STM32L431xx Datasheet by STMicroelectronics

This is information on a product in full production.
May 2018 DS11453 Rev 3 1/208
STM32L431xx
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 256KB Flash, 64KB SRAM, analog, audio
Datasheet - production data
Features
•Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/105/125 °C temperature range
– 200 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
– 8 nA Shutdown mode (5 wakeup pins)
– 28 nA Standby mode (5 wakeup pins)
– 280 nA Standby mode with RTC
– 1.0 µA Stop 2 mode, 1.28 µA with RTC
– 84 µA/MHz run mode
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
•Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
•Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
•Energy benchmark
– 176.7 ULPBench® score
•Clock Sources
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– Internal 48 MHz with clock recovery
– 2 PLLs for system clock, audio, ADC
•Up to 83 fast I/Os, most 5 V-tolerant
•RTC with HW calendar, alarms and calibration
•Up to 21 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
•11x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 2x 16-bit general purpose, 2x 16-
bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
•Memories
– Up to 256 KB single bank Flash,
proprietary code readout protection
– 64 KB of SRAM including 16 KB with
hardware parity check
– Quad SPI memory interface
•Rich analog peripherals (independent supply)
– 1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold
– 1x operational amplifier with built-in PGA
– 2x ultra-low-power comparators
•16x communication interfaces
– 1x SAI (serial audio interface)
–3x I2C FM+(1 Mbit/s), SMBus/PMBus
– 4x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
– 3x SPIs (and 1x Quad SPI)
– CAN (2.0B Active) and SDMMC interface
– SWPMI single wire protocol master I/F
– IRTIM (Infrared interface)
•14-channel DMA controller
•True random number generator
•CRC calculation unit, 96-bit unique ID
UFBGA100 (7×7)
LQFP64 (10x10)
UFBGA64 (5x5)
LQFP48 (7x7)
LQFP100 (14x14)
WLCSP64
UFQFPN32 (5x5)
WLCSP49UFQFPN48 (7x7)
www.st.com

STM32L431xx
2/208 DS11453 Rev 3
•Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
•All packages are ECOPACK2® compliant
Table 1. Device summary
Reference Part numbers
STM32L431xx STM32L431CC, STM32L431KC, STM32L431RC, STM32L431VC, STM32L431CB,
STM32L431KB, STM32L431RB

DS11453 Rev 3 3/208
STM32L431xx Contents
6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 20
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 37
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Contents STM32L431xx
4/208 DS11453 Rev 3
3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.22.2 General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 44
3.22.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 46
3.24 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.25 Universal synchronous/asynchronous receiver transmitter (USART) . . . 48
3.26 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 49
3.27 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.28 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.29 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 51
3.30 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 52
3.32 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.33 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.34 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

DS11453 Rev 3 5/208
STM32L431xx Contents
6
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 89
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 89
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 137
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 138
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 151
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.25 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 164

Contents STM32L431xx
6/208 DS11453 Rev 3
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.8 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.9 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.10.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 204
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

DS11453 Rev 3 7/208
STM32L431xx List of tables
9
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L431xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 18
Table 4. STM32L431xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. STM32L431xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 11. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 12. STM32L431xx USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 13. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 15. STM32L431xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 16. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 17. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 18. STM32L431xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 81
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 23. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 24. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 25. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 26. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 94
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 97
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 32. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 99
Table 33. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 100
Table 34. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 35. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 36. Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 37. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 38. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 39. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 40. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 41. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 42. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

List of tables STM32L431xx
8/208 DS11453 Rev 3
Table 43. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 44. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 45. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 46. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 47. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 48. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 49. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Table 50. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 51. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 52. PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 53. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 54. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 55. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 56. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 57. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 58. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 59. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 60. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 61. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 62. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 63. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 64. EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 65. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 67. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 68. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 69. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 70. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 71. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 72. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 73. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 74. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 75. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 76. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 77. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 78. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 79. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 80. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 81. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 82. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 83. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 84. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 85. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 86. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 87. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 88. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 89. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 90. SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 91. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 92. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

DS11453 Rev 3 9/208
STM32L431xx List of tables
9
Table 93. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 181
Table 94. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 95. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 96. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 186
Table 97. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 98. WLCSP64 recommended PCB design rules (0.35 mm pitch) . . . . . . . . . . . . . . . . . . . . . 189
Table 99. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 100. WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 193
Table 101. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 102. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 103. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 104. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 105. STM32L431xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 106. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

List of figures STM32L431xx
10/208 DS11453 Rev 3
List of figures
Figure 1. STM32L431xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 5. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 6. STM32L431Vx LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 7. STM32L431Vx UFBGA100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 8. STM32L431Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 9. STM32L431Rx UFBGA64 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 10. STM32L431Rx WLCSP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 11. STM32L431Cx WLCSP49 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 12. STM32L431Cx LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. STM32L431Cx UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 14. STM32L431Kx UFQFPN32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 15. STM32L431xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 16. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 18. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 20. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 25. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 26. Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 27. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 28. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 29. I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 30. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 31. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 33. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 35. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 36. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 37. Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 38. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 39. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 40. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 41. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 42. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 43. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 177
Figure 44. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 45. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 46. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

DS11453 Rev 3 11/208
STM32L431xx List of figures
11
Figure 47. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 48. UFBGA100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 183
Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 51. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 52. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 53. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 54. UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 55. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 56. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 57. WLCSP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 58. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 59. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 60. WLCSP49 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 61. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 194
Figure 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 63. LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 64. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 65. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 66. UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 67. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 68. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 69. UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 70. LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Introduction STM32L431xx
12/208 DS11453 Rev 3
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L431xx microcontrollers.
This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx
reference manual (RM0394). The reference manual is available from the
STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

DS11453 Rev 3 13/208
STM32L431xx Description
54
2 Description
The STM32L431xx devices are the ultra-low-power microcontrollers based on the high-
performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
Arm® single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L431xx devices embed high-speed memories (Flash memory up to 256 Kbyte,
64 Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages) and
an extensive range of enhanced I/Os and peripherals connected to two APB buses, two
AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L431xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
two DAC channels, an internal voltage reference buffer, a low-power RTC, one general-
purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose
16-bit timers, and two 16-bit low-power timers.
In addition, up to 21 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces.
•Three I2Cs
•Three SPIs
•Three USARTs and one Low-Power UART.
•One SAI (Serial Audio Interfaces)
•One SDMMC
•One CAN
•One SWPMI (Single Wire Protocol Master Interface)
The STM32L431xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C
(+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-
power applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMP and comparators. A VBAT input allows to backup the RTC and backup
registers.
The STM32L431xx family offers nine packages from 32 to 100-pin packages.
Table 2. STM32L431xx family device features and peripheral counts
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Flash memory 256KB 128KB 256KB 128KB 256KB 128KB 256KB
SRAM 64KB
Quad SPI Yes

Description STM32L431xx
14/208 DS11453 Rev 3
Timers
Advanced
control 1 (16-bit)
General
purpose
2 (16-bit)
1 (32-bit)
Basic 2 (16-bit)
Low -
power 2 (16-bit)
SysTick
timer 1
Watchdog
timers
(indepen
dent,
window)
2
Comm.
interfaces
SPI 3 2
I2C3 2
USART
LPUART
3
1
2
1
SAI 1
CAN 1
SDMMC Yes No
SWPMI Yes
RTC Yes
Tamper pins 3 2 2 1
Random generator Yes
GPIOs
Wakeup pins
83
5
52
4
38 or 39(1)
3
26
2
Capacitive sensing
Number of channels 21 12 6 3
12-bit ADC
Number of channels
1
16
1
16
1
10
1
10
12-bit DAC channels 2
Internal voltage
reference buffer Yes No
Analog comparator 2
Operational
amplifiers 1
Max. CPU frequency 80 MHz
Operating voltage 1.71 to 3.6 V
Table 2. STM32L431xx family device features and peripheral counts (continued)
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx

DS11453 Rev 3 15/208
STM32L431xx Description
54
Operating
temperature
Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
Packages LQFP100
UFBGA100
WLCSP64
LQFP64
UFBGA64
WLCSP49
LQFP48
UFQFPN48
UFQFPN32
1. For WLCSP49 package.
Table 2. STM32L431xx family device features and peripheral counts (continued)
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx

Description STM32L431xx
16/208 DS11453 Rev 3
Figure 1. STM32L431xx block diagram
Note: AF: alternate function on I/O pins.
MSv39204V2
Flash
up to
256 KB
GPIO PORT A
AHB/APB2
EXT IT. WKUP
83 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
DMA2
ART
ACCEL/
CACHE
RNG
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
Voltage
regulator
3.3 to 1.2 V
VDD Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as AF
DAC1
DAC2
TIM6
TIM7
TIM2
D-BUS
SRAM 48 KB
APB1 80 MHz (max)
SRAM 16 KB
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PH[1:0],
PH[3]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT H
16b
TIM16 16b
1 channel,
1 compl. channel, BKIN as AF
OUT2
16b
16b
32b 4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
16 external analog inputs
VREF+
USAR T 2MBps
Temperature sensor
@ VDDA
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
Touch sensing controller
7 Groups of
3 channels max as AF RC HSI
RC LSI
PLL 1&2
MSI
Quad SPI memory interface
D0[3:0],
D1[3:0],
CLK0,
CLK1
CS
COMP1
INP, INM, OUT
COMP2
INP, INM, OUT
@ VDDA
RTC_OUT
AHB1 80 MHz
CRC
APB2 80MHz
AHB2 80 MHz
FIREWALL
VREF Buffer
@ VDDA
@ VDD
VDD = 1.71 to 3.6 V
VSS
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
ITF
ADC1
HSI48
VDDA, VSSA
VDD, VSS, NRST
CRS CRS_SYNC
USART2 RX, TX, CK, CTS, RTS as AF
smcard
IrDA
USART3 RX, TX, CK, CTS, RTS as AF
smcard
IrDA
MOSI, MISO, SCK, NSS as AF
SPI2
MOSI, MISO, SCK, NSS as AF
SPI3
I2C1/SMBUS SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
FIFO
TX, RX as AF
bxCAN1
VOUT, VINM, VINP
OpAmp1
@VDDA
LPUART1 RX, TX, CTS, RTS as AF
SWPMI1 IO
RX, TX, SUSPEND as AF
LPTIM1 IN1, IN2, OUT, ETR as AF
LPTIM2 IN1, OUT, ETR as AF

DS11453 Rev 3 17/208
STM32L431xx Functional overview
54
3 Functional overview
3.1 Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code-
efficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L431xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L431xx family devices.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

Functional overview STM32L431xx
18/208 DS11453 Rev 3
3.4 Embedded Flash memory
STM32L431xx devices feature up to 256 Kbyte of embedded Flash memory available for
storing programs and data in single bank architecture. The Flash memory contains 128
pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
•Readout protection (RDP) to protect the whole memory. Three levels are available:
– Level 0: no readout protection
– Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
– Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
•Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.
•Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows to select if the PCROP area is erased or not when the RDP protection is
changed from Level 1 to Level 0.
Table 3. Access status versus readout protection level and execution modes
Area Protection
level
User execution Debug, boot from RAM or boot
from system memory (loader)
Read Write Erase Read Write Erase
Main
memory
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
System
memory
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
Option
bytes
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
Backup
registers
1YesYesN/A
(1)
1. Erased when RDP change from Level 1 to Level 0.
No No N/A(1)
2 Yes Yes N/A N/A N/A N/A
SRAM2
1 Yes Yes Yes(1) No No No(1)
2 Yes Yes Yes N/A N/A N/A

DS11453 Rev 3 19/208
STM32L431xx Functional overview
54
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
•single error detection and correction
•double error detection.
•The address of the ECC fail can be read in the ECC register
3.5 Embedded SRAM
STM32L431xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two
blocks:
•48 Kbyte mapped at address 0x2000 0000 (SRAM1)
•16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 C000, offering a contiguous address
space with the SRAM1 (16 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 16 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6 Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•Three segments can be protected and defined thanks to the Firewall registers:
– Code segment (located in Flash or SRAM1 if defined as executable protected
area)
– Non-volatile data segment (located in Flash)
– Volatile data segment (located in SRAM1)
•The start address and the length of each segments are configurable:
– Code segment: up to 1024 Kbyte with granularity of 256 bytes
– Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
– Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes
•Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•Volatile data segment can be shared or not with the non-protected code
•Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.

Functional overview STM32L431xx
20/208 DS11453 Rev 3
3.7 Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
•Boot from user Flash
•Boot from system memory
•Boot from embedded SRAM
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI or CAN.
3.8 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.9 Power supply management
3.9.1 Power supply schemes
•VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•VDDA = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMP) to 3.6 V: external analog power
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The VDDA
voltage level is independent from the VDD voltage.
•VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note: When the functions supplied by VDDA are not used, this supply should preferably be shorted
to VDD.
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to Table 19: Voltage characteristics).
Note: VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.

DS11453 Rev 3 21/208
STM32L431xx Functional overview
54
Figure 2. Power supply overview
During power-up and power-down phases, the following power sequence requirements
must be respected:
•When VDD is below 1 V, other power supplies (VDDA) must remain below VDD +
300 mV.
•When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power- down transient
phase.
MSv39205V2
Low voltage detector
VDDA
VDDA domain
VSS
VDD
VBAT
A/D converters
Comparators
D/A converters
Operational amplifiers
Voltage reference buffer
VDD domain
I/O ring
VSSA
Reset block
Temp. sensor
PLL, HSI, MSI, HSI48
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator
VDDIO1
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
Backup domain
Core
Memories
Digital peripherals
VCORE domain
VCORE

Functional overview STM32L431xx
22/208 DS11453 Rev 3
Figure 3. Power-up/down sequence
1. VDDX refers to VDDA.
3.9.2 Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
MSv47490V1
0.3
1
VBOR0
3.6
Operating modePower-on Power-down time
V
VDDX(1)
VDD
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD

DS11453 Rev 3 23/208
STM32L431xx Functional overview
54
3.9.3 Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 16 Kbyte SRAM2 in Standby with SRAM2 retention.
•Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L431xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•Range 1 with the CPU running at up to 80 MHz.
•Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
3.9.4 Low-power modes
The ultra-low-power STM32L431xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.

Functional overview STM32L431xx
24/208 DS11453 Rev 3
Table 4. STM32L431xx modes overview
Mode Regulator(1) CPU Flash SRAM Clocks DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time
Run
MR range 1
Yes ON(4) ON Any
All
N/A
97 µA/MHz
N/A
MR range2 All except RNG 84 µA/MHz
LPRun LPR Yes ON(4) ON
Any
except
PLL
All except USB_FS, RNG N/A 94 µA/MHz to Range 1: 4 µs
to Range 2: 64 µs
Sleep
MR range 1
No ON(4) ON(5) Any
All Any interrupt or
event
28 µA/MHz
6 cycles
MR range2 All except RNG 26 µA/MHz
LPSleep LPR No ON(4) ON(5)
Any
except
PLL
All except USB_FS, RNG Any interrupt or
event 29 µA/MHz 6 cycles
Stop 0
MR Range 1
No OFF ON LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
SWPMI1(8)
108 µA
2.4 µs in SRAM
4.1 µs in Flash
MR Range 2 108 µA

STM32L431xx Functional overview
DS11453 Rev 3 25/208
Stop 1 LPR No Off ON LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
SWPMI1(8)
4.34 µA w/o RTC
4.63 µA w RTC
6.3 µs in SRAM
7.8 µs in Flash
Stop 2 LPR No Off ON LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
1.3 µA w/o RTC
1.4 µA w/RTC
6.8 µs in SRAM
8.2 µs in Flash
Table 4. STM32L431xx modes overview (continued)
Mode Regulator(1) CPU Flash SRAM Clocks DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time

Functional overview STM32L431xx
26/208 DS11453 Rev 3
Standby
LPR
Power
ed Off Off
SRAM
2 ON
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(9)
BOR, RTC, IWDG
0.20 µA w/o RTC
0.46 µA w/ RTC
12.2 µs
OFF
Power
ed
Off
0.03 µA w/o RTC
0.29 µA w/ RTC
Shutdown OFF Power
ed Off Off
Power
ed
Off
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-
down(10)
Reset pin
5 I/Os (WKUPx)(9)
RTC
0.01 µA w/o RTC
0.20 µA w/ RTC 262 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. SWPMI1 wakeup by resume from suspend.
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Table 4. STM32L431xx modes overview (continued)
Mode Regulator(1) CPU Flash SRAM Clocks DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time

DS11453 Rev 3 27/208
STM32L431xx Functional overview
54
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the low-
power run mode.
•Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.

Functional overview STM32L431xx
28/208 DS11453 Rev 3
•Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.

DS11453 Rev 3 29/208
STM32L431xx Functional overview
54
Table 5. Functionalities depending on the working mode(1)
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
Stop 0/1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU Y - Y - - --------
Flash memory (up to
256 KB) O(2) O(2) O(2) O(2) ---------
SRAM1 (48 KB) Y Y(3) YY
(3) Y-Y------
SRAM2 (16 KB) Y Y(3) YY
(3) Y-Y-O
(4) ----
Quad SPI O O O O - --------
Backup Registers Y Y Y Y Y -Y-Y-Y-Y
Brown-out reset
(BOR) YYYYYYYYYY- --
Programmable
Voltage Detector
(PVD)
OOOOO
OOO- ----
Peripheral Voltage
Monitor (PVMx;
x=1,3,4)
OOOOO
OOO- ----
DMA OOOO-
--------
High Speed Internal
(HSI16) OOOO
(5) -(5) ------
Oscillator RC48 O O - - - --------
High Speed External
(HSE) OOOO-
--------
Low Speed Internal
(LSI) OOOOO
-O-O----
Low Speed External
(LSE) OOOOO
-O-O-O-O
Multi-Speed Internal
(MSI) OOOO-
--------
Clock Security
System (CSS) OOOO-
--------
Clock Security
System on LSE OOOOO
OOOOO- --
RTC / Auto wakeup O O O O O OOOOOOOO
Number of RTC
Tamper pins 33333O3O3O3O3
USARTx (x=1,2,3) O O O O O(6) O(6) -------

Functional overview STM32L431xx
30/208 DS11453 Rev 3
Low-power UART
(LPUART) OOOOO
(6) O(6) O(6) O(6) -----
I2Cx (x=1,2) O O O O O(7) O(7) -------
I2C3 OOOOO
(7) O(7) O(7) O(7) -----
SPIx (x=1,2,3) O O O O - --------
CAN OOOO-
--------
SDMMC1 O O O O - --------
SWPMI1 OOOO-
O- ------
SAIx (x=1) O O O O - --------
ADCx (x=1) O O O O - --------
DAC1 O O O O O --------
VREFBUF O O O O O --------
OPAMPx (x=1) O O O O O --------
COMPx (x=1,2) O O O O O OOO- ----
Temperature sensor O O O O - --------
Timers (TIMx) O O O O - --------
Low-power timer 1
(LPTIM1) OOOOO
OOO- ----
Low-power timer 2
(LPTIM2) OOOOO
O- ------
Independent
watchdog (IWDG) OOOOO
OOOOO- --
Window watchdog
(WWDG) OOOO-
--------
SysTick timer O O O O - --------
Touch sensing
controller (TSC) OOOO-
--------
Random number
generator (RNG) O(8) O(8) -----------
CRC calculation unit O O O O - --------
GPIOs OOOOO
OOO(9)
5
pins
(10)
(11)
5
pins
(10)
-
Table 5. Functionalities depending on the working mode(1) (continued)
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
Stop 0/1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability

DS11453 Rev 3 31/208
STM32L431xx Functional overview
54
3.9.5 Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.9.6 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-
tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
3.10 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.

Functional overview STM32L431xx
32/208 DS11453 Rev 3
Table 6. STM32L431xx peripherals interconnect matrix
Interconnect source Interconnect
destination Interconnect action
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
TIMx
TIMx Timers synchronization or chaining Y Y Y Y - -
ADCx
DAC1 Conversion triggers Y Y Y Y - -
DMA Memory to memory transfer trigger Y Y Y Y - -
COMPx Comparator output blanking Y Y Y Y - -
TIM15/TIM16 IRTIM Infrared interface output generation Y Y Y Y - -
COMPx
TIM1
TIM2
Timer input channel, trigger, break from
analog signals comparison YYYY - -
LPTIMERx Low-power timer triggered by analog
signals comparison YYYYYY
(1)
ADCx TIM1 Timer triggered by analog watchdog Y Y Y Y - -
RTC
TIM16 Timer input channel from RTC events Y Y Y Y - -
LPTIMERx Low-power timer triggered by RTC alarms
or tampers YYYYYY
(1)
All clocks sources (internal
and external)
TIM2
TIM15, 16
Clock source used as input channel for
RC measurement and trimming YYYY - -
CSS
CPU (hard fault)
RAM (parity error)
Flash memory (ECC error)
COMPx
PVD
TIM1
TIM15,16 Timer break Y Y Y Y - -
GPIO
TIMx External trigger Y Y Y Y - -
LPTIMERx External trigger Y Y Y Y Y Y
(1)
ADCx
DAC1 Conversion external trigger Y Y Y Y - -
1. LPTIM1 only.

DS11453 Rev 3 33/208
STM32L431xx Functional overview
54
3.11 Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
•Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
– 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
– 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
– Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
– System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
•RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the SDMMC or the RNG peripherals. This clock can be output on the
MCO.
•Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
– 32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
– 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•Peripheral clock sources: Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs,
LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock.
Two PLLs, each having three independent outputs allowing the highest flexibility, can
generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
•Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software

Functional overview STM32L431xx
34/208 DS11453 Rev 3
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•Clock-out capability:
–MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.

DS11453 Rev 3 35/208
STM32L431xx Functional overview
54
Figure 4. Clock tree
MSv39206V3
SYSCLK
MCO
LSCO
48 MHz clock to RNG, SDMMC
to ADC
to IWDG
to RTC
to PWR
HCLK
to AHB bus, core, memory and DMA
FCLK Cortex free running clock
to Cortex system timer
to APB1 peripherals
to APB2 peripherals
PCLK1
PCLK2
to SAI1
LSE
HSI16
SYSCLK to USARTx
x=2..3
to LPUART1
to I2Cx
x=1,2,3
to LPTIMx
x=1,2
SAI1_EXTCLK
to SWPMI
to TIMx
x=2,6,7
OSC32_OUT
OSC32_IN
MSI HSI16
HSE
HSI16
LSI
LSE
HSE
SYSCLK
HSE
MSI
HSI16
MSI
SYSCLK
LSE OSC
32.768 kHz /32
AHB PRESC
/ 1,2,..512
/ 8
APB1 PRESC
/ 1,2,4,8,16
x1 or x2
HSI16
SYSCLK
LSI
LSE
HSI16
HSI16
APB2 PRESC
/ 1,2,4,8,16
to TIMx
x=1,15,16
x1 or x2
to USART1
LSE
HSI16
SYSCLK
/ M
MSI RC
100 kHz – 48 MHz
HSI RC
16 MHz
HSE OSC
4-48 MHz
Clock
detector
OSC_OUT
OSC_IN
/ 1→16
LSI RC 32 kHz
Clock
source
control
PLLSAI1CLK
PLL48M1CLK
PLLCLK
PLLSAI2CLK
PLL48M2CLK
PLLADC1CLK
HSI16
HSI16
HSI RC
48 MHz
HSI48
CRS
PLL
PLLSAI1
VCO F
VCO
/ P
/ R
/ Q
/ P
/ Q
/ R
VCO F
VCO
PLLCLK
MSI

Functional overview STM32L431xx
36/208 DS11453 Rev 3
3.12 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.13 Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•14 independently configurable channels (requests)
•Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)
•Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•Support for circular buffer management
•3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•Memory-to-memory transfer
•Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•Access to Flash, SRAM, APB and AHB peripherals as source and destination
•Programmable number of data to be transferred: up to 65536.
Table 7. DMA implementation
DMA features DMA1 DMA2
Number of regular channels 7 7

DS11453 Rev 3 37/208
STM32L431xx Functional overview
54
3.14 Interrupts and events
3.14.1 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-
M4.
The NVIC benefits are the following:
•Closely coupled NVIC gives low latency interrupt processing
•Interrupt entry vector table address passed directly to the core
•Allows early processing of interrupts
•Processing of late arriving higher priority interrupts
•Support for tail chaining
•Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 37 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 83 GPIOs can be connected to the 16 external interrupt lines.

Functional overview STM32L431xx
38/208 DS11453 Rev 3
3.15 Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
•12-bit native resolution, with built-in calibration
•5.33 Msps maximum conversion rate with full resolution
– Down to 18.75 ns sampling time
– Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
•Up to 16 external channels.
•5 internal channels: internal reference voltage, temperature sensor, VBAT/3,
DAC1_OUT1 and DAC1_OUT2.
•One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply
•Single-ended and differential mode inputs
•Low-power design
– Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
– Dual clock domain architecture: ADC speed independent from CPU frequency
•Highly versatile digital interface
– Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
– ADC supports multiple trigger inputs for synchronization with on-chip timers and
external signals
– Results stored into data register or in RAM with DMA controller support
– Data pre-processing: left/right alignment and per channel offset compensation
– Built-in oversampling unit for enhanced SNR
– Channel-wise programmable sampling time
– Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
– Hardware assistant to prepare the context of the injected channels to allow fast
context switching
3.15.1 Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.

DS11453 Rev 3 39/208
STM32L431xx Functional overview
54
3.15.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
3.15.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN18. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 3. As a consequence, the converted digital value is one third the VBAT voltage.
3.16 Digital to analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
Table 8. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Table 9. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB

Functional overview STM32L431xx
40/208 DS11453 Rev 3
This digital interface supports the following features:
•Up to two DAC output channels
•8-bit or 12-bit output mode
•Buffer offset calibration (factory and user trimming)
•Left or right data alignment in 12-bit mode
•Synchronized update capability
•Noise-wave generation
•Triangular-wave generation
•Dual DAC channel independent or simultaneous conversions
•DMA capability for each channel
•External triggers for conversion
•Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
3.17 Voltage reference buffer (VREFBUF)
The STM32L431xx devices embed an voltage reference buffer which can be used as
voltage reference for ADCs, DAC and also as voltage reference for external components
through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
•2.048 V
•2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
Figure 5. Voltage reference buffer
MSv40197V1
VREFBUF
Low frequency
cut-off capacitor
DAC, ADC
Bandgap +
VDDA
-
100 nF
VREF+

DS11453 Rev 3 41/208
STM32L431xx Functional overview
54
3.18 Comparators (COMP)
The STM32L431xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
•External I/O
•DAC output channels
•Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.19 Operational amplifier (OPAMP)
The STM32L431xx embeds one operational amplifier with external or internal follower
routing and PGA capability.
The operational amplifier features:
•Low input bias current
•Low offset voltage
•Low-power mode
•Rail-to-rail input
3.20 Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (glass,
plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is
measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.

Functional overview STM32L431xx
42/208 DS11453 Rev 3
The main features of the touch sensing controller are the following:
•Proven and robust surface charge transfer acquisition principle
•Supports up to 21 capacitive sensing channels
•Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
•Spread spectrum feature to improve system robustness in noisy environments
•Full hardware management of the charge transfer acquisition sequence
•Programmable charge transfer frequency
•Programmable sampling capacitor I/O pin
•Programmable channel I/O pin
•Programmable max count value to avoid long acquisition when a channel is faulty
•Dedicated end of acquisition and max count error flags with interrupt capability
•One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•Designed to operate with STMTouch touch sensing firmware library
Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.21 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.22 Timers and watchdogs
The STM32L431xx includes one advanced control timers, up to five general-purpose timers,
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table
below compares the features of the advanced control, general purpose and basic timers.
Table 10. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control TIM1 16-bit Up, down,
Up/down
Any integer
between 1
and 65536
Yes 4 3
General-
purpose TIM2 32-bit Up, down,
Up/down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM15 16-bit Up
Any integer
between 1
and 65536
Yes 2 1

DS11453 Rev 3 43/208
STM32L431xx Functional overview
54
3.22.1 Advanced-control timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted dead-
times. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•Input capture
•Output compare
•PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
•One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.22.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
General-
purpose TIM16 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6, TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
Table 10. Timer feature comparison (continued)
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs

Functional overview STM32L431xx
44/208 DS11453 Rev 3
3.22.2 General-purpose timers (TIM2, TIM15, TIM16)
There are up to three synchronizable general-purpose timers embedded in the
STM32L431xx (see Table 10 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•TIM2
It is a full-featured general-purpose timer:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
This timer features 4 independent channels for input capture/output compare, PWM or
one-pulse mode output. It can work with the other general-purpose timers via the Timer
Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
It has independent DMA request generation and support quadrature encoder.
•TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
– TIM15 has 2 channels and 1 complementary channel
– TIM16 has 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.22.3 Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.
3.22.4 Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.

DS11453 Rev 3 45/208
STM32L431xx Functional overview
54
This low-power timer supports the following features:
•16-bit up counter with 16-bit autoreload register
•16-bit compare register
•Configurable output: pulse, PWM
•Continuous/ one shot mode
•Selectable software/hardware input trigger
•Selectable clock source
– Internal clock sources: LSE, LSI, HSI16 or APB clock
– External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•Programmable digital glitch filter
•Encoder mode (LPTIM1 only)
3.22.5 Infrared interface (IRTIM)
The STM32L431xx includes one infrared interface (IRTIM). It can be used with an infrared
LED to perform remote control functions. It uses TIM15 and TIM16 output channels to
generate output signal waveforms on IR_OUT pin.
3.22.6 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.22.7 System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.22.8 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•A 24-bit down counter
•Autoreload capability
•Maskable system interrupt generation when the counter reaches 0.
•Programmable clock source

Functional overview STM32L431xx
46/208 DS11453 Rev 3
3.23 Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•Two programmable alarms.
•On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•Three anti-tamper detection pins with programmable filter.
•Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•A 32.768 kHz external crystal (LSE)
•An external resonator or oscillator (LSE)
•The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.

DS11453 Rev 3 47/208
STM32L431xx Functional overview
54
3.24 Inter-integrated circuit interface (I2C)
The device embeds three I2C. Refer to Table 11: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•I2C-bus specification and user manual rev. 5 compatibility:
– Slave and master modes, multimaster capability
– Standard-mode (Sm), with a bitrate up to 100 kbit/s
– Fast-mode (Fm), with a bitrate up to 400 kbit/s
– Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
– 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
– Programmable setup and hold times
– Optional clock stretching
•System Management Bus (SMBus) specification rev 2.0 compatibility:
– Hardware PEC (Packet Error Checking) generation and verification with ACK
control
– Address resolution protocol (ARP) support
– SMBus alert
•Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
•Wakeup from Stop mode on address match
•Programmable analog and digital noise filters
•1-byte buffer with DMA capability
Table 11. I2C implementation
I2C features(1)
1. X: supported
I2C1 I2C2 I2C3
Standard-mode (up to 100 kbit/s) X X X
Fast-mode (up to 400 kbit/s) X X X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Programmable analog and digital noise filters X X X
SMBus/PMBus hardware support X X X
Independent clock X X X
Wakeup from Stop 0 / Stop 1 mode on address match X X X
Wakeup from Stop 2 mode on address match - - X

Functional overview STM32L431xx
48/208 DS11453 Rev 3
3.25 Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L431xx devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
10Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and
SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake
up events from Stop mode are programmable and can be:
•Start bit detection
•Any received data frame
•A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 12. STM32L431xx USART/LPUART features
USART modes/features(1)
1. X = supported.
USART1 USART2 USART3 LPUART1
Hardware flow control for modem X X X X
Continuous communication using DMA X X X X
Multiprocessor communication X X X X
Synchronous mode X X X -
Smartcard mode X X X -
Single-wire half-duplex communication X X X X
IrDA SIR ENDEC block X X X -
LIN mode X X X -
Dual clock domain X X X X
Wakeup from Stop 0 / Stop 1 modes X X X X
Wakeup from Stop 2 mode - - - X
Receiver timeout interrupt X X X -
Modbus communication X X X -
Auto baud rate detection X (4 modes) -
Driver Enable X X X X
LPUART/USART data length 7, 8 and 9 bits

DS11453 Rev 3 49/208
STM32L431xx Functional overview
54
3.26 Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•Start bit detection
•Any received data frame
•A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.

Functional overview STM32L431xx
50/208 DS11453 Rev 3
3.27 Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.28 Serial audio interfaces (SAI)
The device embeds 1 SAI. Refer to Table 13: SAI implementation for the features
implementation. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
The SAI peripheral supports:
•Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•8-word integrated FIFOs for each audio sub-block.
•Synchronous or asynchronous mode between the audio sub-blocks.
•Master or slave configuration independent for both audio sub-blocks.
•Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
•Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
•Number of bits by frame may be configurable.
•Frame synchronization active level configurable (offset, bit length, level).
•First active bit position in the slot is configurable.
•LSB first or MSB first for data transfer.
•Mute mode.
•Stereo/Mono audio frame capability.
•Communication clock strobing edge configurable (SCK).
•Error flags with associated interrupts if enabled respectively.
– Overrun and underrun detection.
– Anticipated frame synchronization signal detection in slave mode.
– Late frame synchronization signal detection in slave mode.
– Codec not ready for the AC’97 mode in reception.
•Interruption sources when enabled:
–Errors.
– FIFO requests.
•DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.

DS11453 Rev 3 51/208
STM32L431xx Functional overview
54
3.29 Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
•full-duplex communication mode
•automatic SWP bus state management (active, suspend, resume)
•configurable bitrate up to 2 Mbit/s
•automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
3.30 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
Table 13. SAI implementation
SAI features Support(1)
1. X: supported
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X
Mute mode X
Stereo/Mono audio frame capability. X
16 slots X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X
FIFO Size X (8 Word)
SPDIF X

Functional overview STM32L431xx
52/208 DS11453 Rev 3
The CAN peripheral supports:
•Supports CAN protocol version 2.0 A, B Active
•Bit rates up to 1 Mbit/s
•Transmission
– Three transmit mailboxes
– Configurable transmit priority
•Reception
– Two receive FIFOs with three stages
– 14 Scalable filter banks
– Identifier list feature
– Configurable FIFO overrun
•Time-triggered communication option
– Disable automatic retransmission mode
– 16-bit free running timer
– Time Stamp sent in last two data bytes
•Management
– Maskable interrupts
– Software-efficient mailbox mapping at a unique address space
3.31 Secure digital input/output and MultiMediaCards Interface
(SDMMC)
The card host interface (SDMMC) provides an interface between the APB peripheral bus
and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
The SDMMC features include the following:
•Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
•Full compatibility with previous versions of MultiMediaCards (forward compatibility)
•Full compliance with SD Memory Card Specifications Version 2.0
•Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
•Data transfer up to 48 MHz for the 8 bit mode
•Data write and read with DMA capability
3.32 Clock recovery system (CRS)
The STM32L431xx devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC
pin or generated by user software. For faster lock-in during startup it is also possible to
combine automatic trimming with manual trimming action.

DS11453 Rev 3 53/208
STM32L431xx Functional overview
54
3.33 Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
flash memories. It can operate in any of the three following modes:
•Indirect mode: all the operations are performed using the QUADSPI registers
•Status polling mode: the external flash status register is periodically read and an
interrupt can be generated in case of flag setting
•Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
The Quad SPI interface supports:
•Three functional modes: indirect, status-polling, and memory-mapped
•Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
flash memories in parallel.
•SDR and DDR support
•Fully programmable opcode for both indirect and memory mapped mode
•Fully programmable frame format for both indirect and memory mapped mode
•Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
– Instruction phase
– Address phase
– Alternate bytes phase
– Dummy cycles phase
– Data phase
•Integrated FIFO for reception and transmission
•8, 16, and 32-bit data accesses are allowed
•DMA channel for indirect mode operations
•Programmable masking for external flash flag management
•Timeout management
•Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error

Functional overview STM32L431xx
54/208 DS11453 Rev 3
3.34 Development support
3.34.1 Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.34.2 Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L431xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.

DS11453 Rev 3 55/208
STM32L431xx Pinouts and pin description
83
4 Pinouts and pin description
Figure 6. STM32L431Vx LQFP100 pinout(1)
1. The above figure shows the package top view.
MSv39214V2
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
VSS
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF-
VREF+
VDDA
PA0
PA1
PA2
PC15-OSC32_OUT
VDD
PE5
VBAT
PC14-OSC32_IN
PE2
PE3
PE4
PE6
PC13
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89
88
87
86
85
84
83
82
81
80
79
78
77
76
92
90
97
95
93
100
99
98
96
94
35
37
38
39
40
41
42
43
44
45
46
47
48
49
50
34
36
29
31
33
26
27
28
30
32
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PE8
PE11
PA6
PA7
PE9
PE12
PE15
PB0
PB1
PE13
PB10
VSS
PE7
PE10
PE14
PB11
VDD
PC9
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA8
PC8
PA13
PA11
PA9
VDD
VSS
VDD
PA12
PA10
VDD
VSS
PB9
PB7
PB3
PE1
PE0
PB6
PD6
PD3
PB8
PH3/BOOT0
PD5
PD2
PC12
PB5
PB4
PD1
PC11
PA15
PD7
PD4
PD0
PC10
PA14

Pinouts and pin description STM32L431xx
56/208 DS11453 Rev 3
Figure 7. STM32L431Vx UFBGA100 ballout(1)
1. The above figure shows the package top view.
Figure 8. STM32L431Rx LQFP64 pinout(1)
1. The above figure shows the package top view.
MSv39213V2
PE3 PE1 PB8 PH3/BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11
PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 VDD PA10
PC14-
OSC32_IN PE6 VSS PA9 PA8 PC9
PC15-
OSC32_OUT VBAT VSS PC8 PC7 PC6
PH0-OSC_IN VSS VSS VSS
PH1-
OSC_OUT VDD VDD VDD
PC0 NRST VDD PD15 PD14 PD13
VSSA PC1 PC2 PD12 PD11 PD10
VREF- PC3 PA2 PA5 PC4 PD9 PD8 PB15 PB14 PB13
VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12
VDDA PA1 PA4 PA7 PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15
UFBGA100
MSv39212V2
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
53
52
51
50
49
56
54
61
59
57
64
63
62
60
58
26
28
29
30
31
32
25
27
20
22
24
17
18
19
21
23
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PB11
PA6
PA7
VSS
PB0
PB1
PB10
VDD
VDD
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
PH3/BOOT0
PB5
PC12
PB9
PB8
PB4
PC10
PB7
PB6
PA15
PB3
PD2
PC11
PA14

DS11453 Rev 3 57/208
STM32L431xx Pinouts and pin description
83
Figure 9. STM32L431Rx UFBGA64 ballout(1)
1. The above figure shows the package top view.
Figure 10. STM32L431Rx WLCSP64 pinout(1)
1. The above figure shows the package top view.
Figure 11. STM32L431Cx WLCSP49 pinout(1)
1. The above figure shows the package top view.
MSv39211V2
PC14-
OSC32_IN PC13 PB9 PB4 PB3 PA15 PA14 PA13
12345678
A
B
C
D
E
F
G
H
PC15-
OSC32_OUT VBAT PB8 PH3/BOOT0 PD2 PC11 PC10 PA12
PH0-OSC_IN VSS PB7 PB5 PC12 PA11
PH1-
OSC_OUT VDD PB6
NRST PC1 PC0
VSSA/VREF- PC2
PC3 PA0
VDDA/VREF+ PA1 PA4
PA3
PA2
PC4
PB1
PB0
VDD
VSS
PA7
PA6
PA5
VDD
VSS
PB11
PB10
PB15
PC7
PA8
PC5
PB2
PC6
VDD
VSS
PA10 PA9
PB12
PB13
PB14
PC8
PC9
MSv39210V2
VDD PA15 PC12 PD2 PB3 PB7 VSS VDD
12345678
A
B
C
D
E
F
G
H
VSS PA14 PC11 PB4 PB6 PB9 VBAT PC13
PA12 PA13 PC10 PB5 PH3/BOOT0 PC14-
OSC32_IN
PA9 PA10 PA11
PC7 PC9 PA8
PC6 PB15
PB14 PB13
VDD VSS PB11
PB12
PC8
PB1
PA6
PA5
PA4
PC0
PB10
PB2
PB0
PC5
PC4
VDD
PA1
PA0
PC2
PH1-
OSC_OUT
PA7
PA3
PA2
PC3
NRST
PB8 PC15-
OSC32_OUT
VSS
VDDA/VREF+
VSSA/VREF-
PC1
PH0-OSC_IN
MSv39209V2
VDD PA14 PB3 PB4 PH3/BOOT0 VSS VDD
1234567
A
B
C
D
E
F
G
VSS PA13 PA15 PB5 PB8 VBAT PC13
PA11 PA10 PA12 PB6 PB9
PA8 PA9 PB15
PB14 PB13 PB10
PB12 PB11
VDD VSS PB2
PA7
PB0
PA5
PA2
NRST
PB1
PA6
PA3
PB7
PA1
VDDA/VREF+
VSSA/VREF-
PH0-OSC_IN
PA4
PA0
PC3
PH1-
OSC_OUT
PC15-
OSC32_OUT
PC14-
OSC32_IN

Pinouts and pin description STM32L431xx
58/208 DS11453 Rev 3
Figure 12. STM32L431Cx LQFP48 pinout(1)
1. The above figure shows the package top view.
Figure 13. STM32L431Cx UFQFPN48 pinout(1)
1. The above figure shows the package top view.
MSv39208V2
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
39
37
40
38
45
43
41
48
47
46
44
42
22
24
21
23
16
18
20
13
14
15
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3/BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
MSv39207V2
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
39
37
40
38
45
43
41
48
47
46
44
42
22
24
21
23
16
18
20
13
14
15
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3/BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15

DS11453 Rev 3 59/208
STM32L431xx Pinouts and pin description
83
Figure 14. STM32L431Kx UFQFPN32 pinout(1)
1. The above figure shows the package top view.
MSv37605V2
UFQFPN32
1
2
3
4
5
6
7
8
VDD
PC14-OSC32_IN
PC15-OSC32_OUT
NRST
VDDA/VREF+
PA0/CK_IN
PA1
PA2
24
23
22
21
20
19
18
17
29
27
25
32
31
30
28
26
12
14
16
9
10
11
13
15
PA3
PA4
PA7
VSS
PA5
PA6
PB0
PB1
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
VSS
PH3/BOOT0
PB5
PA15
PB7
PB6
PB4
PB3
Table 14. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
RST Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os
_f (1) I/O, Fm+ capable
_a (2) I/O, with Analog switch function supplied by VDDA
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
1. The related I/O structures in Table 15 are: FT_f, FT_fa.
2. The related I/O structures in Table 15 are: FT_a, FT_fa, TT_a.

Pinouts and pin description STM32L431xx
60/208 DS11453 Rev 3
Table 15. STM32L431xx pin definitions
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions
--- - - - - 1 B2 PE2 I/O FT -
TRACECK,
TSC_G7_IO1,
SAI1_MCLK_A,
EVENTOUT
-
--- - - - - 2 A1 PE3 I/O FT -
TRACED0,
TSC_G7_IO2,
SAI1_SD_B, EVENTOUT
-
--- - - - - 3 B1 PE4 I/O FT -
TRACED1,
TSC_G7_IO3,
SAI1_FS_A, EVENTOUT
-
--- - - - - 4 C2 PE5 I/O FT -
TRACED2,
TSC_G7_IO4,
SAI1_SCK_A,
EVENTOUT
-
--- - - - - 5 D2 PE6 I/O FT -TRACED3, SAI1_SD_A,
EVENTOUT
RTC_TAMP3,
WKUP3
- 1 1 B6 B7 1 B2 6 E2 VBAT S - - - -
- 2 2B7B82A2 7 C1 PC13 I/O FT
(1)
(2) EVENTOUT
RTC_TAMP1,
RTC_TS,
RTC_OUT,
WKUP2
2 3 3 C7 C8 3 A1 8 D1
PC14-
OSC32_I
N (PC14)
I/O FT
(1)
(2) EVENTOUT OSC32_IN
3 4 4 C6 C7 4 B1 9 E1
PC15-
OSC32_
OUT
(PC15)
I/O FT
(1)
(2) EVENTOUT OSC32_OUT
--- - - - -10F2 VSS S - - - -
--- - - - -11G2 VDD S - - - -
- 5 5D7D85C112 F1
PH0-
OSC_
IN (PH0)
I/O FT - EVENTOUT OSC_IN
- 6 6D6D76D113 G1
PH1-
OSC_
OUT
(PH1)
I/O FT - EVENTOUT OSC_OUT
4 7 7 D5 D6 7 E1 14 H2 NRST I/O RST - - -

DS11453 Rev 3 61/208
STM32L431xx Pinouts and pin description
83
--- -D58E315H1 PC0 I/OFT_fa-
LPTIM1_IN1, I2C3_SCL,
LPUART1_RX,
LPTIM2_IN1,
EVENTOUT
ADC1_IN1
--- -E89E216J2 PC1 I/OFT_fa-
LPTIM1_OUT,
I2C3_SDA,
LPUART1_TX,
EVENTOUT
ADC1_IN2
--- -E710F217J3 PC2 I/OFT_a- LPTIM1_IN2,
SPI2_MISO, EVENTOUT ADC1_IN3
- - - E6 E6 11 G1 18 K2 PC3 I/O FT_a -
LPTIM1_ETR,
SPI2_MOSI, SAI1_SD_A,
LPTIM2_ETR,
EVENTOUT
ADC1_IN4
- - - - - - - 19 J1 VSSA S - - - -
- - - - - - - 20 K1 VREF- S - - - -
-88E7F812F1 - - VSSA/
VREF- S-- - -
- - - - - - - 21 L1 VREF+ S - - - VREFBUF_
OUT
--- - - - -22M1 VDDA S - - - -
599F7G813H1 - - VDDA/
VREF+ S-- - -
- 1010F6 F714G2 23 L2 PA0 I/O FT_a -
TIM2_CH1,
USART2_CTS,
COMP1_OUT,
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
OPAMP1_
VINP,
COMP1_INM,
ADC1_IN5,
RTC_TAMP2,
WKUP1
6--- --- - - PA0/
CK_IN I/O FT_a -
TIM2_CH1,
USART2_CTS,
COMP1_OUT,
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
OPAMP1_
VINP,
COMP1_INM,
ADC1_IN5,
RTC_TAMP2,
WKUP1,
CK_IN
71111G7G715H224 M2 PA1 I/O FT_a -
TIM2_CH2, I2C1_SMBA,
SPI1_SCK,
USART2_RTS_DE,
TIM15_CH1N,
EVENTOUT
OPAMP1_
VINM,
COMP1_INP,
ADC1_IN6
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

Pinouts and pin description STM32L431xx
62/208 DS11453 Rev 3
81212E5F616F3 25 K3 PA2 I/O FT_a -
TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT,
TIM15_CH1, EVENTOUT
COMP2_INM,
ADC1_IN7,
WKUP4,
LSCO
91313E4G617G326 L3 PA3 I/O TT_a -
TIM2_CH4, USART2_RX,
LPUART1_RX,
QUADSPI_CLK,
SAI1_MCLK_A,
TIM15_CH2, EVENTOUT
OPAMP1_
VOUT,
COMP2_INP,
ADC1_IN8
--- -H818C227E3 VSS S - - - -
--- -H719D228H3 VDD S - - - -
10 14 14 G6 E5 20 H3 29 M3 PA4 I/O TT_a -
SPI1_NSS, SPI3_NSS,
USART2_CK,
SAI1_FS_B,
LPTIM2_OUT,
EVENTOUT
COMP1_INM,
COMP2_INM,
ADC1_IN9,
DAC1_OUT1
11 15 15 F5 F5 21 F4 30 K4 PA5 I/O TT_a -
TIM2_CH1, TIM2_ETR,
SPI1_SCK,
LPTIM2_ETR,
EVENTOUT
COMP1_INM,
COMP2_INM,
ADC1_IN10,
DAC1_OUT2
12 16 16 F4 G5 22 G4 31 L4 PA6 I/O FT_a -
TIM1_BKIN, SPI1_MISO,
COMP1_OUT,
USART3_CTS,
LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM1_BKIN_COMP2,
TIM16_CH1, EVENTOUT
ADC1_IN11
13 17 17 F3 H6 23 H4 32 M4 PA7 I/O FT_fa -
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
COMP2_OUT,
EVENTOUT
ADC1_IN12
--- -D424H533K5 PC4 I/OFT_a- USART3_TX,
EVENTOUT
COMP1_INM,
ADC1_IN13
--- -E425H634L5 PC5 I/OFT_a- USART3_RX,
EVENTOUT
COMP1_INP,
ADC1_IN14,
WKUP5
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

DS11453 Rev 3 63/208
STM32L431xx Pinouts and pin description
83
14 18 18 G5 F4 26 F5 35 M5 PB0 I/O FT_a -
TIM1_CH2N, SPI1_NSS,
USART3_CK,
QUADSPI_BK1_IO1,
COMP1_OUT,
SAI1_EXTCLK,
EVENTOUT
ADC1_IN15
15 19 19 G4 H5 27 G5 36 M6 PB1 I/O FT_a -
TIM1_CH3N,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LPTIM2_IN1,
EVENTOUT
COMP1_INM,
ADC1_IN16
- 2020G3G428G6 37 L6 PB2 I/O FT_a - RTC_OUT, LPTIM1_OUT,
I2C3_SMBA, EVENTOUT COMP1_INP
--- - - - -38M7 PE7 I/O FT -
TIM1_ETR, SAI1_SD_B,
EVENTOUT -
--- - - - -39L7 PE8 I/O FT -
TIM1_CH1N,
SAI1_SCK_B,
EVENTOUT
-
--- - - - -40M8 PE9 I/O FT -
TIM1_CH1, SAI1_FS_B,
EVENTOUT -
--- - - - -41L8 PE10 I/O FT -
TIM1_CH2N,
TSC_G5_IO1,
QUADSPI_CLK,
SAI1_MCLK_B,
EVENTOUT
-
--- - - - -42M9 PE11 I/O FT -
TIM1_CH2,
TSC_G5_IO2,
QUADSPI_BK1_NCS,
EVENTOUT
-
--- - - - -43L9 PE12 I/O FT -
TIM1_CH3N, SPI1_NSS,
TSC_G5_IO3,
QUADSPI_BK1_IO0,
EVENTOUT
-
--- - - - -44M10 PE13 I/O FT -
TIM1_CH3, SPI1_SCK,
TSC_G5_IO4,
QUADSPI_BK1_IO1,
EVENTOUT
-
--- - - - -45M11 PE14 I/O FT -
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2,
SPI1_MISO,
QUADSPI_BK1_IO2,
EVENTOUT
-
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

Pinouts and pin description STM32L431xx
64/208 DS11453 Rev 3
--- - - - -46M12 PE15 I/O FT -
TIM1_BKIN,
TIM1_BKIN_COMP1,
SPI1_MOSI,
QUADSPI_BK1_IO3,
EVENTOUT
-
- 21 21 E3 H4 29 G7 47 L10 PB10 I/O FT_f -
TIM2_CH3, I2C2_SCL,
SPI2_SCK, USART3_TX,
LPUART1_RX,
TSC_SYNC,
QUADSPI_CLK,
COMP1_OUT,
SAI1_SCK_A,
EVENTOUT
-
-2222F2H330H748L11 PB11 I/O FT_f -
TIM2_CH4, I2C2_SDA,
USART3_RX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT,
EVENTOUT
-
16 23 23 G2 H2 31 D6 49 F12 VSS S - - - -
17 24 24 G1 H1 32 E6 50 G12 VDD S - - - -
- 25 25 F1 G3 33 H8 51 L12 PB12 I/O FT -
TIM1_BKIN,
TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
USART3_CK,
LPUART1_RTS_DE,
TSC_G1_IO1,
SWPMI1_IO,
SAI1_FS_A,
TIM15_BKIN,
EVENTOUT
-
- 26 26 E2 G2 34 G8 52 K12 PB13 I/O FT_f -
TIM1_CH1N, I2C2_SCL,
SPI2_SCK,
USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2,
SWPMI1_TX,
SAI1_SCK_A,
TIM15_CH1N,
EVENTOUT
-
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

DS11453 Rev 3 65/208
STM32L431xx Pinouts and pin description
83
- 27 27 E1 G1 35 F8 53 K11 PB14 I/O FT_f -
TIM1_CH2N, I2C2_SDA,
SPI2_MISO,
USART3_RTS_DE,
TSC_G1_IO3,
SWPMI1_RX,
SAI1_MCLK_A,
TIM15_CH1, EVENTOUT
-
- 28 28 D3 F2 36 F7 54 K10 PB15 I/O FT -
RTC_REFIN,
TIM1_CH3N,
SPI2_MOSI,
TSC_G1_IO4,
SWPMI1_SUSPEND,
SAI1_SD_A,
TIM15_CH2, EVENTOUT
-
--- - - - -55K9 PD8 I/O FT - USART3_TX,
EVENTOUT -
--- - - - -56K8 PD9 I/O FT - USART3_RX,
EVENTOUT -
--- - - - -57J12 PD10 I/O FT -
USART3_CK,
TSC_G6_IO1,
EVENTOUT
-
--- - - - -58J11 PD11 I/O FT -
USART3_CTS,
TSC_G6_IO2,
LPTIM2_ETR,
EVENTOUT
-
--- - - - -59J10 PD12 I/O FT -
USART3_RTS_DE,
TSC_G6_IO3,
LPTIM2_IN1,
EVENTOUT
-
- - - - - - - 60 H12 PD13 I/O FT -
TSC_G6_IO4,
LPTIM2_OUT,
EVENTOUT
-
- - - - - - - 61 H11 PD14 I/O FT - EVENTOUT -
- - - - - - - 62 H10 PD15 I/O FT - EVENTOUT -
--- -F137F663E12 PC6 I/O FT -
TSC_G4_IO1,
SDMMC1_D6,
EVENTOUT
-
--- -E138E764E11 PC7 I/O FT -
TSC_G4_IO2,
SDMMC1_D7,
EVENTOUT
-
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

Pinouts and pin description STM32L431xx
66/208 DS11453 Rev 3
--- -F339E865E10 PC8 I/O FT -
TSC_G4_IO3,
SDMMC1_D0,
EVENTOUT
-
--- -E240D866D12 PC9 I/O FT -
TSC_G4_IO4,
SDMMC1_D1,
EVENTOUT
-
18 29 29 D1 E3 41 D7 67 D11 PA8 I/O FT -
MCO, TIM1_CH1,
USART1_CK,
SWPMI1_IO,
SAI1_SCK_A,
LPTIM2_OUT,
EVENTOUT
-
19 30 30 D2 D1 42 C7 68 D10 PA9 I/O FT_f -
TIM1_CH2, I2C1_SCL,
USART1_TX,
SAI1_FS_A,
TIM15_BKIN,
EVENTOUT
-
20 31 31 C2 D2 43 C6 69 C12 PA10 I/O FT_f -
TIM1_CH3, I2C1_SDA,
USART1_RX,
SAI1_SD_A, EVENTOUT
-
21 32 32 C1 D3 44 C8 70 B12 PA11 I/O FT -
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO,
COMP1_OUT,
USART1_CTS,
CAN1_RX,
TIM1_BKIN2_COMP1,
EVENTOUT
-
22 33 33 C3 C1 45 B8 71 A12 PA12 I/O FT -
TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE,
CAN1_TX, EVENTOUT
-
23 34 34 B2 C2 46 A8 72 A11
PA13
(JTMS-
SWDIO)
I/O FT (3)
JTMS-SWDIO, IR_OUT,
SWPMI1_TX,
SAI1_SD_B, EVENTOUT
-
- 35 35 B1 B1 47 D5 - - VSS S - - - -
-3636A1A148E573C11 VDD S - - - -
--- - - - -74F11 VSS S - - - -
--- - - - -75G11 VDD S - - - -
24 37 37 A2 B2 49 A7 76 A10
PA14
(JTCK-
SWCLK)
I/O FT (3)
JTCK-SWCLK,
LPTIM1_OUT,
I2C1_SMBA,
SWPMI1_RX,
SAI1_FS_B, EVENTOUT
-
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

DS11453 Rev 3 67/208
STM32L431xx Pinouts and pin description
83
25 38 38 B3 A2 50 A6 77 A9 PA15
(JTDI) I/O FT (3)
JTDI, TIM2_CH1,
TIM2_ETR, USART2_RX,
SPI1_NSS, SPI3_NSS,
USART3_RTS_DE,
TSC_G3_IO1,
SWPMI1_SUSPEND,
EVENTOUT
-
--- -C351B778B11 PC10 I/O FT -
SPI3_SCK, USART3_TX,
TSC_G3_IO2,
SDMMC1_D2,
EVENTOUT
-
--- -B352B679C10 PC11 I/O FT -
SPI3_MISO,
USART3_RX,
TSC_G3_IO3,
SDMMC1_D3,
EVENTOUT
-
- - - - A3 53 C5 80 B10 PC12 I/O FT -
SPI3_MOSI,
USART3_CK,
TSC_G3_IO4,
SDMMC1_CK,
EVENTOUT
-
--- - - - -81C9 PD0 I/O FT - SPI2_NSS, CAN1_RX,
EVENTOUT -
--- - - - -82B9 PD1 I/O FT - SPI2_SCK, CAN1_TX,
EVENTOUT -
--- -A454B583C8 PD2 I/O FT -
USART3_RTS_DE,
TSC_SYNC,
SDMMC1_CMD,
EVENTOUT
-
--- - - - -84B8 PD3 I/O FT -
SPI2_MISO,
USART2_CTS,
QUADSPI_BK2_NCS,
EVENTOUT
-
--- - - - -85B7 PD4 I/O FT -
SPI2_MOSI,
USART2_RTS_DE,
QUADSPI_BK2_IO0,
EVENTOUT
-
--- - - - -86A6 PD5 I/O FT -
USART2_TX,
QUADSPI_BK2_IO1,
EVENTOUT
-
--- - - - -87B6 PD6 I/O FT -
USART2_RX,
QUADSPI_BK2_IO2,
SAI1_SD_A, EVENTOUT
-
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

Pinouts and pin description STM32L431xx
68/208 DS11453 Rev 3
--- - - - -88A5 PD7 I/O FT -
USART2_CK,
QUADSPI_BK2_IO3,
EVENTOUT
-
26 39 39 A3 A5 55 A5 89 A8
PB3
(JTDO-
TRACE
SWO)
I/O FT_a (3)
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK,
USART1_RTS_DE,
SAI1_SCK_B,
EVENTOUT
COMP2_INM
27 40 40 A4 B4 56 A4 90 A7 PB4
(NJTRST) I/O FT_fa (3)
NJTRST, I2C3_SDA,
SPI1_MISO, SPI3_MISO,
USART1_CTS,
TSC_G2_IO1,
SAI1_MCLK_B,
EVENTOUT
COMP2_INP
28 41 41 B4 C4 57 C4 91 C5 PB5 I/O FT -
LPTIM1_IN1,
I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK,
TSC_G2_IO2,
COMP2_OUT,
SAI1_SD_B,
TIM16_BKIN,
EVENTOUT
-
29 42 42 C4 B5 58 D3 92 B5 PB6 I/O FT_fa -
LPTIM1_ETR, I2C1_SCL,
USART1_TX,
TSC_G2_IO3,
SAI1_FS_B,
TIM16_CH1N,
EVENTOUT
COMP2_INP
30 43 43 D4 A6 59 C3 93 B4 PB7 I/O FT_fa -
LPTIM1_IN2, I2C1_SDA,
USART1_RX,
TSC_G2_IO4,
EVENTOUT
COMP2_INM,
PVD_IN
31 44 44 A5 C5 60 B4 94 A4 PH3/
BOOT0 I/O FT - EVENTOUT BOOT0
- 45 45 B5 C6 61 B3 95 A3 PB8 I/O FT_f -
I2C1_SCL, CAN1_RX,
SDMMC1_D4,
SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
-
- 46 46 C5 B6 62 A3 96 B3 PB9 I/O FT_f -
IR_OUT, I2C1_SDA,
SPI2_NSS, CAN1_TX,
SDMMC1_D5,
SAI1_FS_A, EVENTOUT
-
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

DS11453 Rev 3 69/208
STM32L431xx Pinouts and pin description
83
- - - - - - - 97 C3 PE0 I/O FT - TIM16_CH1, EVENTOUT -
- - - - - - - 98 A2 PE1 I/O FT - EVENTOUT -
32 47 47 A6 A7 63 D4 99 D3 VSS S - - - -
1 48 48 A7 A8 64 E4 100 C4 VDD S - - - -
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup
domain and RTC register descriptions in the RM0394 reference manual.
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4
pins and the internal pull-down on PA14 pin are activated.
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional
functions

Pinouts and pin description STM32L431xx
70/208 DS11453 Rev 3
Table 16. Alternate function AF0 to AF7(1)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2/
LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/
USART2/
USART3
Port A
PA0-TIM2_CH1-----USART2_CTS
PA1 - TIM2_CH2 - - I2C1_SMBA SPI1_SCK - USART2_RTS_
DE
PA2-TIM2_CH3-----USART2_TX
PA3-TIM2_CH4-----USART2_RX
PA4 - - - - - SPI1_NSS SPI3_NSS USART2_CK
PA5 - TIM2_CH1 TIM2_ETR - - SPI1_SCK - -
PA6 - TIM1_BKIN - - - SPI1_MISO COMP1_OUT USART3_CTS
PA7 - TIM1_CH1N - - I2C3_SCL SPI1_MOSI - -
PA8MCOTIM1_CH1-----USART1_CK
PA9 - TIM1_CH2 - - I2C1_SCL - - USART1_TX
PA10 - TIM1_CH3 - - I2C1_SDA - - USART1_RX
PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO COMP1_OUT USART1_CTS
PA12 - TIM1_ETR - - - SPI1_MOSI - USART1_RTS_
DE
PA13JTMS-SWDIOIR_OUT------
PA14 JTCK-SWCLK LPTIM1_OUT - - I2C1_SMBA - - -
PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS USART3_RTS_
DE

STM32L431xx Pinouts and pin description
DS11453 Rev 3 71/208
Port B
PB0 - TIM1_CH2N - - - SPI1_NSS - USART3_CK
PB1-TIM1_CH3N-----
USART3_RTS_
DE
PB2 RTC_OUT LPTIM1_OUT - - I2C3_SMBA - - -
PB3 JTDO-
TRACESWO TIM2_CH2 - - - SPI1_SCK SPI3_SCK USART1_RTS_
DE
PB4 NJTRST - - - I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS
Port B
PB5 - LPTIM1_IN1 - - I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK
PB6 - LPTIM1_ETR - - I2C1_SCL - - USART1_TX
PB7 - LPTIM1_IN2 - - I2C1_SDA - - USART1_RX
PB8----I2C1_SCL---
PB9 - IR_OUT - - I2C1_SDA SPI2_NSS - -
PB10 - TIM2_CH3 - - I2C2_SCL SPI2_SCK - USART3_TX
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX
PB12 - TIM1_BKIN - TIM1_BKIN_
COMP2 I2C2_SMBA SPI2_NSS - USART3_CK
PB13 - TIM1_CH1N - - I2C2_SCL SPI2_SCK - USART3_CTS
PB14 - TIM1_CH2N - - I2C2_SDA SPI2_MISO - USART3_RTS_
DE
PB15 RTC_REFIN TIM1_CH3N - - - SPI2_MOSI - -
Table 16. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2/
LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/
USART2/
USART3

Pinouts and pin description STM32L431xx
72/208 DS11453 Rev 3
Port C
PC0 - LPTIM1_IN1 - - I2C3_SCL - - -
PC1 - LPTIM1_OUT - - I2C3_SDA - - -
PC2 - LPTIM1_IN2 - - - SPI2_MISO - -
PC3 - LPTIM1_ETR - - - SPI2_MOSI - -
PC4-------USART3_TX
PC5-------USART3_RX
PC6--------
PC7--------
PC8--------
PC9--------
PC10------SPI3_SCKUSART3_TX
Port C
PC11------SPI3_MISOUSART3_RX
PC12------SPI3_MOSIUSART3_CK
PC13--------
PC14--------
PC15--------
Table 16. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2/
LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/
USART2/
USART3

STM32L431xx Pinouts and pin description
DS11453 Rev 3 73/208
Port D
PD0 - - - - - SPI2_NSS - -
PD1 - - - - - SPI2_SCK - -
PD2-------
USART3_RTS_
DE
PD3 - - - - - SPI2_MISO - USART2_CTS
PD4 - - - - - SPI2_MOSI - USART2_RTS_
DE
PD5-------USART2_TX
PD6-------USART2_RX
PD7-------USART2_CK
PD8-------USART3_TX
PD9-------USART3_RX
PD10-------USART3_CK
PD11-------USART3_CTS
PD12-------
USART3_RTS_
DE
PD13--------
PD14--------
PD15--------
Port EPE0--------
Table 16. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2/
LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/
USART2/
USART3

Pinouts and pin description STM32L431xx
74/208 DS11453 Rev 3
Port E
PE1--------
PE2TRACECK-------
PE3TRACED0-------
PE4TRACED1-------
PE5TRACED2-------
PE6TRACED3-------
PE7-TIM1_ETR------
PE8-TIM1_CH1N------
PE9-TIM1_CH1------
PE10-TIM1_CH2N------
PE11-TIM1_CH2------
PE12 - TIM1_CH3N - - - SPI1_NSS - -
PE13 - TIM1_CH3 - - - SPI1_SCK - -
PE14 - TIM1_CH4 TIM1_BKIN2 TIM1_BKIN2_
COMP2 - SPI1_MISO - -
PE15 - TIM1_BKIN - TIM1_BKIN_
COMP1 - SPI1_MOSI - -
Port H
PH0--------
PH1--------
PH3--------
1. Please refer to Table 17 for AF8 to AF15.
Table 16. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2/
LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/
USART2/
USART3

STM32L431xx Pinouts and pin description
DS11453 Rev 3 75/208
Table 17. Alternate function AF8 to AF15(1)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
LPUART1 CAN1/TSC QUADSPI
SDMMC1/
COMP1/
COMP2/
SWPMI1
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT
Port A
PA0 - - - - COMP1_OUT SAI1_EXTCLK TIM2_ETR EVENTOUT
PA1 - - - - - TIM15_CH1N EVENTOUT
PA2 LPUART1_TX - QUADSPI_
BK1_NCS COMP2_OUT - TIM15_CH1 EVENTOUT
PA3 LPUART1_RX - QUADSPI_CLK - SAI1_MCLK_A TIM15_CH2 EVENTOUT
PA4-----SAI1_FS_BLPTIM2_OUTEVENTOUT
PA5------LPTIM2_ETREVENTOUT
PA6 LPUART1_CTS - QUADSPI_
BK1_IO3
TIM1_BKIN_
COMP2 - TIM16_CH1 EVENTOUT
PA7 - - QUADSPI_
BK1_IO2 COMP2_OUT - - EVENTOUT
PA8 - - - SWPMI1_IO SAI1_SCK_A LPTIM2_OUT EVENTOUT
PA9 - - - - SAI1_FS_A TIM15_BKIN EVENTOUT
PA10 - - - SAI1_SD_A - EVENTOUT
PA11 - CAN1_RX - TIM1_BKIN2_
COMP1 - - EVENTOUT
PA12 - CAN1_TX - - - - EVENTOUT
PA13 - - - SWPMI1_TX SAI1_SD_B - EVENTOUT
PA14 - - - - SWPMI1_RX SAI1_FS_B - EVENTOUT
PA15 - TSC_G3_IO1 - SWPMI1_
SUSPEND - - EVENTOUT

Pinouts and pin description STM32L431xx
76/208 DS11453 Rev 3
Port B
PB0 - - QUADSPI_
BK1_IO1 COMP1_OUT SAI1_EXTCLK - EVENTOUT
PB1 LPUART1_RTS
_DE -QUADSPI_
BK1_IO0 - - LPTIM2_IN1 EVENTOUT
PB2 - - - - - - EVENTOUT
PB3 - - - - SAI1_SCK_B - EVENTOUT
PB4 - TSC_G2_IO1 - - SAI1_MCLK_B - EVENTOUT
PB5 - TSC_G2_IO2 - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT
PB6 - TSC_G2_IO3 - - - SAI1_FS_B TIM16_CH1N EVENTOUT
PB7 - TSC_G2_IO4 - - - - EVENTOUT
PB8 - CAN1_RX - SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT
PB9 - CAN1_TX - SDMMC1_D5 SAI1_FS_A - EVENTOUT
PB10 LPUART1_RX TSC_SYNC QUADSPI_CLK COMP1_OUT SAI1_SCK_A - EVENTOUT
PB11 LPUART1_TX - QUADSPI_
BK1_NCS COMP2_OUT - - EVENTOUT
PB12 LPUART1_RTS
_DE TSC_G1_IO1 - SWPMI1_IO SAI1_FS_A TIM15_BKIN EVENTOUT
PB13 LPUART1_CTS TSC_G1_IO2 - SWPMI1_TX SAI1_SCK_A TIM15_CH1N EVENTOUT
PB14 - TSC_G1_IO3 - SWPMI1_RX SAI1_MCLK_A TIM15_CH1 EVENTOUT
PB15 - TSC_G1_IO4 - SWPMI1_
SUSPEND SAI1_SD_A TIM15_CH2 EVENTOUT
Table 17. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
LPUART1 CAN1/TSC QUADSPI
SDMMC1/
COMP1/
COMP2/
SWPMI1
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT

STM32L431xx Pinouts and pin description
DS11453 Rev 3 77/208
Port C
PC0 LPUART1_RX - - - - LPTIM2_IN1 EVENTOUT
PC1 LPUART1_TX - - - - - EVENTOUT
PC2 - - - - - - EVENTOUT
Port C
PC3 - - - - SAI1_SD_A LPTIM2_ETR EVENTOUT
PC4 - - - - - - EVENTOUT
PC5 - - - - - - EVENTOUT
PC6 - TSC_G4_IO1 - SDMMC1_D6 - - EVENTOUT
PC7 - TSC_G4_IO2 - SDMMC1_D7 - - EVENTOUT
PC8 - TSC_G4_IO3 - SDMMC1_D0 - - EVENTOUT
PC9 - TSC_G4_IO4 SDMMC1_D1 - - EVENTOUT
PC10 - TSC_G3_IO2 - SDMMC1_D2 - - EVENTOUT
PC11 - TSC_G3_IO3 - SDMMC1_D3 - - EVENTOUT
PC12 - TSC_G3_IO4 - SDMMC1_CK - - EVENTOUT
PC13------ -EVENTOUT
PC14------ -EVENTOUT
PC15------ -EVENTOUT
Port D
PD0 - CAN1_RX - - - - - EVENTOUT
PD1 - CAN1_TX - - - - - EVENTOUT
PD2 - TSC_SYNC - SDMMC1_
CMD - - EVENTOUT
Table 17. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
LPUART1 CAN1/TSC QUADSPI
SDMMC1/
COMP1/
COMP2/
SWPMI1
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT

Pinouts and pin description STM32L431xx
78/208 DS11453 Rev 3
Port D
PD3 - - QUADSPI_BK2
_NCS - - - - EVENTOUT
PD4 - - QUADSPI_BK2
_IO0 - - - - EVENTOUT
PD5 - - QUADSPI_BK2
_IO1 - - - - EVENTOUT
PD6 - - QUADSPI_BK2
_IO2 - - SAI1_SD_A - EVENTOUT
PD7 - - QUADSPI_BK2
_IO3 - - - - EVENTOUT
PD8 - - - - - - EVENTOUT
PD9 - - - - - - EVENTOUT
PD10 - TSC_G6_IO1 - - - - EVENTOUT
PD11 - TSC_G6_IO2 - - - LPTIM2_ETR EVENTOUT
PD12 - TSC_G6_IO3 - - - LPTIM2_IN1 EVENTOUT
PD13 - TSC_G6_IO4 - - - LPTIM2_OUT EVENTOUT
PD14 - - - - - - EVENTOUT
PD15 - - - - - - EVENTOUT
Port E
PE0 - - - - - TIM16_CH1 EVENTOUT
PE1 - - - - - - EVENTOUT
PE2 - TSC_G7_IO1 - - SAI1_MCLK_A - EVENTOUT
PE3 - TSC_G7_IO2 - - SAI1_SD_B - EVENTOUT
PE4 - TSC_G7_IO3 - - - SAI1_FS_A - EVENTOUT
Table 17. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
LPUART1 CAN1/TSC QUADSPI
SDMMC1/
COMP1/
COMP2/
SWPMI1
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT

STM32L431xx Pinouts and pin description
DS11453 Rev 3 79/208
Port E
PE5 - TSC_G7_IO4 - - - SAI1_SCK_A - EVENTOUT
PE6-----SAI1_SD_A-EVENTOUT
PE7-----SAI1_SD_B-EVENTOUT
PE8-----SAI1_SCK_B-EVENTOUT
PE9-----SAI1_FS_B-EVENTOUT
PE10 - TSC_G5_IO1 QUADSPI_CLK - - SAI1_MCLK_B - EVENTOUT
PE11 - TSC_G5_IO2 QUADSPI_BK1
_NCS - - - - EVENTOUT
PE12 - TSC_G5_IO3 QUADSPI_BK1
_IO0 - - - - EVENTOUT
PE13 - TSC_G5_IO4 QUADSPI_BK1
_IO1 - - - - EVENTOUT
PE14 - - QUADSPI_BK1
_IO2 - - - - EVENTOUT
PE15 - - QUADSPI_BK1
_IO3 - - - - EVENTOUT
Port H
PH0------ -EVENTOUT
PH1------ -EVENTOUT
PH3------ -EVENTOUT
1. Please refer to Table 16 for AF0 to AF7.
Table 17. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
LPUART1 CAN1/TSC QUADSPI
SDMMC1/
COMP1/
COMP2/
SWPMI1
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT

Memory mapping STM32L431xx
80/208 DS11453 Rev 3
5 Memory mapping
Figure 15. STM32L431xx memory map
MSv36892V2
0xFFFF FFFF
0xE000 0000
0xC000 0000
0xA000 1000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0
1
2
3
4
5
6
7
Cortex™-M4
with FPU
Internal
Peripherals
Peripherals
SRAM1
CODE
OTP area
System memory
Flash memory
Flash, system memory
or SRAM, depending on
BOOT configuration
AHB2
AHB1
APB2
APB1
0x5006 0C00
0x4800 0000
0x4002 4400
0x4002 0000
0x4001 5800
0x4001 0000
0x4000 9800
0x4000 0000
0x1FFF FFFF
0x1FFF 0000
0x0804 0000
0x0800 0000
0x0004 0000
0x0000 0000
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0x1000 4000
0x1000 0000
SRAM2
QUADSPI
registers
Options Bytes
0x1FFF 7000
0x1FFF 7400
0x1FFF 7800
0x1FFF 7810
Reserved
QUADSPI registers
0xBFFF FFFF
0xA000 1400
0xA000 1000
Reserved
Reserved
Reserved
0x5FFF FFFF
0x9000 0000
QUADSPI Flash
bank
SRAM2
0x2000 C000
0xA000 0000

DS11453 Rev 3 81/208
STM32L431xx Memory mapping
83
Table 18. STM32L431xx memory map and peripheral register boundary addresses(1)
Bus Boundary address Size(bytes) Peripheral
AHB2
0x5006 0800 - 0x5006 0BFF 1 KB RNG
0x5004 0400 - 0x5006 07FF 158 KB Reserved
0x5004 0000 - 0x5004 03FF 1 KB ADC
0x5000 0000 - 0x5003 FFFF 16 KB Reserved
0x4800 2000 - 0x4FFF FFFF ~127 MB Reserved
0x4800 1C00 - 0x4800 1FFF 1 KB GPIOH
0x4800 1400 - 0x4800 1BFF 2 KB Reserved
0x4800 1000 - 0x4800 13FF 1 KB GPIOE
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
-0x4002 4400 - 0x47FF FFFF ~127 MB Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 KB TSC
0x4002 3400 - 0x4002 3FFF 1 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB FLASH registers
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0800 - 0x4002 0FFF 2 KB Reserved
0x4002 0400 - 0x4002 07FF 1 KB DMA2
0x4002 0000 - 0x4002 03FF 1 KB DMA1
APB2
0x4001 5800 - 0x4001 FFFF 42 KB Reserved
0x4001 5400 - 0x4000 57FF 1 KB SAI1
0x4001 4800 - 0x4000 53FF 3 KB Reserved
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved

Memory mapping STM32L431xx
82/208 DS11453 Rev 3
APB2
0x4001 3000 - 0x4001 33FF 1 KB SPI1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB SDMMC1
0x4001 2000 - 0x4001 27FF 2 KB Reserved
0x4001 1C00 - 0x4001 1FFF 1 KB FIREWALL
0x4001 0800- 0x4001 1BFF 5 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0200 - 0x4001 03FF
1 KB
COMP
0x4001 0030 - 0x4001 01FF VREFBUF
0x4001 0000 - 0x4001 002F SYSCFG
APB1
0x4000 9800 - 0x4000 FFFF 26 KB Reserved
0x4000 9400 - 0x4000 97FF 1 KB LPTIM2
0x4000 8C00 - 0x4000 93FF 2 KB Reserved
0x4000 8800 - 0x4000 8BFF 1 KB SWPMI1
0x4000 8400 - 0x4000 87FF 1 KB Reserved
0x4000 8000 - 0x4000 83FF 1 KB LPUART1
0x4000 7C00 - 0x4000 7FFF 1 KB LPTIM1
0x4000 7800 - 0x4000 7BFF 1 KB OPAMP
0x4000 7400 - 0x4000 77FF 1 KB DAC1
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 6800 - 0x4000 6FFF 2 KB Reserved
0x4000 6400 - 0x4000 67FF 1 KB CAN1
0x4000 6000 - 0x4000 63FF 1 KB CRS
0x4000 5C00- 0x4000 5FFF 1 KB I2C3
0x4000 5800 - 0x4000 5BFF 1 KB I2C2
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 4C00 - 0x4000 53FF 2 KB Reserved
0x4000 4800 - 0x4000 4BFF 1 KB USART3
0x4000 4400 - 0x4000 47FF 1 KB USART2
0x4000 4000 - 0x4000 43FF 1 KB Reserved
0x4000 3C00 - 0x4000 3FFF 1 KB SPI3
0x4000 3800 - 0x4000 3BFF 1 KB SPI2
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
Table 18. STM32L431xx memory map and peripheral register boundary addresses(1)
(continued)
Bus Boundary address Size(bytes) Peripheral

DS11453 Rev 3 83/208
STM32L431xx Memory mapping
83
APB1
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 1800 - 0x4000 27FF 4 KB Reserved
0x4000 1400 - 0x4000 17FF 1 KB TIM7
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0400- 0x4000 0FFF 3 KB Reserved
0x4000 0000 - 0x4000 03FF 1 KB TIM2
1. The gray color is used for reserved boundary addresses.
Table 18. STM32L431xx memory map and peripheral register boundary addresses(1)
(continued)
Bus Boundary address Size(bytes) Peripheral

Electrical characteristics STM32L431xx
84/208 DS11453 Rev 3
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions Figure 17. Pin input voltage
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN

DS11453 Rev 3 85/208
STM32L431xx Electrical characteristics
176
6.1.6 Power supply scheme
Figure 18. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
MSv41628V1
VDD
Level shifter
IO
logic
Kernel logic
(CPU, Digital
& Memories)
Backup circuitry
(LSE, RTC,
Backup registers)
IN
OUT
Regulator
GPIOs
1.55 – 3.6 V
n x 100 nF
+1 x 4.7 μF
n x VSS
n x VDD
VBAT
VCORE
Power switch
VDDIO1
ADCs/
DACs/
OPAMPs/
COMPs/
VREFBUF
VREF+
VREF-
VDDA
10 nF
+1 μF
VDDA
VSSA
VREF
100 nF +1 μF

Electrical characteristics STM32L431xx
86/208 DS11453 Rev 3
6.1.7 Current consumption measurement
Figure 19. Current consumption measurement scheme
The IDD_ALL parameters given in Table 26 to Table 38 represent the total MCU consumption
including the current supplying VDD, VDDA and VBAT.
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics,
Table 20: Current characteristics and Table 21: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
MSv41629V1
VBAT
VDD
VDDA
IDD
IDDA
IDD_VBAT
Table 19. Voltage characteristics(1)
Symbol Ratings Min Max Unit
VDDX - VSS
External main supply voltage (including
VDD, VDDA, VBAT)-0.3 4.0 V
VIN(2)
Input voltage on FT_xxx pins VSS-0.3 min (VDD, VDDA) + 4.0(3)(4)
VInput voltage on TT_xx pins VSS-0.3 4.0
Input voltage on any other pins VSS-0.3 4.0
|VDDx|Variations between different VDDX power
pins of the same domain -50mV
|VSSx-VSS|Variations between all the different ground
pins(5) -50mV
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in
the permitted range.
2. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the inte<