STM32F302xD, xE Datasheet by STMicroelectronics

This is information on a product in full production.
October 2016 DocID026900 Rev 4 1/168
STM32F302xD STM32F302xE
ARM® Cortex®-M4 32b MCU+FPU, up to 512KB Flash, 64KB SRAM,
FSMC, 2 ADCs, 1 DAC ch., 4 comp, 2 Op-Amp, 2.0-3.6 V
Datasheet - production data
Features
•Core: ARM® Cortex®-M4 32-bit CPU with
72 MHz FPU, single-cycle multiplication and
HW division, DSP instruction and MPU
(memory protection unit)
•Operating conditions:
–V
DD, VDDA voltage range: 2.0 V to 3.6 V
•Memories
– Up to 512 Kbytes of Flash memory
– 64 Kbytes of SRAM, with HW parity check
implemented on the first 32 Kbytes.
– Flexible memory controller (FSMC) for
static memories, with four Chip Select
•CRC calculation unit
•Reset and supply management
– Power-on/Power-down reset (POR/PDR)
– Programmable voltage detector (PVD)
– Low-power modes: Sleep, Stop and
Standby
–V
BAT supply for RTC and backup registers
•Clock management
–4
to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x 16 PLL option
–Internal 40 kHz oscillator
•Up to 115 fast I/Os
– All mappable on external interrupt vectors
– Several 5 V-tolerant
•Interconnect matrix
•12-channel DMA controller
•Two ADCs 0.20 µs (up to 18 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, separate analog
supply from 2.0 to 3.6 V
•One 12-bit DAC channels with analog supply
from 2.4 to 3.6 V
•Four ultra-fast rail-to-rail analog comparators
with analog supply from 2.0 to 3.6 V
•Two operational amplifiers that can be used in
PGA mode, all terminals accessible with
analog supply from 2.4 to 3.6 V
•Up to 24 capacitive sensing channels supporting
touchkey, linear and rotary touch sensors
•Up to 11 timers:
– One 32-bit timer and two 16-bit timers with
up to four IC/OC/PWM or pulse counter
and quadrature (incremental) encoder input
– One 16-bit 6-channel advanced-control
timers, with up to six PWM channels,
deadtime generation and emergency stop
– One 16-bit timer with two IC/OCs, one
OCN/PWM, deadtime generation and
emergency stop
– Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
– Two watchdog timers (independent,
window)
– One SysTick timer: 24-bit downcounter
– One 16-bit basic timers to drive the DAC
•Calendar RTC with Alarm, periodic wakeup
from Stop/Standby
•Communication interfaces
– CAN interface (2.0B Active)
LQFP64 LQFP100 LQFP144
UFBGA100
(10 × 10 mm) (14 × 14 mm) (20 x 20 mm)
(7 x 7 mm)
WLCSP100
(
4.775 x 5.041 mm
)
www.st.com

STM32F302xD STM32F302xE
2/168 DocID026900 Rev 4
– Three I2C Fast mode plus (1 Mbit/s) with
20 mA current sink, SMBus/PMBus,
wakeup from STOP
– Up to five USART/UARTs (ISO 7816
interface, LIN, IrDA, modem control)
– Up to four SPIs, 4 to 16 programmable bit
frames, two with multiplexed half/full duplex
I2S interface
– USB 2.0 full-speed interface with LPM
support
–Infrared transmitter
•SWD, Cortex®-M4 with FPU ETM, JTAG
•96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F302xD STM32F302RD, STM32F302VD, STM32F302ZD.
STM32F302xE STM32F302RE, STM32F302VE, STM32F302ZE.

DocID026900 Rev 4 3/168
STM32F302xD STM32F302xE Contents
5
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 ARM® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . 15
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.4 OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Ultra-fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Contents STM32F302xD STM32F302xE
4/168 DocID026900 Rev 4
3.18.1 Advanced timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 25
3.18.3 Basic timers (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 27
3.20 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21 Universal synchronous/asynchronous receiver transmitter (USART) . . . 28
3.22 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 29
3.23 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 29
3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.25 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.26 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.27 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.28 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.28.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.28.2 Embedded Trace Macrocell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 69

DocID026900 Rev 4 5/168
STM32F302xD STM32F302xE Contents
5
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 69
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.11 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.13 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.14 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.15 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.16 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.17 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.18 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.19 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.22 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5 WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.6 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.7.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.7.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 163
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

List of tables STM32F302xD STM32F302xE
6/168 DocID026900 Rev 4
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F302xD/E family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . 13
Table 3. External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. STM32F302xD/E peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 7. STM32F302xD/E I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 9. STM32F302xD/E SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 10. Capacitive sensing GPIOs available on STM32F302xD/E devices . . . . . . . . . . . . . . . . . . 31
Table 11. Number of capacitive sensing channels available on
STM32F302xD/E devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. STM32F302xD/E pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 14. STM32F302xD/E alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 15. Memory map, peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 16. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 17. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 18. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 19. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 20. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 21. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 22. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 23. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 24. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 71
Table 26. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 72
Table 27. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 73
Table 28. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 74
Table 29. Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 74
Table 30. Typical current consumption in Run mode, code with data processing running
from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 31. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 77
Table 32. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 33. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 34. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 35. Wakeup time using USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 36. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 37. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 38. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 40. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 41. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 42. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 43. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 44. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 45. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 91
Table 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . 91

DocID026900 Rev 4 7/168
STM32F302xD STM32F302xE List of tables
8
Table 47. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 92
Table 48. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . . 93
Table 49. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . . 93
Table 50. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 51. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 52. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . . 96
Table 53. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 54. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 55. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 56. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 57. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 58. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 106
Table 59. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 60. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 61. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 62. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 63. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 64. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 65. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 66. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 67. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 68. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 69. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 70. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 71. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 72. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 73. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 74. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 75. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 76. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 77. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 78. USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 79. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 80. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 81. ADC accuracy - limited test conditions, 100-/144-pin packages . . . . . . . . . . . . . . . . . . . 132
Table 82. ADC accuracy, 100-pin/144-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 83. ADC accuracy - limited test conditions, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 84. ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 85. ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 86. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 87. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 88. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 89. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 90. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 91. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 92. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 93. UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 94. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 152
Table 95. LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 96. WLCSP100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 97. WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 159

List of tables STM32F302xD STM32F302xE
8/168 DocID026900 Rev 4
Table 98. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 99. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 100. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 101. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

DocID026900 Rev 4 9/168
STM32F302xD STM32F302xE List of figures
10
List of figures
Figure 1. STM32F302xD/E block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. STM32F302xD/E clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4. STM32F302xD/E LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 5. STM32F302xD/E LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 6. STM32F302xD/E LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 7. STM32F302xD/E WLCSP100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8. STM32F302xD/E UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 9. STM32F302xD/E memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 10. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 14. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] 00’) . . . . . . . . . . . . . 75
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 19. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 88
Figure 20. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 90
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 92
Figure 22. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 23. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 24. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 25. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 26. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 27. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 28. PC Card/CompactFlash controller waveforms for common memory
read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 29. PC Card/CompactFlash controller waveforms for common memory
write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 30. PC Card/CompactFlash controller waveforms for attribute memory
read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory
write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 32. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 107
Figure 33. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 107
Figure 34. NAND controller read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 35. NAND controller write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 36. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 37. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 38. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . 115
Figure 39. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port. . . . . . . . . . . . . . . . . . 115
Figure 40. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 41. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 42. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 43. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 44. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

List of figures STM32F302xD STM32F302xE
10/168 DocID026900 Rev 4
Figure 45. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 46. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 47. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 48. ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 49. ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 52. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 53. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 54. LQFP144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 55. Recommended footprint for the LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 56. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 57. UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 58. Recommended footprint for the UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 59. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 60. LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 61. Recommended footprint for the LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 62. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 63. WLCSP100 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 64. Recommended footprint for the WLCSP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 65. WLCSP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 66. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 67. Recommended footprint for the LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 68. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 69. LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

DocID026900 Rev 4 11/168
STM32F302xD STM32F302xE Introduction
63
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F302xD/E microcontrollers.
This STM32F302xD/E datasheet should be read in conjunction with the reference manual of
STM32F302xB/C/D/E, STM32F302x6/8 devices (RM0365) available on STMicroelectronics
website at www.st.com.
For information on the ARM® Cortex®-M4 core with FPU, refer to the following documents:
•Cortex® -M4 with FPU Technical Reference Manual, available from the www.arm.com
website
•STM32F3 and STM32F4 Series Cortex® -M4 programming manual (PM0214)
available on STMicroelectronics website at www.st.com.

Description STM32F302xD STM32F302xE
12/168 DocID026900 Rev 4
2 Description
The STM32F302xD/E family is based on the high-performance ARM® Cortex®-M4 32-bit
RISC core with FPU operating at a frequency of 72 MHz, and embedding a floating point
unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The
family incorporates high-speed embedded memories (512-Kbyte Flash memory, 64-Kbyte
SRAM), a flexible memory controller (FSMC) for static memories (SRAM, PSRAM, NOR
and NAND), and an extensive range of enhanced I/Os and peripherals connected to an
AHB and two APB buses.
The devices offer two fast 12-bit ADCs (5 Msps), four comparators, two operational
amplifiers, one DAC channel, a low-power RTC, up to two general-purpose 16-bit timers,
one general-purpose 32-bit timer, and one timer dedicated to motor control. They also
feature standard and advanced communication interfaces: up to three I2Cs, up to four SPIs
(two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN and
USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external
PLL.
The STM32F302xD/E family operates in the -40 to +85°C and -40 to +105°C temperature
ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows
the design of low-power applications.
The STM32F302xD/E family offers devices in different packages ranging from 64 to
144 pins.
Depending on the device chosen, different sets of peripherals are included.

DocID026900 Rev 4 13/168
STM32F302xD STM32F302xE Description
63
Table 2. STM32F302xD/E family device features and peripheral counts
Peripheral STM32F302Rx STM32F302Vx STM32F302Zx
Flash (Kbytes) 384 512 384 512 384 512
SRAM (Kbytes) on data bus 64
FMC (flexible memory controller) NO YES
Timers
Advanced control 1 (16-bit)
General purpose 5 (16-bit)
1 (32-bit)
Basic 1 (16-bit)
PWM channels (all) (1) 26
PWM channels
(except
complementary)
20
Communication
interfaces
SPI (I2S)(2) 4(2)
I2C3
USART 3
UART 2
CAN 1
USB 1
GPIOs
Normal I/Os
(TC, TTa) 26
37 in WLCSP100,44 in
LQFP100 and
UFBGA100
45
5-volt tolerant
I/Os (FT, FTf) 25
42 in LQFP100
40 in WLCSP100 and
UFBGA100
70
DMA channels 12
Capacitive sensing channels 18 24
12-bit ADCs 2
16 channels
2
17 channels
2
18 channels
12-bit DAC channels 1
Analog comparator 4
Operational amplifiers 2
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Junction temperature: - 40 to 125 °C
Packages LQFP64
LQFP100
,WLCSP100
UFBGA100
LQFP144
1. This total number considers also the PWMs generated on the complementary output channels.
2. The SPI interfaces works in an exclusive way in either the SPI mode or the I2S audio mode.

Description STM32F302xD STM32F302xE
14/168 DocID026900 Rev 4
Figure 1. STM32F302xD/E block diagram
1. AF: alternate function on I/O pins.
7RXFK6HQVLQJ
&RQWUROOHU
7,0(5
&KDQQHOV&RPS
&KDQQHO%5.DV$)
7,0(5
7,0(53:0
63,
026,0,62
6&.166DV$)
86$57
5;7;&76576
6PDUW&DUGDV$)
:LQ:$7&+'2*
%XV0DWUL[
038)38
&RUWH[0&38
)PD[0+]
19,&
*3'0$
FKDQQHOV
)ODVK
LQWHUIDFH
2%/
.%)/$6+
ELWV
-7567
-7',
-7&.6:&/.
-7066:',2
-7'2
$V$)
3RZHU
9ROWDJHUHJ
9WR9
9''
6XSSO\
6XSHUYLVLRQ
3253'5
39'
325
5HVHW
,QW
9'',2 WR9
966
15(6(7
9''$
966$
,QG:'*.
6WDQGE\
LQWHUIDFH
3//
#9'',2
#9''$
;7$/26&
0+]
5HVHW
FORFN
FRQWURO
$+%3&/.
$3%3&/.
$3%3&/.
$+%
$3%
$+%
$3%
&5&
$3%)PD[ 0+]
$3%IPD[ 0+]
*3,23257%
*3,23257'
26&B,1
26&B287
63,,6
6&/6'$60%$DV$)
86$57
6&/6'$60%$DV$)
86$57
5&/6
7,0(5
7,0(5
63,,6
ELW'$&,)
#9''$
7,0(5
ELW3:0
3%>@
026,6'0,62H[WB6'
6&.&.166:60&/.DV$)
&KDQQHOV(75DV$)
86%B'386%B'0
'$&B&+DV$)
+&/.
)&/.
86$57&/.
.%65$0
(70
7UDFH
7ULJ
6:-7$*
73,8
,EXV
75$'(&/.
75$&('>@
DV$)
'EXV
6\VWHP
*3'0$
FKDQQHOV
ELW$'&
ELW$'&
7HPSVHQVRU
95()
95()
7,0(5
(;7,7:.83
;;
$)
&KDQQHO&RPS
&KDQQHO%5.DV$)
&KDQQHO&RPS
&KDQQHO%5.DV$)
&KDQQHOV
&RPSFKDQQHOV
(75%5.DV$)
3'>@
86%65$0%
,)
,&&/.
$'&6$5
&/.
#9'',2
#9''$
#96:
;7$/N+] 26&B,1
26&B287
9%$7 9WR9
57&
$:8
%DFNXS
5HJ
%\WH
%DFNXS
LQWHUIDFH
$17,7$03
7,0(5
8$57
8$57
,&
,&
E[&$1
%65$0
86%)6
2S$PS
2S$PS
#9''$
,1[[
287[[
,1[[
287[[
,17(5)$&(
6<6&)*&7/
*3&RPSDUDWRU
*3&RPSDUDWRU
&$17;&$15;
&KDQQHOV(75DV$)
&KDQQHOV(75DV$)
026,6'0,62H[WB6'
6&.&.166:60&/.DV$)
5;7;&76576DV$)
5;7;&76576DV$)
5;7;DV$)
5;7;DV$)
#9''$
;[,QV287VDV$)
;;*URXSVRI
FKDQQHOVDV
$)
$+%
$+%
*3&RPSDUDWRU
5&+60+]
6&/6'$60%$DV$)
,&
63,
026,0,62
6&.166DV$)
)0&65$0365$0
3&&DUG&RPSDFW
)ODVK
1251$1')ODVK
&/.1(>@$>@'^@
12(11:(11%/>@
6'&/.(>@6'1(>@
6'1:(1/15$61&$6
1$'91:$,71,25'
15(*&',171
*3,23257+
3+>@
*3,23257*
3*>@
*3,23257)
3)>@
*3,23257(
3(>@
*3,23257&
3&>@
*3,23257$
3$>@
06Y9
*3&RPSDUDWRU

DocID026900 Rev 4 15/168
STM32F302xD STM32F302xE Functional overview
63
3 Functional overview
3.1 ARM® Cortex®-M4 core with FPU with embedded Flash and
SRAM
The ARM® Cortex®-M4 processor with FPU is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 32-bit RISC processor with FPU features exceptional code-
efficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allows efficient signal processing
and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded ARM core, the STM32F302xD/E family is compatible with all ARM tools
and software.
Figure 1 shows the general block diagram of the STM32F302xD/E family devices.
3.2 Memory protection unit (MPU)
The memory protection unit (MPU) is used to separate the processing of tasks from the data
protection. The MPU manage up to 8 protection areas that are further divided up into 8
subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of
addressable memory.
The memory protection unit is especially helpful for applications where some critical or
certified code has to be protected against the misbehavior of other tasks. It is usually
managed by an RTOS (real-time operating system). If a program accesses a memory
location that is prohibited by the MPU, the RTOS detects it and takes action. In an RTOS
environment, the kernel dynamically updates the MPU area setting, based on the process to
be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3 Embedded Flash memory
All STM32F302xD/E devices feature 384/512 Kbyte of embedded Flash memory available
for storing programs and data. The Flash memory access time is adjusted to the CPU clock
frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states
above).

Functional overview STM32F302xD STM32F302xE
16/168 DocID026900 Rev 4
3.4 Embedded SRAM
STM32F302xD/E devices feature 64 Kbyte of embedded SRAM with hardware parity check
implemented on the first 32 Kbyte. The memory can be accessed in read/write at CPU clock
speed with 0 wait states.
3.5 Boot modes
At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
•Boot from user Flash
•Boot from system memory
•Boot from embedded SRAM
The boot loader is located in the system memory. It is used to reprogram the Flash memory
by using USART1 (PA9/PA10), USART2 (PA2/PA3) or USB (PA11/PA12) through DFU
(device firmware upgrade).
3.6 Cyclic redundancy check (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.

DocID026900 Rev 4 17/168
STM32F302xD STM32F302xE Functional overview
63
3.7 Power management
3.7.1 Power supply schemes
•VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
provided externally through VDD pins.
•VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators,
operational amplifier, reset blocks, RCs and PLL. The minimum voltage to be applied to
VDDA differs from one analog peripheral to another. Table 3 provides the summary of
the VDDA ranges for analog peripherals. The VDDA voltage level must always be greater
than or equal to the VDD voltage level and must be provided first.
•VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
3.7.2 Power supply supervisor
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
•The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
•The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.7.3 Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR), and power-down.
•The MR mode is used in the nominal regulation mode (Run)
•The LPR mode is used in Stop mode.
•The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
Table 3. External analog supply values for analog peripherals
Analog peripheral Minimum VDDA supply Maximum VDDA supply
ADC/COMP 2.0 V 3.6 V
DAC/OPAMP 2.4 V 3.6 V

Functional overview STM32F302xD STM32F302xE
18/168 DocID026900 Rev 4
3.7.4 Low-power modes
The STM32F302xD/E supports three low-power modes to achieve the best compromise
between low power consumption, short startup time and available wakeup sources:
•Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and wake
up the CPU when an interrupt/event occurs.
•Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC
alarm, COMPx, I2Cx or U(S)ARTx.
•Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin or an RTC alarm occurs.
Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.8 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Table 4. STM32F302xD/E peripheral interconnect matrix
Interconnect source Interconnect
destination Interconnect action
TIMx
TIMx Timers synchronization or chaining
ADCx
DAC1 Conversion triggers
DMA Memory to memory transfer trigger
Compx Comparator output blanking
COMPx TIMx Timer input: OCREF_CLR input, input capture
ADCx TIMx Timer triggered by analog watchdog

DocID026900 Rev 4 19/168
STM32F302xD STM32F302xE Functional overview
63
Note: For more details about the interconnect actions, refer to the corresponding sections in the
STM32F302xD/E reference manual (RM0365).
3.9 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed
APB domain is 36 MHz.
GPIO
RTCCLK
HSE/32
MC0
TIM16 Clock source used as input channel for HSI and
LSI calibration
CSS
CPU (hard fault)
COMPx
GPIO
TIM1
TIM15, 16, 17 Timer break
GPIO
TIMx External trigger, timer break
ADCx
DAC1 Conversion external trigger
DAC1 COMPx Comparator inverting input
Table 4. STM32F302xD/E peripheral interconnect matrix (continued)
Interconnect source Interconnect
destination Interconnect action

Functional overview STM32F302xD STM32F302xE
20/168 DocID026900 Rev 4
Figure 2. STM32F302xD/E clock tree
069
,I$3%SUHVFDOHU
[HOVH[
$+%
/6(
6:
6<6&/.
)/,7)&/.
WR)ODVKSURJUDPPLQJLQWHUIDFH
WR,&[[
,665&
6<6&/.
([WFORFN WR,6[[
86%
SUHVFDOHU
86%&/.WR86%LQWHUIDFH
+&/. WR$+%EXVFRUHPHPRU\DQG
'0$
WR&RUWH[V\VWHPWLPHU
)+&/.&RUWH[IUHHUXQQLQJFORFN
3/&/.
+6,
/6(
WR7,0
WR86$57[[
WR7,0
WR$3%SHULSKHUDOV
3&/.
WR86$57
7,0
WR$'&[\
[\
/6,5&
N+]
0+]
+6(26&
57&&/. WR57&
$3%
SUHVFDOHU
0+]
+6,5&
+6(
+6,
3//&/.
3//
[[
«[
3//65&
3//08/
35(',9
WR)0&
+6,
6<6&/.
WR$3%SHULSKHUDOV
3&/.
,I$3%SUHVFDOHU
[HOVH[
3&/.
6<6&/.
+6,
/6(
$3%
SUHVFDOHU
$+%
SUHVFDOHU
$'&
SUHVFDOHU
$'&SUHVFDOHU
[
6<6&/.
0&2
/6,
+6(
+6,
3//&/.
,:'*&/.
WR,:'*
/6,
57&6(/>@
0&2SUHVFDOHU
0&2
/6(26&
N+]
&66
+6,
,6B&.,1
26&B287
26&B,1
26&B,1
26&B287

DocID026900 Rev 4 21/168
STM32F302xD STM32F302xE Functional overview
63
3.10 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.
3.11 Direct memory access (DMA)
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-
memory and memory-to-peripheral transfers. The DMA controller supports circular buffer
management, avoiding the generation of interrupts when the controller reaches the end of
the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with
software trigger support for each channel. Configuration is done by software and transfer
sizes between source and destination are independent.
The DMA is used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC
and ADC.
3.12 Flexible static memory controller (FSMC)
The flexible static memory controller (FSMC) includes two memory controllers:
•The NOR/PSRAM memory controller,
•The NAND/PC Card memory controller.
This memory controller is also named Flexible memory controller (FMC).
The main features of the FMC controller are the following:
•Interface with static-memory mapped devices including:
– Static random access memory (SRAM),
– NOR Flash memory/OneNAND Flash memory,
– PSRAM (four memory banks),
– NAND Flash memory with ECC hardware to check up to 8 Kbyte of data,
– 16-bit PC Card compatible devices.
•8-,16-bit data bus width,
•Independent Chip Select control for each memory bank,
•Independent configuration for each memory bank,
•Write FIFO,
•LCD parallel interface.
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost

Functional overview STM32F302xD STM32F302xE
22/168 DocID026900 Rev 4
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.13 Interrupts and events
3.13.1 Nested vectored interrupt controller (NVIC)
The STM32F302xD/E devices embed a nested vectored interrupt controller (NVIC) able to
handle up to 73 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
•Closely coupled NVIC gives low latency interrupt processing
•Interrupt entry vector table address passed directly to the core
•Closely coupled NVIC core interface
•Allows early processing of interrupts
•Processing of late arriving higher priority interrupts
•Support for tail chaining
•Processor state automatically saved
•Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14 Fast analog-to-digital converter (ADC)
Two fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6
bit, are embedded in the STM32F302xD/E family devices. The ADCs have up to 18 external
channels. The ADCs can perform conversions in single-shot or scan modes. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel
16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 2
ADCs channel 18, VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2
connected to ADC2 channel 17.
Additional logic functions embedded in the ADC interface allow:
•Simultaneous sample and hold
•Interleaved sample and hold
•Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller.
Three analog watchdogs are available per ADC.
The analog watchdog feature allows very precise monitoring of the converted voltage of
one, some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers and the advanced-control timer (TIM1)
can be internally connected to the ADC start trigger and injection trigger, respectively, to
allow the application to synchronize A/D conversion and timers.

DocID026900 Rev 4 23/168
STM32F302xD STM32F302xE Functional overview
63
3.14.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.14.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADCx_IN18, x=1...4 input
channel. The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
3.14.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.14.4 OPAMP reference voltage (VREFOPAMP)
Every OPAMP reference voltage can be measured using a corresponding ADC internal
channel: VREFO, VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2
connected to ADC2 channel 17.
3.15 Digital-to-analog converter (DAC)
One 12-bit buffered DAC channel can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
This digital interface supports the following features:
•One DAC output channel
•8-bit or 10-bit monotonic output
•Left or right data alignment in 12-bit mode
•Synchronized update capability
•Noise-wave generation
•Triangular-wave generation
•DMA capability (for each channel)

Functional overview STM32F302xD STM32F302xE
24/168 DocID026900 Rev 4
•External triggers for conversion
•Input voltage reference VREF+
3.16 Operational amplifier (OPAMP)
The STM32F302xD/E embed two operational amplifiers (OPAMP1 and OPAMP2) with
external or internal follower routing and PGA capability (or even amplifier and filter capability
with external components). When an operational amplifier is selected, an external ADC
channel is used to enable output measurement.
The operational amplifier features:
•8.2 MHz bandwidth
•0.5 mA output capability
•Rail-to-rail input/output
•In PGA mode, the gain is programmed to be 2, 4, 8 or 16.
3.17 Ultra-fast comparators (COMP)
The STM32F302xD/E devices embed four ultra-fast rail-to-rail comparators (COMP1, 2, 4,
6) with programmable reference voltage (internal or external) and selectable output polarity.
The reference voltage can be one of the following:
•External I/O
•DAC output pin
•Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 23: Embedded
internal reference voltage for the value and precision of the internal reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the
timers.
3.18 Timers and watchdogs
The STM32F302xD/E include one advanced control timer, up to six general-purpose timers,
one basic timer, two watchdog timers and one SysTick timer. The table below compares the
features of the advanced control, general purpose and basic timers.
Table 5. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced TIM1 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 Yes
General-
purpose TIM2 32-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No

DocID026900 Rev 4 25/168
STM32F302xD STM32F302xE Functional overview
63
Note: TIM1/2/3/4/15/16/17 can have PLL as clock source, and therefore can be clocked at
144 MHz.
3.18.1 Advanced timers (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
•Input capture
•Output compare
•PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
•One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timer (described in
Section 3.18.2) using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
3.18.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)
There are up to six synchronizable general-purpose timers embedded in the
STM32F302xD/E (see Table 5 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
General-
purpose TIM3, TIM4 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM15 16-bit Up
Any integer
between 1
and 65536
Yes 2 1
General-
purpose TIM16, TIM17 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
Table 5. Timer feature comparison (continued)
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs

Functional overview STM32F302xD STM32F302xE
26/168 DocID026900 Rev 4
•TIM2, 3, and TIM4
These are full-featured general-purpose timers:
– TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
– TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other general-
purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
•TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
– TIM15 has 2 channels and 1 complementary channel
– TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.18.3 Basic timers (TIM6)
This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit
time base.
3.18.4 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
3.18.5 Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It is
used as a watchdog to reset the device when a problem occurs. It is clocked from the main
clock. It has an early warning interrupt capability and the counter can be frozen in debug
mode.

DocID026900 Rev 4 27/168
STM32F302xD STM32F302xE Functional overview
63
3.18.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•A 24-bit down counter
•Autoreload capability
•Maskable system interrupt generation when the counter reaches 0.
•Programmable clock source
3.19 Real-time clock (RTC) and backup registers
The RTC and the 16 backup registers are supplied through a switch that takes power from
either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit
registers used to store 64 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
The RTC is an independent BCD timer/counter. It supports the following features:
•Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
•Two programmable alarms with wake up from Stop and Standby mode capability.
•On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
•Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
•Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
•17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
The RTC clock sources can be:
•A 32.768 kHz external crystal
•A resonator or oscillator
•The internal low-power RC oscillator (typical frequency of 40 kHz)
•The high-speed external clock divided by 32.
3.20 Inter-integrated circuit interface (I2C)
Up to three I2C bus interfaces can operate in multimaster and slave modes. They can
support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz)
modes.

Functional overview STM32F302xD STM32F302xE
28/168 DocID026900 Rev 4
All I2C bus interfaces support 7-bit and 10-bit addressing modes, multiple 7-bit slave
addresses (2 addresses, 1 with configurable mask). They also include programmable
analog and digital noise filters.
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. They also have a clock domain independent from the CPU
clock, allowing the I2Cx (x=1,2,3) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the features available in I2C1, I2C2 and I2C3.
3.21 Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32F302xD/E devices have three embedded universal synchronous/asynchronous
receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbit/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR
ENDEC, the multiprocessor communication mode, the single-wire half-duplex
Table 6. Comparison of I2C analog and digital filters
-Analog filter Digital filter
Pulse width of
suppressed spikes ≥ 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 7. STM32F302xD/E I2C implementation
I2C features(1) I2C1 I2C2 I2C3
7-bit addressing mode X X X
10-bit addressing mode X X X
Standard mode (up to 100 kbit/s) X X X
Fast mode (up to 400 kbit/s) X X X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Independent clock X X X
SMBus X X X
Wakeup from STOP X X X
1. X = supported.

DocID026900 Rev 4 29/168
STM32F302xD STM32F302xE Functional overview
63
communication mode and have LIN Master/Slave capability. The USART interfaces can be
served by the DMA controller.
3.22 Universal asynchronous receiver transmitter (UART)
The STM32F302xD/E devices have 2 embedded universal asynchronous receiver
transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC,
multiprocessor communication mode and single-wire half-duplex communication mode. The
UART4 interface can be served by the DMA controller.
Refer to Table 8 for the features available in all U(S)ART interfaces.
3.23 Serial peripheral interface (SPI)/Inter-integrated sound
interfaces (I2S)
Up to four SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio
standards can operate as master or slave at half-duplex and full duplex communication
modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to
192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode
it can output a clock for an external audio component at 256 times the sampling frequency.
Refer to Table 9 for the features available in SPI1, SPI2, SPI3 and SPI4.
Table 8. USART features
USART modes/features(1) USART1 USART2 USART3 UART4 UART5
Hardware flow control for modem X X X - -
Continuous communication using DMA X X X X -
Multiprocessor communication X X X X X
Synchronous mode X X X - -
Smartcard mode X X X - -
Single-wire half-duplex communication X X X X X
IrDA SIR ENDEC block X X X X X
LIN mode XXXXX
Dual clock domain and wakeup from Stop mode X X X X X
Receiver timeout interrupt XXXXX
Modbus communication X X X X X
Auto baud rate detection X X X - -
Driver Enable X X X - -
1. X = supported.

Functional overview STM32F302xD STM32F302xE
30/168 DocID026900 Rev 4
3.24 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.25 Universal serial bus (USB)
The STM32F302xD/E embeds a full-speed USB device peripheral compliant with the USB
specification version 2.0. The USB interface implements a full-speed (12 Mbit/s) function
interface with added support for USB 2.0 Link Power Management. It has software-
configurable endpoint setting with packet memory up-to 1 Kbyte (256 bytes are used for
CAN peripheral if enabled) and suspend/resume support.
The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must
use a HSE crystal oscillator).
3.26 Infrared transmitter
The STM32F302xD/E devices provide an infrared transmitter solution. The solution is based
on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes can be obtained by programming the two timers output compare channels.
Table 9. STM32F302xD/E SPI/I2S implementation
SPI features(1) SPI1 SPI2 SPI3 SPI4
Hardware CRC calculation XXXX
Rx/Tx FIFO XXXX
NSS pulse mode XXXX
I2S mode - X X -
TI mode XXXX
1. X = supported.

DocID026900 Rev 4 31/168
STM32F302xD STM32F302xE Functional overview
63
Figure 3. Infrared transmitter
3.27 Touch sensing controller (TSC)
The STM32F302xD/E devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 24 capacitive sensing channels
distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic, etc.). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
06Y9
7,0(5
IRUHQYHORS
7,0(5
IRUFDUULHU
2&
2&
3%3$
Table 10. Capacitive sensing GPIOs available on STM32F302xD/E devices
Group Capacitive sensing
signal name
Pin
name -Group Capacitive sensing
signal name
Pin
name
1
TSC_G1_IO1 PA0
-
5
TSC_G5_IO1 PB3
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
2
TSC_G2_IO1 PA4
6
TSC_G6_IO1 PB11
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14

Functional overview STM32F302xD STM32F302xE
32/168 DocID026900 Rev 4
3.28 Development support
3.28.1 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.28.2 Embedded Trace Macrocell
The ARM embedded trace macrocell (ETM™) provides a greater visibility of the instruction
and data flow inside the CPU core by streaming compressed data at a very high rate from
the STM32F302xD/E through a small number of ETM™ pins to an external hardware trace
3
TSC_G3_IO1 PC5 -
7
TSC_G7_IO1 PE2
TSC_G3_IO2 PB0 - TSC_G7_IO2 PE3
TSC_G3_IO3 PB1 - TSC_G7_IO3 PE4
TSC_G3_IO4 PB2 - TSC_G7_IO4 PE5
4
TSC_G4_IO1 PA9 -
8
TSC_G8_IO1 PD12
TSC_G4_IO2 PA10 - TSC_G8_IO2 PD13
TSC_G4_IO3 PA13 - TSC_G8_IO3 PD14
TSC_G4_IO4 PA14 - TSC_G8_IO4 PD15
Table 11. Number of capacitive sensing channels available on
STM32F302xD/E devices
Analog I/O group
Number of capacitive sensing channels
STM32F302VE/ZE STM32F302RE
G1 3 3
G2 3 3
G3 3 3
G4 3 3
G5 3 3
G6 3 3
G7 3 0
G8 3 0
Number of capacitive sensing
channels 24 18
Table 10. Capacitive sensing GPIOs available on STM32F302xD/E devices (continued)
Group Capacitive sensing
signal name
Pin
name -Group Capacitive sensing
signal name
Pin
name

DocID026900 Rev 4 33/168
STM32F302xD STM32F302xE Functional overview
63
port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed
channel. Real-time instruction and data flow activity can be recorded and then formatted for
display on the host computer running debugger software. TPA hardware is commercially
available from common development tool vendors. It operates with third party debugger
software tools.

Pinout and pin description STM32F302xD STM32F302xE
34/168 DocID026900 Rev 4
4 Pinout and pin description
Figure 4. STM32F302xD/E LQFP64 pinout
069
9%$7
3&26&B,1
3)26&B,1
1567
3&
3&
3&
3&
966$
9''$
3$
3$
3$
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
966
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
3%
/4)3
3&
9''
966
9''
966
3)26&B287
3&26&B287

DocID026900 Rev 4 35/168
STM32F302xD STM32F302xE Pinout and pin description
63
Figure 5. STM32F302xD/E LQFP100 pinout
069
9''
966
3)
3$
3$
3$
3$
3&26&B,1 3$
3&26&B287 3$
3) 3&
3) 3&
3)26&B,1 3&
3)2&6B287 3&
1567 3'
3& 3'
3& 3'
3& 3'
3& 3'
3) 3'
966$95() 3'
95() 3'
9''$ 3%
3$ 3%
3$ 3%
3$ 3%
3$
3(
3(
3(
3(
3(
9''
966
3(
3(
3%
3%
%22 7
3%
3%
3%
3%
3%
3'
3'
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
/4)3
3&
9%$7
3$
3$
3$
3&
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3(
3%
3%
966
9''
9''
966
3$

Pinout and pin description STM32F302xD STM32F302xE
36/168 DocID026900 Rev 4
Figure 6. STM32F302xD/E LQFP144 pinout
069
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
3*
3*
3*
3*
3*
3*
3'
3'
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
3(
3(
3(
3( 3$
3( 3$
9%$7 3$
3$
3$
3&
3&
3) 3&
3) 3&
3)
3)
3*
3*
3) 3*
3) 3*
3) 3*
3) 3*
3) 3*
3'
3'
1567
3&
3& 3'
3& 3'
3& 3'
3'
3'
3'
3%
3%
3%
3%
3$
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
3)
3)
3)
3*
3*
3(
3(
3(
3(
3(
3(
3(
3(
3(
3%
3%
/4)3
9''
966
9''
966
9''
966
3&B$17,B7$03
3&B26&B,1
3+
3+
966
9''
3)26&B,1
3)26&B287
966$
95()
95()
9''$
3$B:.83
3$
3$
966
9''
966
9''
966
9''
966
9''
966
9''
966
9''
3$
3+
966
9''
3&B26&B287

DocID026900 Rev 4 37/168
STM32F302xD STM32F302xE Pinout and pin description
63
Figure 7. STM32F302xD/E WLCSP100 ballout
06Y9
$
%
&
'
(
)
*
+
-
.
3$
3$
3$
3$
3$
%227
3(
966
3(
3(
3$
3(
3(
9''
3%
3%
3%
3%
3%
3$
3&
3&
3$
3%
3%
3%
3%
3%
3(
3(
3&
3'
3%
3%
3%
3'
3'
3'
3'
3&
3&
3$
3&
3'
3'
3%
3%
3'
3'
3&
3&
3'
3'
3%
966
966
3$
3$
9''
3$
3&
3'
3'
966
966
966
966
3)
3$
3$
3&
966$
95()
9''
3(
3(
9''
3(
9%$7
3)
3)
26&,1
3&
3&
9''$
966
9''
9''
3&
26&,1
3)
3)
3&
3&
26&287
1567
3&
3$
3$
966
3)
26&287
9''
3(

Pinout and pin description STM32F302xD STM32F302xE
38/168 DocID026900 Rev 4
Figure 8. STM32F302xD/E UFBGA100 ballout
069
$
%
(
'
&
)
*
+
-
.
/
0
3(
3&
3&
3(
3&
3)
966$
95()
9''$
95()
3(
3(
3(
3(
9%$7
3)
3)
1567
3&
3&
3$
3$
3%
3(
3%
966
966
9''
3&
3$
3$
3$
%227
3%
9''
3$
3$
3$
3'
3%
3%
3&
3&
3%
3'
3'
3%
3%
3%
3'
3(
3(
3%
3'
3'
3'
3(
3(
3$
3'
3'
3'
3(
3(
3$
3&
3&
3&
3$
3'
3'
3%
3%
3(
3$
3&
3)
3$
3&
3'
3'
3%
3%
3(
966
9''
3$
3$
3$
3&
3&
3'
3'
3%
3%
3(
966
9''
3&
3)26&,1
3)26&287

DocID026900 Rev 4 39/168
STM32F302xD STM32F302xE Pinout and pin description
63
Table 12. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, I2C FM+ option
TTa 3.3 V tolerant I/O
TC Standard 3.3V I/O
B Dedicated to BOOT0 pin
RST Bi-directional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 13. STM32F302xD/E pin definitions
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144
- 1 D6 1 PE2 I/O FT (1)
TRACECK, EVENTOUT,
TIM3_CH1, TSC_G7_IO1,
SPI4_SCK, FMC_A23
-
- 2 D7 2 PE3 I/O FT (1)
TRACED0, EVENTOUT,
TIM3_CH2, TSC_G7_IO2,
SPI4_NSS, FMC_A19
-
- 3 C8 3 PE4 I/O FT (1)
TRACED1, EVENTOUT,
TIM3_CH3, TSC_G7_IO3,
SPI4_NSS, FMC_A20
-
- 4 B9 4 PE5 I/O FT (1)
TRACED2, EVENTOUT,
TIM3_CH4, TSC_G7_IO4,
SPI4_MISO, FMC_A21
-
- 5 E7 5 PE6 I/O FT (1) TRACED3, EVENTOUT,
SPI4_MOSI, FMC_A22 WKUP3, RTC_TAMP3
16D86VBAT S - - - -

Pinout and pin description STM32F302xD STM32F302xE
40/168 DocID026900 Rev 4
27C97PC13
(2) I/O TC - EVENTOUT, TIM1_CH1N WKUP2,RTC_TAMP1,
RTC_TS, RTC_OUT
38C108PC14 -
OSC32_IN (2) I/O TC - EVENTOUT OSC32_IN
49D99
PC15 -
OSC32_OUT
(2)
I/O TC - EVENTOUT OSC32_OUT
- - - 10 PH0 I/O FT (1) EVENTOUT, FMC_A0 -
- - - 11 PH1 I/O FT (1) EVENTOUT, FMC_A1 -
- 19 E8 12 PF2 I/O TTa (1) EVENTOUT, FMC_A2 ADC12_IN10
- - - 13 PF3 I/O FT (1) EVENTOUT, FMC_A3 -
- - - 14 PF4 I/O TTa (1) EVENTOUT, COMP1_OUT,
FMC_A4 ADC1_IN5(3)
- - - 15 PF5 I/O FT (1) EVENTOUT, FMC_A5 -
- - - 16 VSS S - (1) --
--- 17VDD S -
(1) --
- 73 C1 18 PF6 I/O FTf (1)
EVENTOUT, TIM4_CH4,
I2C2_SCL, USART3_RTS,
FMC_NIORD
-
- - - 19 PF7 I/O FT (1) EVENTOUT, FMC_NREG -
- - - 20 PF8 I/O FT (1) EVENTOUT, FMC_NIOWR -
- 10 D10 21 PF9 I/O FT (1) EVENTOUT, TIM15_CH1,
SPI2_SCK, FMC_CD -
- 11 E10 22 PF10 I/O FT (1) EVENTOUT, TIM15_CH2,
SPI2_SCK, FMC_INTR -
5 12 F10 23 PF0-OSC_IN I FTf -
EVENTOUT, I2C2_SDA,
SPI2_NSS/I2S2_WS,
TIM1_CH3N
OSC_IN
613F924
PF1-
OSC_OUT OFTf-
EVENTOUT, I2C2_SCL,
SPI2_SCK/I2S2_CK OSC_OUT
7 14 E9 25 NRST I-O RST - Device reset input/internal reset output (active low)
8 15 G10 26 PC0 I/O TTa - EVENTOUT, TIM1_CH1 ADC12_IN6
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

DocID026900 Rev 4 41/168
STM32F302xD STM32F302xE Pinout and pin description
63
9 16 G9 27 PC1 I/O TTa - EVENTOUT, TIM1_CH2 ADC12_IN7
10 17 G8 28 PC2 I/O TTa - EVENTOUT, TIM1_CH3 ADC12_IN8
11 18 H10 29 PC3 I/O TTa - EVENTOUT, TIM1_CH4,
TIM1_BKIN2 ADC12_IN9
12 20 H8 30 VSSA S - (1) --
- - - 31 VREF- S - (1) --
-21J832VREF+
(4) S-- - -
13 22 J10 33 VDDA S - - - -
14 23 H9 34 PA0 I/O TTa -
TIM2_CH1/TIM2_ETR,
TSC_G1_IO1,
USART2_CTS,
COMP1_OUT, EVENTOUT
ADC1_IN1(3), COMP1_INM,
RTC_TAMP2, WKUP1
15 24 J9 35 PA1 I/O TTa -
RTC_REFIN, TIM2_CH2,
TSC_G1_IO2,
USART2_RTS,
TIM15_CH1N, EVENTOUT
ADC1_IN2(3), COMP1_INP,
OPAMP1_VINP
16 25 F7 36 PA2 I/O TTa (5)
TIM2_CH3, TSC_G1_IO3,
USART2_TX,
COMP2_OUT, TIM15_CH1,
EVENTOUT
ADC1_IN3(3), COMP2_INM,
OPAMP1_VOUT
17 26 G7 37 PA3 I/O TTa -
TIM2_CH4, TSC_G1_IO4,
USART2_RX, TIM15_CH2,
EVENTOUT
ADC1_IN4(3),
OPAMP1_VINM/
OPAMP1_VINP
18 27 K9,
K10 38 VSS S - - - -
19 28 K8 39 VDD S - (1) --
20 29 J7 40 PA4 I/O TTa (5)
TIM3_CH2, TSC_G2_IO1,
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK, EVENTOUT
ADC2_IN1(3), DAC1_OUT1,
COMP1_INM,
COMP2_INM,
COMP4_INM,
COMP6_INM,
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

Pinout and pin description STM32F302xD STM32F302xE
42/168 DocID026900 Rev 4
21 30 H7 41 PA5 I/O TTa (5)
TIM2_CH1/TIM2_ETR,
TSC_G2_IO2, SPI1_SCK,
EVENTOUT
ADC2_IN2(3), COMP1_INM,
COMP2_INM,
COMP4_INM,
COMP6_INM,
OPAMP1_VINP,
OPAMP2_VINM,
22 31 H6 42 PA6 I/O TTa (5)
TIM16_CH1, TIM3_CH1,
TSC_G2_IO3, SPI1_MISO,
TIM1_BKIN, COMP1_OUT,
EVENTOUT
ADC2_IN3(3),
OPAMP2_VOUT
23 32 K7 43 PA7 I/O TTa -
TIM17_CH1, TIM3_CH2,
TSC_G2_IO4, SPI1_MOSI,
TIM1_CH1N, EVENTOUT
ADC2_IN4(3), COMP2_INP,
OPAMP1_VINP,
OPAMP2_VINP
24 33 G6 44 PC4 I/O TTa - EVENTOUT, TIM1_ETR,
USART1_TX ADC2_IN5(3)
25 34 F6 45 PC5 I/O TTa - EVENTOUT, TIM15_BKIN,
TSC_G3_IO1, USART1_RX
ADC2_IN11,
OPAMP1_VINM,
OPAMP2_VINM
26 35 J6 46 PB0 I/O TTa - TIM3_CH3, TSC_G3_IO2,
TIM1_CH2N, EVENTOUT
COMP4_INP,
OPAMP2_VINP,
27 36 K6 47 PB1 I/O TTa (5)
TIM3_CH4, TSC_G3_IO3,
TIM1_CH3N, COMP4_OUT,
EVENTOUT
-
28 37 K5 48 PB2 I/O TTa - TSC_G3_IO4, EVENTOUT ADC2_IN12, COMP4_INM
- - - 49 PF11 I/O FT (1) EVENTOUT -
- - - 50 PF12 I/O FT (1) EVENTOUT, FMC_A6 -
- - - 51 VSS S - - - -
--- 52VDD S -
(1) --
- - - 53 PF13 I/O FT (1) EVENTOUT, FMC_A7 -
- - - 54 PF14 I/O FT (1) EVENTOUT, FMC_A8 -
- - - 55 PF15 I/O FT (1) EVENTOUT, FMC_A9 -
- - - 56 PG0 I/O FT (1) EVENTOUT, FMC_A10 -
- - - 57 PG1 I/O FT (1) EVENTOUT, FMC_A11 -
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

DocID026900 Rev 4 43/168
STM32F302xD STM32F302xE Pinout and pin description
63
- 38 F8 58 PE7 I/O TTa (1) EVENTOUT, TIM1_ETR,
FMC_D4 -
- 39 E6 59 PE8 I/O TTa (1) EVENTOUT, TIM1_CH1N,
FMC_D5 COMP4_INM
- 40 - 60 PE9 I/O TTa (1) EVENTOUT, TIM1_CH1,
FMC_D6 -
- - - 61 VSS S - (1) --
--- 62VDD S -
(1) --
- 41 - 63 PE10 I/O TTa (1) EVENTOUT, TIM1_CH2N,
FMC_D7 -
- 42 H5 64 PE11 I/O TTa (1) EVENTOUT, TIM1_CH2,
SPI4_NSS, FMC_D8 -
-43G565PE12 I/OTTa
(1) EVENTOUT, TIM1_CH3N,
SPI4_SCK, FMC_D9 -
- 44 - 66 PE13 I/O TTa (1) EVENTOUT, TIM1_CH3,
SPI4_MISO, FMC_D10 -
- 45 - 67 PE14 I/O TTa (1)
EVENTOUT, TIM1_CH4,
SPI4_MOSI, TIM1_BKIN2,
FMC_D11
-
- 46 - 68 PE15 I/O TTa (1) EVENTOUT, TIM1_BKIN,
USART3_RX, FMC_D12 -
29 47 K4 69 PB10 I/O TTa - TIM2_CH3, TSC_SYNC,
USART3_TX, EVENTOUT -
30 48 K3 70 PB11 I/O TTa - TIM2_CH4, TSC_G6_IO1,
USART3_RX, EVENTOUT ADC12_IN14, COMP6_INP
31 49
K1,
J1,
K2
71 VSS S - - - -
32 50 J5 72 VDD S - - - -
33 51 J4 73 PB12 I/O TTa (5)
TSC_G6_IO2,
I2C2_SMBAL,
SPI2_NSS/I2S2_WS,
TIM1_BKIN, USART3_CK,
EVENTOUT
-
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

Pinout and pin description STM32F302xD STM32F302xE
44/168 DocID026900 Rev 4
34 52 J3 74 PB13 I/O TTa -
TSC_G6_IO3,
SPI2_SCK/I2S2_CK,
TIM1_CH1N,
USART3_CTS, EVENTOUT
-
35 53 J2 75 PB14 I/O TTa -
TIM15_CH1, TSC_G6_IO4,
SPI2_MISO/I2S2ext_SD,
TIM1_CH2N,
USART3_RTS, EVENTOUT
OPAMP2_VINP
36 54 H4 76 PB15 I/O TTa -
RTC_REFIN, TIM15_CH2,
TIM15_CH1N, TIM1_CH3N,
SPI2_MOSI/I2S2_SD,
EVENTOUT
COMP6_INM
- 55 - 77 PD8 I/O TTa (1) EVENTOUT, USART3_TX,
FMC_D13 -
-56G478PD9 I/OTTa
(1) EVENTOUT, USART3_RX,
FMC_D14 -
- 57 H3 79 PD10 I/O TTa (1) EVENTOUT, USART3_CK,
FMC_D15 COMP6_INM
- 58 H2 80 PD11 I/O TTa (1) EVENTOUT,
USART3_CTS, FMC_A16 -
- 59 H1 81 PD12 I/O TTa (1)
EVENTOUT, TIM4_CH1,
TSC_G8_IO1,
USART3_RTS, FMC_A17
-
-60G382PD13 I/OTTa
(1) EVENTOUT, TIM4_CH2,
TSC_G8_IO2, FMC_A18 -
- - - 83 VSS S - (1) --
--- 84VDD S -
(1) --
-61G285PD14 I/OTTa
(1) EVENTOUT, TIM4_CH3,
TSC_G8_IO3, FMC_D0 OPAMP2_VINP
-62G186PD15 I/OTTa
(1)
EVENTOUT, TIM4_CH4,
TSC_G8_IO4, SPI2_NSS,
FMC_D1
-
- - - 87 PG2 I/O FT (1) EVENTOUT, FMC_A12 -
- - - 88 PG3 I/O FT (1) EVENTOUT, FMC_A13 -
- - - 89 PG4 I/O FT (1) EVENTOUT, FMC_A14 -
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

DocID026900 Rev 4 45/168
STM32F302xD STM32F302xE Pinout and pin description
63
- - - 90 PG5 I/O FT (1) EVENTOUT, FMC_A15 -
- - - 91 PG6 I/O FT (1) EVENTOUT, FMC_INT2 -
- - - 92 PG7 I/O FT (1) EVENTOUT, FMC_INT3 -
- - - 93 PG8 I/O FT (1) EVENTOUT -
- - - 94 VSS S - (1) --
--- 95VDD S -
(1) --
37 63 F4 96 PC6 I/O FT - EVENTOUT, TIM3_CH1,
I2S2_MCK, COMP6_OUT -
38 64 F2 97 PC7 I/O FT - EVENTOUT, TIM3_CH2,
I2S3_MCK -
39 65 F1 98 PC8 I/O FT - EVENTOUT, TIM3_CH3 -
40 66 F3 99 PC9 I/O FTf - EVENTOUT, TIM3_CH4,
I2C3_SDA, I2SCKIN -
41 67 F5 100 PA8 I/O FTf -
MCO, I2C3_SCL,
I2C2_SMBAL, I2S2_MCK,
TIM1_CH1, USART1_CK,
TIM4_ETR, EVENTOUT
-
42 68 E5 101 PA9 I/O FTf -
I2C3_SMBAL,
TSC_G4_IO1, I2C2_SCL,
I2S3_MCK, TIM1_CH2,
USART1_TX, TIM15_BKIN,
TIM2_CH3, EVENTOUT
-
43 69 E1 102 PA10 I/O FTf -
TIM17_BKIN,
TSC_G4_IO2, I2C2_SDA,
SPI2_MISO/I2S2ext_SD,
TIM1_CH3, USART1_RX,
COMP6_OUT, TIM2_CH4,
EVENTOUT
-
44 70 E2 103 PA11 I/O FT -
SPI2_MOSI/I2S2_SD,
TIM1_CH1N,
USART1_CTS,
COMP1_OUT, CAN_RX,
TIM4_CH1, TIM1_CH4,
TIM1_BKIN2, EVENTOUT
USB_DM
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

Pinout and pin description STM32F302xD STM32F302xE
46/168 DocID026900 Rev 4
45 71 D1 104 PA12 I/O FT -
TIM16_CH1, I2SCKIN,
TIM1_CH2N,
USART1_RTS,
COMP2_OUT, CAN_TX,
TIM4_CH2, TIM1_ETR,
EVENTOUT
USB_DP
46 72 E3 105 PA13 I/O FT -
SWDIO-JTMS,
TIM16_CH1N,
TSC_G4_IO3, IR-OUT,
USART3_CTS, TIM4_CH3,
EVENTOUT
-
- - - 106 PH2 I/O FT (1) EVENTOUT -
47 74
A1,
A2,
B1
107 VSS S - - - -
48 75 D2 108 VDD S - - - -
49 76 C2 109 PA14 I/O FTf -
SWCLK-JTCK,
TSC_G4_IO4, I2C1_SDA,
TIM1_BKIN, USART2_TX,
EVENTOUT
-
50 77 B2 110 PA15 I/O FTf -
JTDI,
TIM2_CH1/TIM2_ETR,
TSC_SYNC, I2C1_SCL,
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_RX, TIM1_BKIN,
EVENTOUT
-
51 78 E4 111 PC10 I/O FT -
EVENTOUT, UART4_TX,
SPI3_SCK/I2S3_CK,
USART3_TX
-
52 79 D3 112 PC11 I/O FT -
EVENTOUT, UART4_RX,
SPI3_MISO/I2S3ext_SD,
USART3_RX
-
53 80 A3 113 PC12 I/O FT -
EVENTOUT, UART5_TX,
SPI3_MOSI/I2S3_SD,
USART3_CK
-
- 81 B3 114 PD0 I/O FT (1) EVENTOUT, CAN_RX,
FMC_D2 -
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

DocID026900 Rev 4 47/168
STM32F302xD STM32F302xE Pinout and pin description
63
- 82 C3 115 PD1 I/O FT (1) EVENTOUT, CAN_TX,
FMC_D3 -
54 83 A4 116 PD2 I/O FT - EVENTOUT, TIM3_ETR,
UART5_RX -
- 84 B4 117 PD3 I/O FT (1)
EVENTOUT,
TIM2_CH1/TIM2_ETR,
USART2_CTS, FMC_CLK
-
- 85 C4 118 PD4 I/O FT (1) EVENTOUT, TIM2_CH2,
USART2_RTS, FMC_NOE -
- 86 - 119 PD5 I/O FT (1) EVENTOUT, USART2_TX,
FMC_NWE -
- - - 120 VSS S - (1) --
--- 121VDD S -
(1) --
- 87 - 122 PD6 I/O FT (1) EVENTOUT, TIM2_CH4,
USART2_RX, FMC_NWAIT -
- 88 D4 123 PD7 I/O FT (1)
EVENTOUT, TIM2_CH3,
USART2_CK,
FMC_NE1/FMC_NCE2
-
- - - 124 PG9 I/O FT (1) EVENTOUT,
FMC_NE2/FMC_NCE3 -
- - - 125 PG10 I/O FT (1) EVENTOUT,
FMC_NCE4_1/FMC_NE3 -
- - - 126 PG11 I/O FT (1) EVENTOUT, FMC_NCE4_2 -
- - - 127 PG12 I/O FT (1) EVENTOUT, FMC_NE4 -
- - - 128 PG13 I/O FT (1) EVENTOUT, FMC_A24 -
- - - 129 PG14 I/O FT (1) EVENTOUT, FMC_A25 -
- - - 130 VSS S - (1) --
--- 131VDD S -
(1) --
- - - 132 PG15 I/O FT (1) EVENTOUT -
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

Pinout and pin description STM32F302xD STM32F302xE
48/168 DocID026900 Rev 4
55 89 A5 133 PB3 I/O FT -
JTDO-TRACESWO,
TIM2_CH2, TIM4_ETR,
TSC_G5_IO1, SPI1_SCK,
SPI3_SCK/I2S3_CK,
USART2_TX, TIM3_ETR,
EVENTOUT
-
56 90 B5 134 PB4 I/O FT -
JTRST, TIM16_CH1,
TIM3_CH1, TSC_G5_IO2,
SPI1_MISO,
SPI3_MISO/I2S3ext_SD,
USART2_RX, TIM17_BKIN,
EVENTOUT
-
57 91 A6 135 PB5 I/O FTf -
TIM16_BKIN, TIM3_CH2,
I2C1_SMBAl, SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
USART2_CK, I2C3_SDA,
TIM17_CH1, EVENTOUT
-
58 92 B6 136 PB6 I/O FTf -
TIM16_CH1N, TIM4_CH1,
TSC_G5_IO3, I2C1_SCL,
USART1_TX, EVENTOUT
-
59 93 C5 137 PB7 I/O FTf -
TIM17_CH1N, TIM4_CH2,
TSC_G5_IO4, I2C1_SDA,
USART1_RX, TIM3_CH4,
FMC_NADV, EVENTOUT
-
60 94 A7 138 BOOT0 I - - - -
61 95 D5 139 PB8 I/O FTf -
TIM16_CH1, TIM4_CH3,
TSC_SYNC, I2C1_SCL,
USART3_RX,
COMP1_OUT, CAN_RX,
TIM1_BKIN, EVENTOUT
-
62 96 C6 140 PB9 I/O FTf -
TIM17_CH1, TIM4_CH4,
I2C1_SDA, IR-OUT,
USART3_TX,
COMP2_OUT, CAN_TX,
EVENTOUT
-
- 97 B7 141 PE0 I/O FT (1)
EVENTOUT, TIM4_ETR,
TIM16_CH1, USART1_TX,
FMC_NBL0
-
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

DocID026900 Rev 4 49/168
STM32F302xD STM32F302xE Pinout and pin description
63
- 98 A8 142 PE1 I/O FT (1) EVENTOUT, TIM17_CH1,
USART1_RX, FMC_NBL1 -
63 99 C7 143 VSS S - - - -
64 100
A9,
A10
,
B10
,
B8
144 VDD S - - - -
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3
mA), the use of GPIO PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED)
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to
the Battery backup domain and BKP register description sections in the RM0316 reference manual.
3. Fast ADC channel.
4. The VREF+ functionality is not available on the 64-pin package. In this package, the VREF+ is internally connected to
VDDA.
5. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
Table 13. STM32F302xD/E pin definitions (continued)
Pin number
Pin name
(function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional functions
LQFP64
LQFP100
WLCSP100
LQFP144

Pinout and pin description STM32F302xD STM32F302xE
50/168 DocID026900 Rev 4
Table 14. STM32F302xD/E alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT
Port A
PA0 -
TIM2_
CH1/TIM
2_ETR
-TSC_G1
_IO1 ---
USART2_
CTS
COMP1_
OUT -- - - - - - EVENT
OUT
PA1 RTC_
REFIN
TIM2_
CH2 -TSC_G1
_IO2 ---
USART2_
RTS -TIM15_
CH1N -- ---
EVENT
OUT
PA2 - TIM2_
CH3 -TSC_G1
_IO3 ---
USART2_
TX
COMP2_
OUT
TIM15_
CH1 -- ---
EVENT
OUT
PA3 - TIM2_
CH4 -TSC_G1
_IO4 ---
USART2_
RX -TIM15_
CH2 -- ---
EVENT
OUT
PA4 - TIM3_
CH2
TSC_G2
_IO1 -SPI1_NSS
SPI3_NSS
/I2S3_WS
USART2_
CK -------
EVENT
OUT
PA5 -
TIM2_
CH1/TIM
2_ETR
-TSC_G2
_IO2 -SPI1_SCK---------
EVENT
OUT
PA6 - TIM16_
CH1
TIM3_
CH1
TSC_G2
_IO3 -SPI1_
MISO
TIM1_
BKIN -COMP1_
OUT ------
EVENT
OUT
PA7 - TIM17_
CH1
TIM3_
CH2
TSC_G2
_IO4 -SPI1_
MOSI
TIM1_
CH1N --------
EVENT
OUT
PA8 MCO - - I2C3_
SCL
I2C2_
SMBAL
I2S2_
MCK
TIM1_
CH1
USART1_
CK --
TIM4_
ETR ----
EVENT
OUT
PA9 - - I2C3_
SMBAL
TSC_G4
_IO1 I2C2_SCL I2S3_
MCK
TIM1_
CH2
USART1_
TX -TIM15_
BKIN
TIM2_
CH3 ----
EVENT
OUT

STM32F302xD STM32F302xE Pinout and pin description
DocID026900 Rev 4 51/168
Port A
PA10 - TIM17_
BKIN -TSC_G4
_IO2 I2C2_SDA
SPI2_MIS
O/I2S2ext
_SD
TIM1_
CH3
USART1_
RX
COMP6_
OUT -TIM2_
CH4 ----
EVENT
OUT
PA11 - - - - -
SPI2_MO
SI/I2S2_
SD
TIM1_
CH1N
USART1_
CTS
COMP1_
OUT CAN_RX TIM4_
CH1
TIM1_
CH4
TIM1_
BKIN2 --
EVENT
OUT
PA12 - TIM16_
CH1 ---I2SCKIN
TIM1_
CH2N
USART1_
RTS
COMP2_
OUT CAN_TX TIM4_
CH2
TIM1_
ETR ---
EVENT
OUT
PA13 SWDIO-
JTMS
TIM16_
CH1N -TSC_G4
_IO3 -IR-OUT-
USART3_
CTS --
TIM4_
CH3 ----
EVENT
OUT
PA14 SWCLK-
JTCK --
TSC_G4
_IO4 I2C1_SDA - TIM1_
BKIN
USART2_
TX -------
EVENT
OUT
PA15 JTDI
TIM2_
CH1/TIM
2_ETR
-TSC_
SYNC I2C1_SCL SPI1_NSS SPI3_NSS
/I2S3_WS
USART2_
RX -TIM1_
BKIN -- ---
EVENT
OUT
Port B
PB0 - - TIM3_
CH3
TSC_G3
_IO2 --
TIM1_
CH2N --------
EVENT
OUT
PB1 - - TIM3_
CH4
TSC_G3
_IO3 --
TIM1_
CH3N -COMP4_
OUT ------
EVENT
OUT
PB2 - - - TSC_G3
_IO4 -----------
EVENT
OUT
PB3
JTDO-
TRACES
WO
TIM2_
CH2
TIM4_
ETR
TSC_G5
_IO1 -SPI1_SCK
SPI3_SCK
/I2S3_CK
USART2_
TX --
TIM3_
ETR ----
EVENT
OUT
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

Pinout and pin description STM32F302xD STM32F302xE
52/168 DocID026900 Rev 4
Port B
PB4 JTRST TIM16_
CH1
TIM3_
CH1
TSC_G5
_IO2 -SPI1_
MISO
SPI3_MIS
O/I2S3ext
_SD
USART2_
RX --
TIM17_
BKIN ----
EVENT
OUT
PB5 - TIM16_
BKIN
TIM3_
CH2 -I2C1_
SMBAl
SPI1_
MOSI
SPI3_MO
SI/I2S3_
SD
USART2_
CK I2C3_SDA - TIM17_
CH1 ----
EVENT
OUT
PB6 - TIM16_
CH1N
TIM4_
CH1
TSC_G5
_IO3 I2C1_SCL - - USART1_
TX -------
EVENT
OUT
PB7 - TIM17_
CH1N
TIM4_
CH2
TSC_G5
_IO4 I2C1_SDA - - USART1_
RX --
TIM3_
CH4 -FMC_
NADV --
EVENT
OUT
PB8 - TIM16_
CH1
TIM4_
CH3
TSC_
SYNC I2C1_SCL - - USART3_
RX
COMP1_
OUT CAN_RX - - TIM1_
BKIN --
EVENT
OUT
PB9 - TIM17_
CH1
TIM4_
CH4 - I2C1_SDA - IR-OUT USART3_
TX
COMP2_
OUT CAN_TX - - - - - EVENT
OUT
PB10 - TIM2_
CH3 -TSC_
SYNC ---
USART3_
TX -------
EVENT
OUT
PB11 - TIM2_
CH4 -TSC_G6
_IO1 ---
USART3_
RX -------
EVENT
OUT
PB12 - - - TSC_G6
_IO2
I2C2_
SMBAL
SPI2_NSS
/I2S2_WS
TIM1_
BKIN
USART3_
CK -------
EVENT
OUT
PB13 - - - TSC_G6
_IO3 -SPI2_SCK
/I2S2_CK
TIM1_
CH1N
USART3_
CTS -------
EVENT
OUT
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

STM32F302xD STM32F302xE Pinout and pin description
DocID026900 Rev 4 53/168
Port B
PB14 - TIM15_
CH1 -TSC_G6
_IO4 -
SPI2_MIS
O/I2S2ext
_SD
TIM1_
CH2N
USART3_
RTS -------
EVENT
OUT
PB15 RTC_
REFIN
TIM15_
CH2
TIM15_
CH1N -TIM1_
CH3N
SPI2_MO
SI/I2S2_S
D
---------
EVENT
OUT
Port C
PC0 - EVENT
OUT
TIM1_
CH1 -------------
PC1 - EVENT
OUT
TIM1_
CH2 -------------
PC2 - EVENT
OUT
TIM1_
CH3 -------------
PC3 - EVENT
OUT
TIM1_
CH4 -- -
TIM1_
BKIN2 ---------
PC4 - EVENT
OUT
TIM1_
ETR -- - -
USART1_
TX --------
PC5 - EVENT
OUT
TIM15_
BKIN
TSC_G3
_IO1 ---
USART1_
RX --------
PC6 - EVENT
OUT
TIM3_
CH1 -- -
I2S2_
MCK
COMP6_O
UT --------
PC7 - EVENT
OUT
TIM3_
CH2 -- -
I2S3_
MCK ---------
PC8 - EVENT
OUT
TIM3_
CH3 -------------
PC9 - EVENT
OUT
TIM3_
CH4
I2C3_
SDA -I2SCKIN----------
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

Pinout and pin description STM32F302xD STM32F302xE
54/168 DocID026900 Rev 4
Port C
PC10 - EVENT
OUT ---
UART4_
TX
SPI3_SCK
/I2S3_CK
USART3_
TX --------
PC11 - EVENT
OUT ---
UART4_
RX
SPI3_MIS
O/I2S3ext
_SD
USART3_
RX --------
PC12 - EVENT
OUT ---
UART5_
TX
SPI3_MO
SI/I2S3_
SD
USART3_
CK --------
PC13 - EVENT
OUT --
TIM1_
CH1N -----------
PC14 - EVENT
OUT --------------
PC15 - EVENT
OUT --------------
Port D
PD0 - EVENT
OUT - - - - - CAN_RX - - - - FMC_D2 - - -
PD1 - EVENT
OUT - - - - CAN_TX - - - - FMC_D3 - - -
PD2 - EVENT
OUT
TIM3_
ETR --
UART5_
RX ----------
PD3 - EVENT
OUT
TIM2_CH
1/TIM2_
ETR
-- - -
USART2_
CTS ----
FMC_
CLK -- -
PD4 - EVENT
OUT
TIM2_
CH2 -- - -
USART2_
RTS ----
FMC_
NOE -- -
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

STM32F302xD STM32F302xE Pinout and pin description
DocID026900 Rev 4 55/168
Port D
PD5 - EVENT
OUT --- - -
USART2_
TX ----
FMC_
NWE -- -
PD6 - EVENT
OUT
TIM2_
CH4 -- - -
USART2_
RX ----
FMC_
NWAIT -- -
PD7 - EVENT
OUT
TIM2_
CH3 -- - -
USART2_
CK ----
FMC_NE
1/FMC_
NCE2
-- -
PD8 - EVENT
OUT --- - -
USART3_
TX ----
FMC_
D13 -- -
PD9 - EVENT
OUT --- - -
USART3_
RX ----
FMC_
D14 -- -
PD10 - EVENT
OUT --- - -
USART3_
CK ----
FMC_
D15 -- -
PD11 - EVENT
OUT --- - -
USART3_
CTS ----
FMC_
A16 -- -
PD12 - EVENT
OUT
TIM4_
CH1
TSC_G8
_IO1 ---
USART3_
RTS ----
FMC_
A17 -- -
PD13 - EVENT
OUT
TIM4_
CH2
TSC_G8
_IO2 --------
FMC_
A18 -- -
PD14 - EVENT
OUT
TIM4_
CH3
TSC_G8
_IO3 --------FMC_D0---
PD15 - EVENT
OUT
TIM4_
CH4
TSC_G8
_IO4 - - SPI2_NSS - - - - - FMC_D1 - - -
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

Pinout and pin description STM32F302xD STM32F302xE
56/168 DocID026900 Rev 4
Port E
PE0 - EVENT
OUT
TIM4_
ETR -TIM16_
CH1 --
USART1_
TX ----
FMC_
NBL0 -- -
PE1 - EVENT
OUT --
TIM17_
CH1 --
USART1_
RX ----
FMC_
NBL1 -- -
PE2 TRACECK EVENT
OUT
TIM3_
CH1
TSC_G7
_IO1 -SPI4_SCK------
FMC_
A23 -- -
PE3 TRACED0 EVENT
OUT
TIM3_
CH2
TSC_G7
_IO2 -SPI4_NSS------
FMC_
A19 -- -
PE4 TRACED1 EVENT
OUT
TIM3_
CH3
TSC_G7
_IO3 -SPI4_NSS------
FMC_
A20 -- -
PE5 TRACED2 EVENT
OUT
TIM3_
CH4
TSC_G7
_IO4 -SPI4_
MISO ------
FMC_
A21 -- -
PE6 TRACED3 EVENT
OUT ---
SPI4_
MOSI ------
FMC_
A22 -- -
PE7 - EVENT
OUT
TIM1_
ETR ---------FMC_D4---
PE8 - EVENT
OUT
TIM1_
CH1N ---------FMC_D5---
PE9 - EVENT
OUT
TIM1_
CH1 ---------FMC_D6---
PE10 - EVENT
OUT
TIM1_
CH2N ---------FMC_D7---
PE11 - EVENT
OUT
TIM1_
CH2 - - SPI4_NSS - - - - - - FMC_D8 - - -
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

STM32F302xD STM32F302xE Pinout and pin description
DocID026900 Rev 4 57/168
Port E
PE12 - EVENT
OUT
TIM1_
CH3N - - SPI4_SCK - - - - - - FMC_D9 - - -
PE13 - EVENT
OUT
TIM1_
CH3 --
SPI4_
MISO ------
FMC_
D10 -- -
PE14 - EVENT
OUT
TIM1_
CH4 --
SPI4_
MOSI
TIM1_
BKIN2 -----
FMC_
D11 -- -
PE15 - EVENT
OUT
TIM1_
BKIN -- - -
USART3_
RX ----
FMC_
D12 -- -
Port F
PF0 - EVENT
OUT - - I2C2_SDA SPI2_NSS
/I2S2_WS
TIM1_
CH3N ---------
PF1 - EVENT
OUT - - I2C2_SCL SPI2_SCK
/I2S2_CK ----------
PF2 - EVENT
OUT ----------FMC_A2---
PF3 - EVENT
OUT ----------FMC_A3---
PF4 - EVENT
OUT
COMP1_
OUT ---------FMC_A4---
PF5 - EVENT
OUT ----------FMC_A5---
PF6 - EVENT
OUT
TIM4_
CH4 - I2C2_SCL - - USART3_
RTS ----
FMC_
NIORD -- -
PF7 - EVENT
OUT ----------
FMC_
NREG -- -
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

Pinout and pin description STM32F302xD STM32F302xE
58/168 DocID026900 Rev 4
Port F
PF8 - EVENT
OUT ----------
FMC_
NIOWR -- -
PF9 - EVENT
OUT -TIM15_
CH1 -SPI2_SCK------FMC_CD---
PF10 - EVENT
OUT -TIM15_
CH2 -SPI2_SCK------
FMC_
INTR -- -
PF11 - EVENT
OUT --------------
PF12 - EVENT
OUT ----------FMC_A6---
PF13 - EVENT
OUT ----------FMC_A7---
PF14 - EVENT
OUT ----------FMC_A8---
PF15 - EVENT
OUT ----------FMC_A9---
Port G
PG0 - EVENT
OUT ----------
FMC_
A10 -- -
PG1 - EVENT
OUT ----------
FMC_
A11 -- -
PG2 - EVENT
OUT ----------
FMC_
A12 -- -
PG3 - EVENT
OUT ----------
FMC_
A13 -- -
PG4 - EVENT
OUT ----------
FMC_
A14 -- -
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

STM32F302xD STM32F302xE Pinout and pin description
DocID026900 Rev 4 59/168
Port G
PG5 - EVENT
OUT ----------
FMC_
A15 -- -
PG6 - EVENT
OUT ----------
FMC_
INT2 -- -
PG7 - EVENT
OUT ----------
FMC_
INT3 -- -
PG8 - EVENT
OUT --------------
PG9 - EVENT
OUT ----------
FMC_NE
2/FMC_
NCE3
-- -
PG10 - EVENT
OUT ----------
FMC_
NCE4_1/
FMC_
NE3
-- -
PG11 - EVENT
OUT ----------
FMC_
NCE4_2 -- -
PG12 - EVENT
OUT ----------
FMC_
NE4 -- -
PG13 - EVENT
OUT ----------
FMC_
A24 -- -
PG14 - EVENT
OUT ----------
FMC_
A25 -- -
PG15 - EVENT
OUT --------------
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

Pinout and pin description STM32F302xD STM32F302xE
60/168 DocID026900 Rev 4
Port H
PH0 - EVENT
OUT ----------FMC_A0---
PH1 - EVENT
OUT ----------FMC_A1---
PH2 - EVENT
OUT --------------
Table 14. STM32F302xD/E alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/15/
16/17/E
VENT
I2C3/TIM1
/2/3/4/8/20
/15/GPCO
MP1
I2C3//15/
TSC
I2C1/2/TI
M1/8/16/
17
SPI1/SPI2
/I2S2/SPI3
/I2S3/SPI4
/UART4/5/
Infrared
SPI2/I2S2/
SPI3/I2S3/
TIM1/8/20/
Infrared
USART1/2
/3/CAN/GP
COMP6
I2C3/GPC
OMP1/2/3/
4/5/6
CAN/TIM1
/8/15
TIM2/3/
4/8/17 TIM1/8 FSMC
/TIM1 - - EVENT

DocID026900 Rev 4 61/168
STM32F302xD STM32F302xE Memory mapping
63
5 Memory mapping
Figure 9. STM32F302xD/E memory map
[))))))))
[(
[&
[$
[
[
[
[
[
&RUWH[0
ZLWK)38
,QWHUQDO
3HULSKHUDOV
3HULSKHUDOV
65$0
&2'(
2SWLRQE\WHV
6\VWHPPHPRU\
5HVHUYHG
)ODVKPHPRU\
)ODVKV\VWHP
PHPRU\RU65$0
GHSHQGLQJRQ%227
FRQILJXUDWLRQ
$+%
$+%
$3%
$3%
[
[
[
[))
[
[&
[
[$
[
[)))))))
[))))
[)))'
[
[
[
[
[
[
5HVHUYHG
06Y9
$+%
[))
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
)0&
EDQNDQG
EDQN
)0&
EDQNDQG
EDQN
[$
)0&FRQWURO
UHJLVWHUV

Memory mapping STM32F302xD STM32F302xE
62/168 DocID026900 Rev 4
Table 15. Memory map, peripheral register boundary addresses
Bus Boundary address Size
(bytes) Peripheral
AHB4
0xA000 0000 - 0xA000 0FFF 4 K FSMC control registers
0x8000 0000 - 0x9FFF FFFF 512 M FSMC Banks 3 and 4
0x6000 0000 - 0x7FFF FFFF 512 M FSMC Banks 1 and 2
-0x5000 0400 - 0x5FFF FFFF ~384 M Reserved
AHB3 0x5000 0000 - 0x5000 03FF 1 K ADC1 - ADC2
-0x4800 2000 - 0x4FFF FFFF ~132 M Reserved
AHB2
0x4800 1C00 - 0x4800 1FFF 1 K GPIOH
0x4800 1800 - 0x4800 1BFF 1 K GPIOG
0x4800 1400 - 0x4800 17FF 1 K GPIOF
0x4800 1000 - 0x4800 13FF 1 K GPIOE
0x4800 0C00 - 0x4800 0FFF 1 K GPIOD
0x4800 0800 - 0x4800 0BFF 1 K GPIOC
0x4800 0400 - 0x4800 07FF 1 K GPIOB
0x4800 0000 - 0x4800 03FF 1 K GPIOA
-0x4002 4400 - 0x47FF FFFF ~128 M Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 K TSC
0x4002 3400 - 0x4002 3FFF 3 K Reserved
0x4002 3000 - 0x4002 33FF 1 K CRC
0x4002 2400 - 0x4002 2FFF 3 K Reserved
0x4002 2000 - 0x4002 23FF 1 K Flash interface
0x4002 1400 - 0x4002 1FFF 3 K Reserved
0x4002 1000 - 0x4002 13FF 1 K RCC
0x4002 0800 - 0x4002 0FFF 2 K Reserved
0x4002 0400 - 0x4002 07FF 1 K DMA2
0x4002 0000 - 0x4002 03FF 1 K DMA1
-0x4001 8000 - 0x4001 FFFF 32 K Reserved
APB2
0x4001 4C00 - 0x4001 7FFF 13 K Reserved
0x4001 4800 - 0x4001 4BFF 1 K TIM17
0x4001 4400 - 0x4001 47FF 1 K TIM16
0x4001 4000 - 0x4001 43FF 1 K TIM15
0x4001 3C00 - 0x4001 3FFF 1 K SPI4
0x4001 3800 - 0x4001 3BFF 1 K USART1
0x4001 3400 - 0x4001 37FF 1 K Reserved
0x4001 3000 - 0x4001 33FF 1 K SPI1

DocID026900 Rev 4 63/168
STM32F302xD STM32F302xE Memory mapping
63
APB2
0x4001 2C00 - 0x4001 2FFF 1 K TIM1
0x4001 0800 - 0x4001 2BFF 9 K Reserved
0x4001 0400 - 0x4001 07FF 1 K EXTI
0x4001 0000 - 0x4001 03FF 1 K SYSCFG + COMP + OPAMP
-0x4000 7C00 - 0x4000 FFFF 32 K Reserved
APB1
0x4000 7800 - 0x4000 7BFF 1 K I2C3
0x4000 7400 - 0x4000 77FF 1 K DAC
0x4000 7000 - 0x4000 73FF 1 K PWR
0x4000 6800 - 0x4000 6FFF 2 K Reserved
0x4000 6400 - 0x4000 67FF 1 K bxCAN
0x4000 6000 - 0x4000 63FF 1 K USB/CAN SRAM
0x4000 5C00 - 0x4000 5FFF 1 K USB device FS
0x4000 5800 - 0x4000 5BFF 1 K I2C2
0x4000 5400 - 0x4000 57FF 1 K I2C1
0x4000 5000 - 0x4000 53FF 1 K UART5
0x4000 4C00 - 0x4000 4FFF 1 K UART4
0x4000 4800 - 0x4000 4BFF 1 K USART3
0x4000 4400 - 0x4000 47FF 1 K USART2
0x4000 4000 - 0x4000 43FF 1 K I2S3ext
0x4000 3C00 - 0x4000 3FFF 1 K SPI3/I2S3
0x4000 3800 - 0x4000 3BFF 1 K SPI2/I2S2
0x4000 3400 - 0x4000 37FF 1 K I2S2ext
0x4000 3000 - 0x4000 33FF 1 K IWDG
0x4000 2C00 - 0x4000 2FFF 1 K WWDG
0x4000 2800 - 0x4000 2BFF 1 K RTC
0x4000 1800 - 0x4000 27FF 4 K Reserved
0x4000 1000 - 0x4000 13FF 1 K TIM6
0x4000 0C00 - 0x4000 0FFF 1 K Reserved
0x4000 0800 - 0x4000 0BFF 1 K TIM4
0x4000 0400 - 0x4000 07FF 1 K TIM3
0x4000 0000 - 0x4000 03FF 1 K TIM2
Table 15. Memory map, peripheral register boundary addresses (continued)
Bus Boundary address Size
(bytes) Peripheral

Electrical characteristics STM32F302xD STM32F302xE
64/168 DocID026900 Rev 4
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 2.0 to 3.6 V.
They are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 10. Pin loading conditions Figure 11. Pin input voltage
069
0&8SLQ
& S)
069
0&8SLQ
9,1

DocID026900 Rev 4 65/168
STM32F302xD STM32F302xE Electrical characteristics
146
6.1.6 Power supply scheme
Figure 12. Power supply scheme
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply
pins.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
069
/HYHOVKLIWHU
$QDORJ5&V
3//FRPSDUDWRUV23$03
3RZHU
VZLWFK
$'&'$&
.HUQHOORJLF
&38
GLJLWDO
PHPRULHV
,2ORJLF
%DFNXSFLUFXLWU\
/6(57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
9%$7
±9
*3,2V
9''
287
,1
5HJXODWRU
[9''
[966
9''$
9''$
95()
95()
966$
[Q)
[)
Q)
) Q)
)
95()

Electrical characteristics STM32F302xD STM32F302xE
66/168 DocID026900 Rev 4
6.1.7 Current consumption measurement
Figure 13. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 16: Voltage characteristics,
Table 17: Current characteristics, and Table 18: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
-36
6$$
6$$!
)$$
)$$!
Table 16. Voltage characteristics(1)
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VBAT
and VDD)-0.3 4.0
V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4
VREF+–VDDA(2) Allowed voltage difference for VREF+ > VDDA -0.4
VIN(3)
Input voltage on FT and FTf pins VSS − 0.3 VDD + 4.0
V
Input voltage on TTa pins VSS − 0.3 4.0
Input voltage on any other pin VSS − 0.3 4.0
Input voltage on Boot0 pin 0 9
|ΔVDDx| Variations between different VDD power pins - 50 mV
|VSSX − VSS| Variations between all the different ground pins - 50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 6.3.13: Electrical
sensitivity characteristics -
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range. The following relationship must be respected between VDDA and VDD:
VDDA must power on before or at the same time as VDD in the power up sequence.
VDDA must be greater than or equal to VDD.
2. VREF+ must be always lower or equal than VDDA (VREF+ ≤ VDDA). If unused then it must be connected to VDDA.
3. VIN maximum must always be respected. Refer to Table 17: Current characteristics for the maximum allowed injected
current values.

DocID026900 Rev 4 67/168
STM32F302xD STM32F302xE Electrical characteristics
146
Table 17. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source) 160
mA
ΣIVSS Total current out of sum of all VSS_x ground lines (sink) -160
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS _x ground line (sink)(1) 100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
ΣIIO(PIN)
Total output current sunk by sum of all IOs and control pins(2) 80
Total output current sourced by sum of all IOs and control pins(2) -80
IINJ(PIN)
Injected current on FT, FTf, and B pins(3) -5/+0
Injected current on TC and RST pin(4) ±5
Injected current on TTa pins(5) ±5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ±25
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer to Table 16: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 16: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note (2) below Table 81.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 18. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to +150 °C
TJMaximum junction temperature 150 °C

Electrical characteristics STM32F302xD STM32F302xE
68/168 DocID026900 Rev 4
6.3 Operating conditions
6.3.1 General operating conditions
Table 19. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 72
MHzfPCLK1 Internal APB1 clock frequency - 0 36
fPCLK2 Internal APB2 clock frequency - 0 72
VDD Standard operating voltage - 2 3.6 V
VDDA
Analog operating voltage
(OPAMP and DAC not used) Must have a potential
equal to or higher than
VDD
23.6
V
Analog operating voltage
(OPAMP and DAC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC I/O -0.3 VDD+0.3
V
TTa I/O -0.3 VDDA+0.3
FT and FTf I/O(1)
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
-0.3 5.5
BOOT0 0 5.5
PD
Power dissipation at TA =
85 °C for suffix 6 or TA =
105 °C for suffix 7(2)
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.7: Thermal
characteristics).
LQFP144 - 606
mW
WLCSP100 - 454
LQFP100 - 476
UFBGA100 - 339
LQFP64 - 435
TA
Ambient temperature for 6
suffix version
Maximum power
dissipation -40 85 °C
Low power dissipation(3)
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Section 7.7: Thermal characteristics).
-40 105
Ambient temperature for 7
suffix version
Maximum power
dissipation -40 105 °C
Low power dissipation(3) -40 125
TJ Junction temperature range 6 suffix version -40 105 °C
7 suffix version -40 125

DocID026900 Rev 4 69/168
STM32F302xD STM32F302xE Electrical characteristics
146
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 20 are derived from tests performed under the ambient
temperature condition summarized in Table 19.
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 21 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 19.
Table 20. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0∞
µs/V
VDD fall time rate 20 ∞
tVDDA
VDDA rise time rate
-
0∞
VDDA fall time rate 20 ∞
Table 21. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge 1.8(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
Table 22. Programmable voltage detector characteristics
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
VPVD0 PVD threshold 0 Rising edge 2.1 2.18 2.26
V
Falling edge 2 2.08 2.16
VPVD1 PVD threshold 1 Rising edge 2.19 2.28 2.37
Falling edge 2.09 2.18 2.27
VPVD2 PVD threshold 2 Rising edge 2.28 2.38 2.48
Falling edge 2.18 2.28 2.38
VPVD3 PVD threshold 3 Rising edge 2.38 2.48 2.58
Falling edge 2.28 2.38 2.48
VPVD4 PVD threshold 4 Rising edge 2.47 2.58 2.69
Falling edge 2.37 2.48 2.59
VPVD5 PVD threshold 5 Rising edge 2.57 2.68 2.79
Falling edge 2.47 2.58 2.69

Electrical characteristics STM32F302xD STM32F302xE
70/168 DocID026900 Rev 4
6.3.4 Embedded reference voltage
The parameters given in Table 23 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 19.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 13: Current consumption
measurement scheme.
VPVD6 PVD threshold 6 Rising edge 2.66 2.78 2.9
V
Falling edge 2.56 2.68 2.8
VPVD7 PVD threshold 7 Rising edge 2.76 2.88 3
Falling edge 2.66 2.78 2.9
VPVDhyst(2) PVD hysteresis - - 100 - mV
IDD(PVD) PVD current
consumption - - 0.15 0.26 µA
1. Data based on characterization results only, not tested in production.
2. Guaranteed by design, not tested in production.
Table 22. Programmable voltage detector characteristics (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
Table 23. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.16 1.2 1.25 V
–40 °C < TA < +85 °C 1.16 1.2 1.24(1)
1. Data based on characterization results, not tested in production.
V
TS_vrefint
ADC sampling time when
reading the internal
reference voltage
-2.2--µs
VRERINT
Internal reference voltage
spread over the
temperature range
VDD = 3 V ±10 mV - - 10(2)
2. Guaranteed by design, not tested in production.
mV
TCoeff Temperature coefficient - - - 100(2) ppm/°C
Table 24. Internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
0x1FFF F7BA - 0x1FFF F7BB

DocID026900 Rev 4 71/168
STM32F302xD STM32F302xE Electrical characteristics
146
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Note: The total current consumption is the sum of IDD and IDDA.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•All I/O pins are in input mode with a static value at VDD or VSS (no load)
•All peripherals are disabled except when explicitly mentioned
•The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
•Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
•When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2
•When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HSE (8 MHz) in bypass mode.
The parameters given in Table 25 to Table 29 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 19.
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6V
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply
current in
Run mode,
executing
from Flash
External
clock (HSE
bypass)
72 MHz 66.4 76.5 76.9 77.4 33.0 37.2 38.1 38.9
mA
64 MHz 59.8 66.4 67.7 68.6 29.7 33.5 34.3 35.0
48 MHz 47.3 53.7 53.8 55.1 23.2 26.2 27.1 28.0
32 MHz 33.3 36.8 37.4 38.5 16.8 19.8 20.6 21.4
24 MHz 26.0 29.4 30.0 31.2 13.5 16.6 17.4 18.6
8 MHz 10.7 13.8 14.4 15.3 6.63 10.2 10.5 11.2
1 MHz 4.27 7.47 8.13 8.90 3.78 7.40 7.70 8.50
Internal
clock (HSI)
64 MHz 55.6 59.6 62.8 63.2 29.4 33.1 34.5 35.0
48 MHz 43.6 47.0 49.2 50.1 23.1 26.2 27.1 28.0
32 MHz 30.8 33.6 35.3 35.8 16.7 19.8 20.6 21.5
24 MHz 24.0 28.0 28.2 29.7 13.5 16.5 17.5 18.4
8 MHz 10.5 13.6 14.7 15.2 6.63 9.74 10.6 11.2
IDD
Supply
current in
Run mode,
executing
from RAM
External
clock (HSE
bypass)
72 MHz 66.2 76.2(2) 76.7 77.2(2) 32.8 36.9(2) 37.7 38.5(2)
64 MHz 59.6 66.2 67.6 68.4 29.3 33.1 33.9 34.4
48 MHz 47.0 53.4 53.6 54.9 22.4 25.6 26.2 27.2
32 MHz 33.0 36.6 37.2 38.1 16.0 19.0 19.5 20.4
24 MHz 25.6 29.0 29.5 30.6 12.8 15.7 16.3 17.6
8 MHz 10.3 13.4 13.8 14.7 6.40 9.48 9.93 10.90

Electrical characteristics STM32F302xD STM32F302xE
72/168 DocID026900 Rev 4
IDD
Supply
current in
Run mode,
executing
from RAM
External
clock (HSE
bypass)
1 MHz 3.92 7.06 7.54 8.60 3.42 6.53 7.05 8.10
mA
Internal
clock (HSI)
64 MHz 55.4 59.2 62.5 62.9 29.1 32.7 34.0 34.6
48 MHz 43.1 46.7 49.0 49.9 22.8 26.1 26.8 27.8
32 MHz 30.5 33.2 35.0 35.5 15.8 18.8 19.5 20.9
24 MHz 23.8 27.8 27.9 29.2 12.6 15.6 16.3 17.5
8 MHz 9.85 13.1 14.1 14.6 6.20 9.37 10.3 10.7
IDD
Supply
current in
Sleep
mode,
executing
from Flash
or RAM
External
clock (HSE
bypass)
72 MHz 48.8 53.5(2) 53.6 54.0(2) 7.60 8.20(2) 8.50 9.00(2)
64 MHz 43.5 48.6 49.1 49.3 6.90 7.50 7.80 8.00
48 MHz 33.6 38.1 40.0 41.3 5.30 5.80 6.00 6.40
32 MHz 24.3 27.5 28.1 29.3 3.80 4.10 4.40 4.70
24 MHz 18.6 21.9 22.4 22.6 2.90 3.30 3.40 3.90
8 MHz 8.24 11.27 11.79 12.70 1.36 1.74 1.85 2.00
1 MHz 3.64 6.72 7.36 8.30 0.79 1.17 1.26 1.35
Internal
clock (HSI)
64 MHz 39.7 43.9 45.5 45.8 6.70 7.30 7.40 7.70
48 MHz 30.4 33.9 35.3 36.5 5.10 5.60 5.70 6.10
32 MHz 21.9 25.8 26.2 26.7 3.60 4.10 4.20 4.50
24 MHz 17.0 20.2 21.5 21.7 2.98 3.41 3.46 3.57
8 MHz 7.81 11.0 11.7 12.4 1.41 1.74 1.81 1.87
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6V (continued)
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
Table 26. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ
Max @ TA(2)
Typ
Max @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run mode,
code
executing
from Flash
or RAM
HSE
bypass
72 MHz 220 243 255 260 241 264 281 287
µA
64 MHz 194 215 226 231 212 233 248 254
48 MHz 145 164 172 176 158 176 187 192
32 MHz 100 116 121 124 108 123 130 134
24 MHz 78 92 96 98 85 97 102 105
8 MHz 1.9 3.1 3.6 4.4 2.5 3.7 4.4 5.5
