TP65H035G4WSQA Datasheet by Transphorm

transphcgarm @ 3qu SAN AN0009 ANOOOB ANOOiO e condni on, see note on Pagez
Sept. 28, 21 © 2019 Transphorm Inc. Subject to change without notice.
tp65h035G4wsqa.1v1 1
TP65H035G4WSQA
650V SuperGaN® FET in TO-247 (source tab)
Features
 AEC-Q101 qualified GaN technology
 Dynamic RDS(on)eff production tested
 Robust design, defined by
Wide gate safety margin
— Transient over-voltage capability
 Enhanced inrush current capability
 Very low QRR
 Reduced crossover loss
Benefits
 Enables AC-DC bridgeless totem-pole PFC designs
Increased power density
Reduced system size and weight
Overall lower system cost
 Achieves increased efficiency in both hard- and soft-
switched circuits
 Easy to drive with commonly-used gate drivers
 GSD pin layout improves high speed design
Applications
 Automotive
 Datacom
 Broad industrial
 PV inverter
 Servo motor
Description
The TP65H035G4WSQS 650V, 35 m gallium nitride (GaN)
FET is a normally-off device using Transphorm’s Gen IV
platform. It combines a state-of-the-art high voltage GaN
HEMT with a low voltage silicon MOSFET to offer superior
reliability and performance.
The Gen IV SuperGaN® platform uses advanced epi and
patented design technologies to simplify manufacturability
while improving efficiency over silicon via lower gate charge,
output capacitance, crossover loss, and reverse recovery
charge.
Related Literature
 AN0009: Recommended External Circuitry for GaN FETs
 AN0003: Printed Circuit Board Layout and Probing
 AN0010: Paralleling GaN FETs
S
G
D
S
TP65H035G4WSQA
TO-247
(top view)
Ordering Information
Part Number Package Package
Configuration
TP65H035G4WSQA 3 lead TO-247 Source
Key Specifications
VDSS (V) 650
VDSS(TR)(V)* 800
RDS(on)eff (m) max** 41
QRR (nC) typ 150
*Pulse condition, see note on Page2
* *Dynamic on-resistance; see Figures 19 and 20
QG (nC) typ 22
Cascode Device Structure Cascode Schematic Symbol
transphzfirm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 2
TP65H035G4WSQA
Thermal Resistance
Symbol Parameter Typical Unit
RJC Junction-to-case 0.8 °C/W
RJA Junction-to-ambient 40 °C/W
Absolute Maximum Ratings (Tc=25°C unless otherwise stated.)
Symbol Parameter Limit Value Unit
VDSS Drain to source voltage (TJ = -55°C to 175°C) 650
V
VDSS(TR) Transient drain to source voltage a 800
VGSS Gate to source voltage ±20
PD Maximum power dissipation @TC=25°C 187 W
ID
Continuous drain current @TC=25°C b 47.2 A
Continuous drain current @TC=100°C b 33.4 A
IDM Pulsed drain current (pulse width: 10µs) 240 A
TC Operating temperature Case -55 to +175 °C
TJ Junction -55 to +175 °C
TS Storage temperature -55 to +175 °C
TSOLD Soldering peak temperature C 260 °C
Notes:
a. In off-state, spike duty cycle D<0.01, spike duration <1µs, spike duration <30µs, nonrepetitive.
b. For increased stability at high current operation, see Circuit Implementation on page 3
c. For 10 sec., 1.6mm from the case
._m_| '1 Rcmtmace as this as possib‘eto dram pin) We. R5 FE F} g I #- F—M‘—0Vo Driver RC5” Wk F: El] Vaus also ANOOOB) transphzfirm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 3
TP65H035G4WSQA
Circuit Implementation
Recommended gate drive: (0V, 12V) with RG= 30
Required DC Link RC Snubber (RCDCL) a Recommended Switching Node
RC Snubber (RCSN)
[4.7nF + 5] x 2 See note b and c below
Notes:
a. RCDCL should be placed as close as possible to the drain pin
b. RCSN is needed only if RG is smaller than recommendations
c. If required, please use 10Ω+100pF
Gate Ferrite Bead (FB1)
200 — 270 at 100MHz
Simplified Half-bridge Schematic
Layout Recommendations: ( See also AN0009)
Gate Loop:
 Gate Driver: SiLab Si823x/Si827x
 Keep gate loop compact
 Minimize coupling with power loop
Power loop:
 Minimize power loop path inductance
 Minimize switching node coupling with high and low power plane
 Add DC bus snubber to reduce to voltage ringing
 Add Switching node snubber for high current operation
Gate threshold voltage temperature co- V 5:400V, V 5=0V to 12V, Notes: transphzgrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 4
TP65H035G4WSQA
Electrical Parameters (TJ=25°C unless otherwise stated)
Symbol Parameter Min Typ Max Unit Test Conditions
Forward Device Characteristics
VDSS(BL) Drain-source voltage 650 — V VGS=0V
VGS(th) Gate threshold voltage 3.3 4 4.8 V
VDS=VGS, ID=1mA
VGS(th)/TJ Gate threshold voltage temperature co-
efficient — -6.5 mV/°C
RDS(on)eff Drain-source on-resistance
a
— 35 41
m
VGS=10V, ID=30A
— 84 VGS=10V, ID=30A, TJ=175°C
IDSS Drain-to-source leakage current
— 3 30
µA
VDS=650V, VGS=0V
— 30 VDS=650V, VGS=0V, TJ=175°C
IGSS
Gate-to-source forward leakage current 400
nA
VGS=20V
Gate-to-source reverse leakage current -400 VGS=-20V
CISS Input capacitance 1500
pF VGS=0V, VDS=400V, f=1MHz
COSS Output capacitance 147
CRSS Reverse transfer capacitance 5
CO(er) Output capacitance, energy related b220
pF VGS=0V, VDS=0V to 400V
CO(tr) Output capacitance, time related c380
QG Total gate charge 22
nC VDS=400V, VGS=0V to 10V,
ID=32A
QGS Gate-source charge 8.4
QGD Gate-drain charge 6.6
QOSS Output charge 150 nC VGS=0V, VDS=0V to 400V
tD(on) Turn-on delay 60
ns
VDS=400V, VGS=0V to 12V,
RG=30, ID=32A, ZFB=240 at
100MHz (See Figure 15)
tR Rise time 10
tD(off) Turn-off delay 94
tF Fall time 10
Eoff Turn off Energy 82 J
Eon Turn on Energy 206 J
Notes:
a. Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions
b. Equivalent capacitance to give same stored energy as VDS rises from 0V to 400V
c. Equivalent capacitance to give same charging time as VDS rises from 0V to 400V
VDS=400V, VGS=0V to 12V,
RG=30, ID=32A, ZFB=180 at
100MHz
V 5:0V, T =100"C transphzgrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 5
TP65H035G4WSQA
Electrical Parameters (TJ=25°C unless otherwise stated)
Symbol Parameter Min Typ Max Unit Test Conditions
Reverse Device Characteristics
IS Reverse current 33.4 A
VGS=0V, TC=100°C
25% duty cycle
VSD Reverse voltage
a
— 1.8
V
VGS=0V, IS=32A
— 1.3 VGS=0V, IS=16A
tRR Reverse recovery time 59 ns IS=32A, VDD=400V,
di/dt=1000A/ms
QRR Reverse recovery charge 150 nC
(di/dt)RM Reverse diode di/dt b3200 A/µs
Circuit implementation and
parameters on page 3
Notes:
a. Includes dynamic RDS(on) effect
b. Reverse conduction di/dt will not exceed this max value with recommended RG.
|ns[A] lns[A] 2:10 220 200 15a mu 140 nu ma S 20 2:10 220 200 Jan use no no me no 20 VDs v1 V65 M 200 no mo no no mo |ns[A] so no 20 3.0 VusV] 2.5 'o in Norma‘ized Raw" 1.0 0‘5 25 50 75 100 T1 [”C] 125 150 175 200 transphzgrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 6
TP65H035G4WSQA
Figure 1. Typical Output Characteristics TJ=25°C
Parameter: VGS
Figure 2. Typical Output Characteristics TJ=175°C
Parameter: VGS
Typical Characteristics (TC=25°C unless otherwise stated)
Figure 3. Typical Transfer Characteristics
VDS=20V, parameter: TJ
Figure 4. Normalized On-resistance
ID=30A, VGS=10V
Qoss [nc] 10‘ 40 35 )n’ 30 25 I 1 g 10' i 20 u a \u 15 10‘ m 5 m“ o a mu 200 sec «on sun son a mu 200 Sun «on sea son VnslV] VnsM no no / / / / a xso 125 a / 5' mo / j / o > 7; / ‘ / n so no 150 200 zsu son 35H m 45a 5410 sso mo 550 o 5 no 15 20 WSW] 06 [NC] transphzgrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 7
TP65H035G4WSQA
Figure 5. Typical Capacitance
VGS=0V, f=1MHz
Figure 6. Typical COSS Stored Energy
Typical Characteristics (TC=25°C unless otherwise stated)
Figure 7. Typical QOSS
Figure 8. Typical Gate Charge
IDS=32A, VDS=400V
200 140 175 \ 120 150 13: um 100 125 _ <7 so="" h="" 0.20%="" is="" 100="" f="" ‘="" a.="" nu="" so="" 5“="" sc="" \\="" \="" 25="" 2°="" n="" do="" 25="" 50="" 15="" 100="" 125="" 150="" 175="" 200="" 025="" 50="" 75="" 100="" 125="" 150="" 175="" 200="" test="" [°c]="" tm="" 1°c]="" :00="" 250="" 200="" g="" smglepulse="" h="" u="" 3”“="" 11st="" l="" ‘="" m:="" \="" 5="" mac="" n="" 100="" mot="" n="" 7st="" 393="" arc="" \“\="" wc="" 0="" so="" 00="" 2="" 4="" 6="" a="" 1o="" 10="" 5="" 10'5="" 10‘="" m="" 1="" 10="" 2="" 10'l="" 10“="" mm="" time="" [s]="" transphzgrm="">
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 8
TP65H035G4WSQA
Figure 9. Power Dissipation
Figure 10. Current Derating
Pulse width 10µs, VGS 10V
Typical Characteristics (TC=25°C unless otherwise stated)
Figure 11. Forward Characteristics of Rev. Diode
IS=f(VSD), parameter: TJ Figure 12. Transient Thermal Resistance
Ids [A] 700 101 10‘ g 400 g / / no" 5 300 § m 200 E“. 10" 100 / ‘J/ 72 1010 l 10“ IO‘ 101 IO] 00 W 20 30 40 50 Vds[VJ InslA] transphg‘rm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 9
TP65H035G4WSQA
Figure 13. Safe Operating Area TC=25°C Figure 14. Inductive Switching Loss
Rg=30, VDS=400V
Typical Characteristics (TC=25°C unless otherwise stated)
DUT TIT 8< rsus="" but="" i="" vns="" vs="" 1="" $="" v”="" £—="" vci="" (r="" 4-="" (mum="" tau="" i,="" v="" (“m="" «mun:="" on»="(25" +="" q:="" is="" (rn="" —*="" :,="" _.._="" t,="" a="" i="" +="" "="" 10%="" um="" vmm="" i="" +="" ‘="" dutycyde="" ‘="" transphzj-rm="">
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 10
TP65H035G4WSQA
Figure 16. Switching Time Waveform Figure 15. Switching Time Test Circuit
(see circuit implementation on page 3
for methods to ensure clean switching)
Figure 17. Diode Characteristics Test Circuit Figure 18. Diode Recovery Waveform
D
DS(on)
DS(on)eff I
V
R
Test Circuits and Waveforms
Figure 19. Dynamic RDS(on)eff Test Circuit Figure 20. Dynamic RDS(on)eff Waveform
T s r Before ev application note Printed Circuit Board Layoutand Probing for GaN Power SWitches Minimize circuit Inductance by keeping traces snort, both In TWist the pins of T0-220 or TO-247 to accommodate GDS Minimize lead length of T0220 and T0-247 package when Use long traces in drive circuit, long lead length of the Use shortest sense loop for probing; attach the probe and its Use differential mode probe or probe ground clip With long AN0003 at transphorrnusa.comzdesign: transphzjrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 11
TP65H035G4WSQA
Design Considerations
The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while
simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches
requires adherence to specific PCB layout guidelines and probing techniques.
Before evaluating Transphorm GaN devices, see application note Printed Circuit Board Layout and Probing for GaN Power
Switches. The table below provides some practical rules that should be followed during the evaluation.
When Evaluating Transphorm GaN Devices:
DO DO NOT
Minimize circuit inductance by keeping traces short, both in
the drive and power loop
Twist the pins of TO-220 or TO-247 to accommodate GDS
board layout
Minimize lead length of TO-220 and TO-247 package when
mounting to the PCB
Use long traces in drive circuit, long lead length of the
devices
Use shortest sense loop for probing; attach the probe and its
ground connection directly to the test points
Use differential mode probe or probe ground clip with long
wire
See AN0003: Printed Circuit Board Layout and Probing
GaN Design Resources
The complete technical library of GaN design tools can be found at transphormusa.com/design:
 Evaluation kits
 Application notes
 Design guides
 Simulation models
 Technical papers and presentations
IIUHETEIS ms I'M uou IMX WM uou IIAX an_ __ E A 452 51-1 5.19 my: um on u no no 257 um um- um (I: ifi u m 10- 2... am am ms ' g —r 7' I: my IIS In all! 11an ans! —|—— ‘+\ 2XE2 m ms - mm mm - Ms: : \_J 7 : _| _. m m m 2.“ mm um m. 13 f ‘1 u m - 2:1 mm - ow V V D u 23. us 322 mm a um um 93 “I v 3!! fl"! - mu: e no as. me am am mm E E :1 use 7 an um » um D 3157 205 2!“ DOM 0821 0.85! - m mo . 1763 um . may C C P f m w » uo m2 - um I , e um vssu ms we ms was u— | | E. . M, m . m. :2 no V A.“ am V m. | | L . mm mm L IS.” 199‘ 2135 arm ("as 0.302 u m m m ws me: we I | 9° 350 3,51 393 M36 0 IL! I!“ an m m 7;: am am am MAM 1, ‘, a ‘ 5., ‘ I s usssc amuse M —- lo—3Xb c_.| _I 2x: |fi —|m._ BASE METAL ._+bl.his.b5 PLATING m P an (e) E. I (b, [12. w SECTION C—C. E-E ”01:5 1 DwENSIONs D LE DONOT name MOLD FLASH. MOLD FusH SHALL M01 Exceenovm m (a 005‘) PER SIDE THESE DIIENSDNS ARE IEASURED AT THE omERMosT EXTREDIE OF “E mun soov, 2. THERMAL PAD comm Is OPTIONAL 114me WITHINDIMEISOONS 015:! J .1 LEAD FMS" UNOON'TRQLED IN LI. h. ‘. DUTLDE corroRMs T0 EDEC I'D-24710 s1 TO-247 3L 'ransphorm nu mm: .c vu W ‘3‘ 111 200019 3 transphzgrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 12
TP65H035G4WSQA
Mechanical 3 Lead TO-247 Package
transphzgrm
Sept. 28, 2021 transphormusa.com
tp65h035G4wsqa.1v1 13
TP65H035G4WSQA
Revision History
Version Date Change(s)
0 3/27/2020 Preliminary Datasheet
0.1 4/23/2020 Corrected Qg and Qg Curve
1.0 3/7/2021 Updated VDSS(TR)
1.1 4/28/2021 Preliminary datasheet: updated Tj to 175C max and added switching Loss
1.2 09/29/2021 Released