0 to +10V, while the MAX1189 accepts a
bipolar analog input voltage range of ±10V. All devices
consume only 23mW at a sampling rate of 135ksps
when using an external reference and 29mW when
using the internal +4.096V reference. AutoShutdown™
reduces supply current to 0.4mA at 10ksps. The
MAX1179/MAX1187/MAX1189 are ideal for high-perfor-
mance, battery-powered data-acquisition applications.
Excellent AC performance (THD = -100dB) and DC
accuracy (±2LSB INL) make the MAX1179/MAX1187/
MAX1189 ideal for industrial process control, instrumen-
tation, and medical applications.
The MAX1179/MAX1187/MAX1189 are available in a
28-pin TSSOP package and are fully specified over the
-40°C to +85°C extended temperature range and the
0°C to +70°C commercial temperature range.
Applications
Temperature Sensing and Monitoring
Industrial Process Control
I/O Modules
Data-Acquisition Systems
Precision Instrumentation
Features
Analog Input Voltage Range: ±10V, ±5V, or 0 to 10V
16-Bit Wide Parallel Interface
Single +4.75V to +5.25V Analog Supply Voltage
Interfaces with +2.7V to +5.25V Digital Logic
±2LSB INL (max)
±1LSB DNL (max)
Low Supply Current (MAX1189)
5.3mA (External Reference)
6.2mA (Internal Reference)
5µA AutoShutdown Mode
Small Footprint
28-Pin TSSOP Package
Ordering Information
PART TEMP RANGE PIN-PACKAGE INPUT VOLTAGE
RANGE INL (LSB)
MAX1179ACUI 0°C to +70°C 28 TSSOP ±5V ±2
MAX1179BCUI 0°C to +70°C 28 TSSOP ±5V ±2
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
D5
D4
D7
D6
D3
D2
D1
REFADJ
D0
DVDD
DGND
RESET
REF
AGND
AIN
AGND
AVDD
D15
D14
D13
D12
D11
D10
D9
D8
TSSOP
TOP VIEW
MAX1179
MAX1187
MAX1189
R/C
EOC
CS
Pin Configuration
AutoShutdown is a trademark of Maxim Integrated Products, Inc.
Ordering Information continued at end of data sheet.
[MAXI/VI
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
AVDD to AGND .........................................................-0.3V to +6V
DVDD to DGND.........................................................-0.3V to +6V
AGND to DGND.....................................................-0.3V to +0.3V
AIN to AGND .....................................................-16.5V to +16.5V
REF, REFADJ to AGND............................-0.3V to (AVDD + 0.3V)
CS, R/C, RESET to DGND ........................................-0.3V to +6V
D_, EOC to DGND ...................................-0.3V to (DVDD + 0.3V)
Maximum Continuous Current Into Any Pin ........................50mA
Continuous Power Dissipation (TA= +70°C)
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .....1026mW
Operating Temperature Range
MAX11_ _ _CUI...................................................0°C to +70°C
MAX11_ _ _EUI ................................................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
ELECTRICAL CHARACTERISTICS
(AVDD = DVDD = +5V ±5%, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, TA= TMIN to TMAX,
unless otherwise noted. Typical values are at TA= +25°C.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
DC ACCURACY
Resolution RES 16 Bits
MAX11_ _A -1 +1
MAX11_ _B -1.0 +1.5Differential Nonlinearity DNL No missing codes
over temperature
MAX11_ _C -1 +2
LSB
MAX11_ _A -2 +2
MAX11_ _B -2 +2
Integral Nonlinearity INL
MAX11_ _C -4 +4
LSB
RMS noise, external reference 0.6
Transition Noise Internal reference 0.75 LSBRMS
Offset Error -10 0 +10 mV
Gain Error 0 ±0.2 %FSR
Offset Drift 16 µV/°C
Gain Drift ±1 ppm/°C
AC ACCURACY (fIN = 1kHz, VAIN = full range, 135ksps)
Signal-to-Noise Plus Distortion SINAD 86 90 dB
Signal-to-Noise Ratio SNR 87 91 dB
Total Harmonic Distortion THD -100 -92 dB
Spurious-Free Dynamic Range SFDR 92 103 dB
ANALOG INPUT
MAX1179 -5 +5
MAX1187 0 +10
Input Range VAIN
MAX1189 -10 +10
V
MAX1179/MAX1187 Normal operation 5.3 6.9 9.2
MAX1179 Shutdown mode 3
MAX1177 Shutdown mode 5.3
Normal operation 7.8 10 13.0
Input Resistance RAIN
MAX1189 Shutdown mode 6
k
[VIAXIIVI
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(AVDD = DVDD = +5V ±5%, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, TA= TMIN to TMAX,
unless otherwise noted. Typical values are at TA= +25°C.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Normal operation -1.8 +0.4
MAX1179,
-5V VAIN +5V Shutdown mode -1.8 +1.8
MAX1187,
0 VAIN +10V
Normal/shutdown
mode -0.1 +2.0
Normal operation -1.8 +1.2
Input Current IAIN
MAX1189,
-10V VAIN +10V Shutdown mode -1.8 +1.8
mA
MAX1179, VAIN = +5V, shutdown mode to
operating mode 1 1.4
Input Current Step at Power-Up IPU MAX1189, VAIN = +10V, shutdown mode to
operating mode 0.5 0.7
mA
Input Capacitance CIN 10 pF
INTERNAL REFERENCE
REF Output Voltage VREF 4.056 4.096 4.136 V
REF Output Tempco ±35 ppm/°C
REF Short-Circuit Current IREF-
(
SC
)
±10 mA
EXTERNAL REFERENCE
REF and REFADJ Input Voltage
Range 3.8 4.2 V
REFADJ Buffer Disable Threshold AVDD -
0.4
AVDD -
0.1 V
Normal mode, fSAMPLE = 135ksps 60 100
REF Input Current IREF Shutdown mode (Note 1) ±0.1 ±10 µA
REFADJ Input Current IREFADJ REFADJ = AVDD 16 µA
DIGITAL INPUTS/OUTPUTS
Output High Voltage VOH ISOURCE = 0.5mA, DVDD = +2.7V to +5.25V,
AVDD = +5.25V
DVDD -
0.4 V
Output Low Voltage VOL ISINK = 1.6mA, DVDD = +2.7V to +5.25V,
AVDD = +5.25V 0.4 V
Input High Voltage VIH 0.7 ×
DVDD V
Input Low Voltage VIL 0.3 ×
DVDD V
Input Leakage Current Digital input = DVDD or 0V -1 +1 µA
Input Hysteresis VHYST 0.2 V
Input Capacitance CIN 15 pF
Three-State Output Leakage IOZ ±10 µA
Three-State Output Capacitance COZ 15 pF
[VIAXIIVI
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
4 _______________________________________________________________________________________
Note 1: Maximum specification is limited by automated test equipment.
Note 2: To ensure best performance, finish reading the data and wait tBR before starting a new acquisition.
ELECTRICAL CHARACTERISTICS (continued)
(AVDD = DVDD = +5V ±5%, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, TA= TMIN to TMAX,
unless otherwise noted. Typical values are at TA= +25°C.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
POWER SUPPLIES
Analog Supply Voltage AVDD 4.75 5.25 V
Digital Supply Voltage DVDD 2.70 5.25 V
MAX1187 2.9
External reference,
135ksps MAX1179/MAX1189 4.0 5.3
MAX1187 3.8
Analog Supply Current IAVDD Internal reference,
135ksps MAX1179/MAX1189 5.2 6.2
mA
Shutdown mode, IAVDD + IDVDD (Note 1),
digital input = DVDD or 0V 0.5 5 µA
Shutdown Supply Current ISHDN
Standby mode 3.7 mA
Digital Supply Current IDVDD 0.75 mA
Power-Supply Rejection AVDD = DVDD = +4.75V to +5.25V 3.5 LSB
TIMING CHARACTERISTICS (Figures 1 and 2)
(AVDD = +5V ±5V, DVDD = +2.7V to AVDD, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, CLOAD
= 20pF, TA= TMIN to TMAX.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Maximum Sampling Rate fS AM P LE
(
M A X
)
135 ksps
Acquisition Time tACQ s
Conversion Time tCONV 4.7 µs
CS Pulse Width High tCSH (Note 2) 40 ns
DVDD = +4.75V to +5.25V 40
CS Pulse Width Low tCSL (Note 2) DVDD = +2.7V to +5.25V 60 ns
R/C to CS Fall Setup Time tDS 0ns
DVDD = +4.75V to +5.25V 40
R/C to CS Fall Hold Time tDH DVDD = +2.7V to +5.25V 60 ns
DVDD = +4.75V to +5.25V 40
CS to Output Data Valid tDO DVDD = +2.7V to +5.25V 80 ns
EOC Fall to CS Fall tDV 0ns
DVDD = +4.75V to +5.25V 40
CS Rise to EOC Rise tEOC DVDD = +2.7V to +5.25V 80 ns
DVDD = +4.75V to +5.25V 40
Bus Relinquish Time tBR DVDD = +2.7V to +5.25V 80 ns
HHHW IHHH _ , [MAXI/VI
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
_______________________________________________________________________________________ 5
INL vs. CODE
MAX1179/87/89 toc01
CODE
INL (LSB)
600002000010000 30000 5000040000
-2.0
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
2.5
-2.5
0
DNL vs. CODE
MAX1179/87/89 toc02
CODE
DNL (LSB)
-2.0
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
2.5
-2.5
600002000010000 30000 50000400000
SUPPLY CURRENT (AVDD + DVDD)
vs. TEMPERATURE
MAX1179/87/89 toc03
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
6040-20 0 20
4.45
4.50
4.55
4.60
4.65
4.70
4.75
4.80
4.40
-40 80
5.25V
5.0V
4.75V
fSAMPLE = 135ksps
SHUTDOWN MODE BETWEEN
CONVERSIONS
SUPPLY CURRENT (AVDD + DVDD)
vs. SAMPLE RATE
MAX1179/87/89 toc04
SAMPLE RATE (ksps)
SUPPLY CURRENT (mA)
1001010.1
0.001
0.01
0.1
1
10
0.0001
0.01 1000
STANDBY MODE
SHUTDOWN MODE
-0.20
-0.10
-0.15
0
-0.05
0.15
0.10
0.05
0.20
-40 0-20 20 40 60 80
GAIN ERROR
vs. TEMPERATURE
MAX1179/87/89 toc07
TEMPERATURE (°C)
GAIN ERROR (%FSR)
SHUTDOWN CURRENT (AVDD + DVDD)
vs. TEMPERATURE
MAX1179/87/89 toc05
TEMPERATURE (°C)
SHUTDOWN SUPPLY CURRENT (µA)
6040-20 0 20
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.5
4.0
5.0
0
-40 80
NO CONVERSIONS
OFFSET ERROR vs. TEMPERATURE
MAX1179/87/89 toc06
TEMPERATURE (°C)
OFFSET ERROR (mV)
6040-20 0 20
-8
-6
-4
-2
0
2
4
8
6
10
-10
-40 80
MAX1189
4.056
4.076
4.066
4.096
4.086
4.126
4.116
4.106
4.136
-40 0-20 20 40 60 80
INTERNAL REFERENCE
vs. TEMPERATURE
MAX1179/87/89 toc08
TEMPERATURE (°C)
INTERNAL REFERENCE (V)
FFT AT 1kHz
MAX 1179/87/89 toc09
FREQUENCY (kHz)
MAGNITUDE (dB)
4020
-160
-140
-120
-100
-80
-60
-40
-20
0
-180
060
fSAMPLE = 135ksps
Typical Operating Characteristics
(AVDD = DVDD = +5V, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, CLOAD = 20pF, TA= TMIN to
TMAX, unless otherwise noted. Typical values are at TA= +25°C.) (Typical Application Circuit)
[VIAXIIVI
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
6 _______________________________________________________________________________________
SINAD vs. FREQUENCY
MAX1179/87/89 toc10
FREQUENCY (kHz)
SINAD (dB)
10
10
20
30
40
50
60
70
80
90
100
0
1 100
fSAMPLE = 131ksps
SPURIOUS-FREE DYNAMIC RANGE
vs. FREQUENCY
MAX1179/87/89 toc11
FREQUENCY (kHz)
SFDR (dB)
10
20
40
60
80
100
120
0
1 100
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
MAX1179/87/89 toc12
FREQUENCY (kHz)
THD (dB)
10
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-110
1 100
Pin Description
PIN NAME FUNCTION
1 D8 Three-State Digital Data Output
2 D9 Three-State Digital Data Output
3 D10 Three-State Digital Data Output
4 D11 Three-State Digital Data Output
5 D12 Three-State Digital Data Output
6 D13 Three-State Digital Data Output
7 D14 Three-State Digital Data Output
8 D15 Three-State Digital Data Output (MSB)
9R/C
Read/Convert Input. Power up and place the MAX1179/MAX1187/MAX1189 in acquisition mode by
holding R/C low during the first falling edge of CS. During the second falling edge of CS, the level
on R/C determines whether the reference and reference buffer power down or remain on after
conversion. Set R/C high during the second falling edge of CS to power down the reference and
buffer, or set R/C low to leave the reference and buffer powered up. Set R/C high during the third
falling edge of CS to put valid data on the bus.
10 EOC End of Conversion. EOC drives low when conversion is complete.
11 AVDD Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.
12 AGND Analog Ground. Primary analog ground (star ground).
13 AIN Analog Input
14 AGND Analog Ground. Connect pin 14 to pin 12.
Typical Operating Characteristics (continued)
(AVDD = DVDD = +5V, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, CLOAD = 20pF, TA= TMIN to
TMAX, unless otherwise noted. Typical values are at TA= +25°C.) (Typical Application Circuit)
[VIAXIIVI ‘H %
Detailed Description
Converter Operation
The MAX1179/MAX1187/MAX1189 use a successive-
approximation (SAR) conversion technique with an
inherent track-and-hold (T/H) stage to convert an ana-
log input into a 16-bit digital output. Parallel outputs
provide a high-speed interface to microprocessors
(µPs). The Functional Diagram at the end of the data
sheet shows a simplified internal architecture of the
MAX1179/MAX1187/MAX1189. Figure 3 shows a typical
application circuit for the MAX1179/MAX1187/MAX1189.
Analog Input
Input Scaler
The MAX1179/MAX1187/MAX1189 have an input scaler
which allows conversion of true bipolar input voltages
and input voltages greater than the power supply, while
operating from a single +5V analog supply. The input
scaler attenuates and shifts the analog input to match
the input range of the internal DAC. The MAX1179 input
voltage range is ±5V, while the MAX1189 input voltage
range is ±10V. The MAX1187 has a unipolar input volt-
age range of 0 to +10V. Figure 4 shows the equivalent
input circuit of the MAX1179/MAX1187/MAX1189. This
circuit limits the current going into or out of AIN to less
than 1.8mA.
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
_______________________________________________________________________________________ 7
Pin Description (continued)
PIN NAME FUNCTION
15 REFADJ Reference Buffer Output. Bypass REFADJ with a 0.1µF capacitor to AGND for internal reference
mode. Connect REFADJ to AVDD to select external reference mode.
16 REF Reference Input/Output. Bypass REF with a 10µF capacitor to AGND. REF is the external reference
input when in external reference mode.
17 RESET Reset Input. Logic high resets the device.
18 CS
Convert Start. The first falling edge of CS powers up the device and enables acquisition when R/C
is low. The second falling edge of CS starts conversion. The third falling edge of CS loads the result
onto the bus when R/C is high.
19 DGND Digital Ground
20 DVDD Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.
21 D0 Three-State Digital Data Output (LSB)
22 D1 Three-State Digital Data Output
23 D2 Three-State Digital Data Output
24 D3 Three-State Digital Data Output
25 D4 Three-State Digital Data Output
26 D5 Three-State Digital Data Output
27 D6 Three-State Digital Data Output
28 D7 Three-State Digital Data Output
Figure 1. Load Circuits
1mA
DGND
HIGH-Z TO VOH,
VOL TO VOH, AND
VOH TO HIGH-Z
CLOAD = 20pF
D0–D15
A)
1mA
DVDD
DGND
HIGH-Z TO VOL,
VOH TO VOL, AND
VOL TO HIGH-Z
CLOAD = 20pF
D0–D15
B)
‘ m IVIIIXIM [MAXI/III
MAX1179/MAX1187/MAX1189
Track and Hold (T/H)
In track mode, the internal hold capacitor acquires the
analog signal (see Figure 4). In hold mode, the T/H
switches open and the capacitive DAC samples the
analog input. During the acquisition, the analog input
(AIN) charges capacitor CHOLD. The acquisition ends
on the second falling edge of CS. At this instant, the
T/H switches open. The retained charge on CHOLD rep-
resents a sample of the input. In hold mode, the capac-
itive DAC adjusts during the remainder of the
conversion time to restore node T/H OUT to zero within
the limits of a 16-bit resolution. Force CS low to put
valid data on the bus after conversion is complete.
Power-Down Modes
Select standby mode or shutdown mode with R/Cduring
the second falling edge of CS (see Selecting Standby or
Shutdown Mode section). The MAX1179/MAX1187/
MAX1189 automatically enter either standby mode (ref-
erence and buffer on) or shutdown (reference and buffer
off) after each conversion depending on the status of
R/Cduring the second falling edge of CS.
Internal Clock
The MAX1179/MAX1187/MAX1189 generate an internal
conversion clock to free the microprocessor from the bur-
den of running the SAR conversion clock. Total conver-
sion time after entering hold mode (second falling edge of
CS) to end-of-conversion (EOC) falling is 4.7µs (max).
Applications Information
Starting a Conversion
CS and R/Ccontrol acquisition and conversion in the
MAX1179/MAX1187/MAX1189 (see Figure 2). The first
falling edge of CS powers up the device and puts it in
acquire mode if R/Cis low. The convert start (CS) is
ignored if R/Cis high. The MAX1179/MAX1187/
MAX1189 need at least 12ms (CREFADJ = 0.1µF, CREF
= 10µF) for the internal reference to wake up and settle
before starting the conversion, if powering up from
shutdown. Reset the MAX1179/MAX1187/ MAX1189 by
toggling RESET with CS high. The next falling edge of
CS begins acquisition.
Selecting Standby or Shutdown Mode
The MAX1179/MAX1187/MAX1189 have a selectable
standby or low-power shutdown mode. In standby
mode, the ADCs internal reference and reference
buffer do not power down between conversions, elimi-
nating the need to wait for the reference to power up
before performing the next conversion. Shutdown mode
powers down the reference and reference buffer after
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
8 _______________________________________________________________________________________
Figure 2. MAX1179/MAX1187/MAX1189 Timing Diagram
tCSL tCSH
tACQ
tDH
R/C
CS
EOC
D0D15
tDS tDV tEOC
tDO tBR
tCONV
HIGH-Z
REF POWER-
DOWN CONTROL
HIGH-Z
DATA VALID
Figure 3. Typical Application Circuit for the MAX1179/MAX1187/
MAX1189
MAX1179
MAX1187
MAX1189
ANALOG
INPUT AIN
AVDD
+5V ANALOG +5V DIGITAL
DVDD
D0D15 16-BIT
WIDE
µP DATA
BUS
10µF
0.1µF0.1µF
0.1µF
R/C
CS
AGND DGND
REFADJ
REF
EOC
RESET
[MAXI/III
completing a conversion. The reference and reference
buffer require a minimum of 12ms (CREFADJ = 0.1µF,
CREF = 10µF) to power up and settle from shutdown.
The state of R/Cduring the second falling edge of CS
selects which power-down mode the MAX1179/
MAX1187/MAX1189 enters upon conversion comple-
tion. Holding R/Clow causes the MAX1179/MAX1187/
MAX1189 to enter standby mode. The reference and
buffer are left on after the conversion completes. R/C
high causes the MAX1179/MAX1187/MAX1189 to enter
shutdown mode and power down the reference and
buffer after conversion (see Figures 5 and 6). Set the
voltage at REF high during the second falling edge of
CS to realize the lowest current operation.
Standby Mode
While in standby mode, the supply current is less than
3.7mA (typ). The next falling edge of CS with R/Clow
causes the MAX1179/MAX1187/MAX1189 to exit stand-
by mode and begin acquisition. The reference and ref-
erence buffer remain active to allow quick turn-on time.
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
_______________________________________________________________________________________ 9
Figure 4. Equivalent Input Circuit
MAX1187
R2
R3
161
3.4k
TRACK
TRACK
HOLD HOLD
S1, S2 = T/H SWITCH
S3 = POWER-DOWN
(MAX1179/MAX1189
ONLY)
S1
CHOLD
30pF
S2
AIN
MAX1179/MAX1189
R2
R3
161
3.4k
S3
POWER-
DOWN
TRACK
TRACK
HOLD HOLD
REF
R2 = 7.85k (MAX1189)
OR 3.92k (MAX1179/MAX1187)
R3 = 5.45k (MAX1189)
OR 17.79k (MAX1179/MAX1187)
S1
CHOLD
30pF
S2
AIN
T/H OUT T/H OUT
Figure 5. Selecting Standby Mode
CS
R/C
EOC
ACQUISITION CONVERSION DATA
OUT
REF AND
BUFFER
POWER
[MAXI/III
MAX1179/MAX1187/MAX1189
Shutdown Mode
In shutdown mode, the reference and reference buffer
shut down between conversions. Shutdown mode
reduces supply current to 0.5µA (typ) immediately after
the conversion. The next falling edge of CS with R/C
low causes the reference and buffer to wake up and
enter acquisition mode. To achieve 16-bit accuracy,
allow 12ms (CREFADJ = 0.1µF, CREF = 10µF) for the
internal reference to wake up.
Internal and External Reference
Internal Reference
The internal reference of the MAX1179/MAX1187/
MAX1189 is internally buffered to provide +4.096V out-
put at REF. Bypass REF to AGND and REFADJ to
AGND with 10µF and 0.1µF, respectively.
Sink or source current at REFADJ to make fine adjust-
ments to the internal reference. The input impedance of
REFADJ is nominally 5k. Use the circuit of Figure 7 to
adjust the internal reference to ±1.5%.
External Reference
An external reference can be placed at either the input
(REFADJ) or the output (REF) of the MAX1179/
MAX1187/MAX1189s internal buffer amplifier. Using
the buffered REFADJ input makes buffering the external
reference unnecessary. The input impedance of
REFADJ is typically 5k. The internal buffer output
must be bypassed at REF with a 10µF capacitor.
Connect REFADJ to AVDD to disable the internal buffer.
Directly drive REF using an external 3.8V to 4.2V refer-
ence. During conversion, the external reference must
be able to drive 100µA of DC load current and have an
output impedance of 10or less.
For optimal performance, buffer the reference through
an op amp and bypass REF with a 10µF capacitor.
Consider the MAX1179/MAX1187/MAX1189s equivalent
input noise (0.6LSB) when choosing a reference.
Reading the Conversion Result
EOC flags the microprocessor when a conversion is
complete. The falling edge of EOC signals that the data
is valid and ready to be output to the bus. D0D15 are
the parallel outputs of the MAX1179/MAX1187/
MAX1189. These three-state outputs allow for direct
connection to a microcontroller I/O bus. The outputs
remain high-impedance during acquisition and conver-
sion. Data is loaded onto the bus with the third falling
edge of CS with R/Chigh (after tDO). Bringing CS high
forces the output bus back to high impedance. The
MAX1179/MAX1187/MAX1189 then wait for the next
falling edge of CS to start the next conversion cycle
(see Figure 2).
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
10 ______________________________________________________________________________________
Figure 6. Selecting Shutdown Mode
CS
EOC
REF &
BUFFER
POWER
ACQUISITION CONVERSION DATA
OUT
R/C
Figure 7. MAX1179/MAX1187/MAX1189 Reference Adjust
Circuit
MAX1179
MAX1187
MAX1189
REFADJ
+5V
68k
100k
150k
0.1µF
[MAXI/III
Transfer Function
Figures 8, 9, and 10 show the MAX1179/MAX1187/
MAX1189s output transfer functions. The MAX1179
and MAX1189 outputs are coded in offset binary, while
the MAX1187 is coded in standard binary.
Input Buffer
Most applications require an input buffer amplifier to
achieve 16-bit accuracy and prevent loading the
source. Switch the channels immediately after acquisi-
tion, rather than near the end of or after a conversion
when the input signal is multiplexed. This allows more
time for the input buffer amplifier to respond to a large
step-change in input signal. The input amplifier must
have a high enough slew rate to complete the required
output voltage change before the beginning of the
acquisition time. Figure 11 shows an example of this
circuit using the MAX427.
Figures 12a and 12b show how the MAX1179 and
MAX1189 analog input current varies depending on
whether the chip is operating or powered down. The
part is fully powered down between conversions if the
voltage at R/Cis set high during the second falling
edge of CS. The input current abruptly steps to the
powered up value at the start of acquisition. This step
in the input current can disrupt the ADC input, depend-
ing on the driving circuits output impedance at high
frequencies. If the driving circuit cannot fully settle by
the end of acquisition time, the accuracy of the system
can be compromised. To avoid this situation, increase
the acquisition time, use a driving circuit that can settle
within tACQ, or leave the MAX1179/MAX1189 powered
up by setting the voltage at R/Clow during the second
falling edge of CS.
Layout, Grounding, and Bypassing
For best performance, use printed circuit (PC) boards.
Do not run analog and digital lines parallel to each
other, and do not lay out digital signal paths under-
neath the ADC package. Use separate analog and dig-
ital ground planes with only one point connecting the
two ground systems (analog and digital) as close to the
device as possible.
Route digital signals far away from sensitive analog and
reference inputs. If digital lines must cross analog lines,
do so at right angles to minimize coupling digital noise
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
______________________________________________________________________________________ 11
Figure 9. MAX1187 Transfer Function
OUTPUT CODE
65536
INPUT VOLTAGE (LSB)
INPUT RANGE = 0 TO +10V
2103 65535
65534
11 . . . 111
11 . . . 110
11 . . . 101
00 . . . 011
00 . . . 010
00 . . . 001
00 . . . 000
FULL-SCALE RANGE
(FSR) = +10V
1LSB = FSR x VREF
65536 x 4.096
FULL-SCALE
TRANSITION
Figure 10. MAX1189 Transfer Function
OUTPUT CODE
-32768 +32768
INPUT VOLTAGE (LSB)
INPUT RANGE = -10V TO +10V
0-32766
-32767 -32765 +32767
+32766
-1 +1
11 . . . 1111
11 . . . 1110
11 . . . 1101
10 . . . 0001
10 . . . 0000
01 . . . 1111
00 . . . 0011
00 . . . 0010
00 . . . 0001
00 . . . 0000
FULL-SCALE RANGE
(FSR) = +20V
1LSB = FSR x VREF
65536 x 4.096
FULL-SCALE
TRANSITION
Figure 8. MAX1179 Transfer Function
OUTPUT CODE
-32768 +32768
INPUT VOLTAGE (LSB)
INPUT RANGE = -5V TO +5V
0-32766
-32767 -32765 +32767
+32766
-1 +1
11 . . . 1111
11 . . . 1110
11 . . . 1101
10 . . . 0001
10 . . . 0000
01 . . . 1111
00 . . . 0011
00 . . . 0010
00 . . . 0001
00 . . . 0000
FULL-SCALE RANGE
(FSR) = +10V
1LSB = FSR x VREF
65536 x 4.096
FULL-SCALE
TRANSITION
IVIIIXI/V' [MAXI/III
MAX1179/MAX1187/MAX1189
onto the analog lines. If the analog and digital sections
share the same supply, isolate the digital and analog
supply by connecting them with a low value (10)
resistor or ferrite bead.
The ADC is sensitive to high-frequency noise on the
AVDD supply. Bypass AVDD to AGND with a 0.1µF
capacitor in parallel with a 1µF to 10µF low-ESR capaci-
tor with the smallest capacitor closest to the device.
Keep capacitor leads short to minimize stray inductance.
Definitions
Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values
on an actual transfer function from a straight line. This
straight line can be either a best-straight-line fit or a line
drawn between the end points of the transfer function,
once offset and gain errors have been nullified. The
static linearity parameters for the MAX1179/MAX1187/
MAX1189 are measured using the endpoint method.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between
an actual step-width and the ideal value of 1LSB. A
DNL error specification of 1LSB guarantees no missing
codes and a monotonic transfer function.
Signal-to-Noise Ratio
For a waveform perfectly reconstructed from digital
samples, signal-to-noise ratio (SNR) is the ratio of the
full-scale analog input (RMS value) to the RMS quanti-
zation error (residual error). The ideal, theoretical mini-
mum analog-to-digital noise is caused by quantization
noise error only and results directly from the ADCs res-
olution (N bits):
SNR = ((6.02 N) + 1.76)dB
where N = 16 bits.
In reality, there are other noise sources besides quanti-
zation noise: thermal noise, reference noise, clock jitter,
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
12 ______________________________________________________________________________________
Figure 12a. MAX1179 Analog Input Current
MAX1179
ANALOG INPUT CURRENT
vs. ANALOG INPUT VOLTAGE
ANALOG INPUT VOLTAGE (V)
ANALOG INPUT CURRENT (mA)
2.50-2.5
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
-2.0
-5.0 5.0
SHUTDOWN MODE
STANDBY MODE
Figure 12b. MAX1189 Analog Input Current
MAX1189
ANALOG INPUT CURRENT
vs. ANALOG INPUT VOLTAGE
ANALOG INPUT VOLTAGE (V)
ANALOG INPUT CURRENT (mA)
50-5
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
-10 10
SHUTDOWN MODE
STANDBY MODE
Figure 11. MAX1179/MAX1187/MAX1189 Fast-Settling Input
Buffer
MAX1179
MAX1187
MAX1189
MAX427
REF
**
*
AIN
ANALOG
INPUT
*MAX1187 ONLY.
**MAX1179/MAX1189 ONLY.
[VIAXIIVI
etc. SNR is computed by taking the ratio of the RMS
signal to the RMS noise, which includes all spectral
components minus the fundamental, the first five har-
monics, and the DC offset.
Signal-to-Noise Plus Distortion
Signal-to-noise plus distortion (SINAD) is the ratio of the
fundamental input frequencys RMS amplitude to the
RMS equivalent of all the other ADC output signals.
Effective Number of Bits
Effective number of bits (ENOB) indicates the global
accuracy of an ADC at a specific input frequency and
sampling rate. An ideal ADCs error consists of quanti-
zation noise only. With an input range equal to the full-
scale range of the ADC, calculate the effective number
of bits as follows:
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS
sum of the first five harmonics of the input signal to the
fundamental itself. This is expressed as:
where V1is the fundamental amplitude and V2through
V5are the 2nd- through 5th-order harmonics.
Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the
RMS amplitude of the fundamental (maximum signal
component) to the RMS value of the next largest fre-
quency component.
Chip Information
TRANSISTOR COUNT: 15,383
PROCESS: BiCMOS
THD =×
20 log
V+V+V+V
V
2
2
3
2
4
2
5
2
1
ESINAD - 1.76
NOB =
602.
SINAD db Signal
Noise Distortion
RMS
RMS
() ()
+
20 log
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
______________________________________________________________________________________ 13
Ordering Information (continued)
PART TEMP RANGE PIN-PACKAGE INPUT VOLTAGE
RANGE INL (LSB)
MAX1179CCUI 0°C to +70°C 28 TSSOP ±5V ±4
MAX1179AEUI -40°C to +85°C 28 TSSOP ±5V ±2
MAX1179BEUI -40°C to +85°C 28 TSSOP ±5V ±2
MAX1179CEUI -40°C to +85°C 28 TSSOP ±5V ±4
MAX1187ACUI 0°C to +70°C 28 TSSOP 0 to +10V ±2
MAX1187BCUI 0°C to +70°C 28 TSSOP 0 to +10V ±2
MAX1187CCUI 0°C to +70°C 28 TSSOP 0 to +10V ±4
MAX1187AEUI -40°C to +85°C 28 TSSOP 0 to +10V ±2
MAX1187BEUI -40°C to +85°C 28 TSSOP 0 to +10V ±2
MAX1187CEUI -40°C to +85°C 28 TSSOP 0 to +10V ±4
MAX1189ACUI 0°C to +70°C 28 TSSOP ±10V ±2
MAX1189BCUI 0°C to +70°C 28 TSSOP ±10V ±2
MAX1189CCUI 0°C to +70°C 28 TSSOP ±10V ±4
MAX1189AEUI* -40°C to +85°C 28 TSSOP ±10V ±2
MAX1189BEUI* -40°C to +85°C 28 TSSOP ±10V ±2
MAX1189CEUI* -40°C to +85°C 28 TSSOP ±10V ±4
*Future product—contact factory for availability.
MAXI/VI [MAXI/III
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
14 ______________________________________________________________________________________
MAX1179
MAX1187
MAX1189
AIN
16 BITS
5k
REFADJ AVDD DVDD
AGND DGND
CAPACITIVE
DAC
16 BITS D0D15
AGND
REF
RESET
R/C
CS EOC
OUTPUT
REGISTERS
INPUT
SCALER
CLOCK
REFERENCE
SUCCESSIVE-
APPROXIMATION
REGISTER AND
CONTROL LOGIC
Functional Diagram
I A, CDMMDN DIMENSIONS 1 Hummus mm: MIN MAX mm MAX‘ i Hfl £43 mus ms nae nus H HES n95 033 037 h ms nu m7 me h, m»; r125 um um I I I I i am nan um ans 7 (1 DD“) M4 004 LUBE N 11 SEE VARIAUDNS SEE VARIAUDNS w w a man 45v 159 \ m s 0.55 as: 025 as: H 5.25 555 2:5 255 __ SEE DETML A L 050 D70 020 ‘DEB E] ‘? a: E N :5: vmmm 5:: vmmm WWH lg mu‘IB' WW" I onlucffx \, I] ‘ SEATING W PLANE M ma: VARIAYIDNS MEHSE N Hummus mm: MIN MAX‘ MIN MAX‘ 025 22" 12 E 222 3:3 123 :31 est Lam PLAYING\ V A; an 11 am 550 252 26a fl \ An 2. 11 77a 7.9a an: .311 /. u c a: as n 95m ago :73 :55 BASE MEYALJ J l LE_D_UF_11EI_LL NEIYESL L DIMENSIDNS D AND E nu NDT INCLUDE FLASH 2 mun mm ma FRDIRUSIDNS NEII m ExEEEn 0.15m PER sum 3 EEINIREILLINE DIMENSIDN‘ MILLIHEIER EEYS JEDEC EIUYLINE Mu-xsa‘ 5:: Jun: VARIAYIDNS rAaLE N' REFEES ID NUMBER ur LEADS THE LEM] TIFS mm LIE wmm A SPECIFIED ZEINE. ms IDLERANCE 2m: 13 DEFINED av Nu PARALLEL PLANES. uNE PLANE I: w: sEAHNE PLANE, namm [7:71. THE OTHER PLANE IS AI w: SPECIFIED nmANcE FREIM [7:71 N THE DIRECTIDN mecATEn Efigfiklné‘u? [MAXI/III Pnnvnxiwzv mmum "up PACKAGE DUTLINE. TSSEIP Mom EDDV uncubflv mam. m 21*0066 «V F mm I V! MAXIM
MAX1179/MAX1187/MAX1189
16-Bit, 135ksps, Single-Supply ADCs with
Bipolar Analog Input Range
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15
© 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
TSSOP4.40mm.EPS