NB6L11 Datasheet by onsemi

0N Semit:on|‘lul:lor"g
© Semiconductor Components Industries, LLC, 2013
June, 2013 Rev. 9
1Publication Order Number:
NB6L11/D
NB6L11
2.5 V/3.3 V Multilevel Input to
Differential LVPECL/LVNECL
1:2 Clock or Data
Fanout Buffer/Translator
The NB6L11 is an enhanced differential 1:2 clock or data fanout
buffer/translator. The device has the same pinout and is functionally
equivalent to the LVEL11, EP11, LVEP11 devices. Moreover, the
device is optimized for the systems that require LOW skew, LOW
jitter and LOW power consumption.
Differential input can be configured to accept singleended signal
by applying an external reference voltage to unused complementary
input pin. Input accept LVNECL, LVPECL, LVTTL, LVCMOS,
CML, or LVDS. The outputs are 800 mV ECL signals.
Features
Input Clock Frequency w 6 GHz
Input Data Rate w 6 Gb/s
Low 14 mA Typical Power Supply Current
150 ps Typical Propagation Delay
5 ps Typical Within Device Skew
75 ps Typical Rise/Fall Times
PECL Mode Operating Range:
VCC = 2.375 V to 3.465 V with VEE = 0 V
NECL Mode Op rating Range:
VCC = 0 V with VEE = 2.375 V to 3.465 V
Open Input Default State
Q Outputs Will Default LOW with Inputs Open or at VEE
LVDS, LVPECL, LVNECL, LCMOS, LVTTL and CML Input
Compatible
These Devices are PbFree and are RoHS Compliant
6L11
ALYW G
G
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
G= PbFree Package
*For additional marking information, refer to
Application Note AND8002/D.
SO8
D SUFFIX
CASE 751
MARKING
DIAGRAMS*
TSSOP8
DT SUFFIX
CASE 948R
6L11
ALYW G
G
1
8
1
8
1
8
1
8
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
ORDERING INFORMATION
(Note: Microdot may be in either location)
NB6L11
http://onsemi.com
2
1
2
3
45
6
7
8
D
VEE
VCC
Figure 1. Pinout (Top View) and Logic Diagram
Q0
D
Q1
Q1
Q0
R2
R2
R1
R1
Table 1. PIN DESCRIPTION
Pin Name I/O Default State Description
1 Q0 ECL Output Noninverted differential clock/data output 0. Typically termin-
ated with 50 W Resistor to VTT = VCC 2 V.
2 Q0 ECL Output Inverted differential clock/data output 0. Typically terminated with
50 W resistor to VTT = VCC 2 V.
3 Q1 ECL Output Noninverted differential clock/data output 1. Typically termin-
ated with 50 W resistor to VTT = VCC 2 V.
4 Q1 ECL Output Inverted differential clock/data output 1. Typically terminated with
50 W resistor to VTT = VCC 2 V.
5 VEE Negative power supply voltage
6 D LVDS, CML, LVPECL, LVNECL,
LVCMOS, LVTTL Input
HIGH Inverted differential clock/data input. Internal 37.5 kW to VCC and
75 kW to VEE.
7 D LVDS, CML, LVPECL, LVNECL,
LVCMOS, LVTTL Input
LOW Noninverted differential clock/data input. Internal 75 kW to VCC
and 37.5 kW to VEE.
8 VCC Positive power supply voltage
Table 2. ATTRIBUTES
Characteristics Value
Internal Input Resistor R1 37.5 kW
Internal Input Resistor R2 75 kW
ESD Protection Human Body Model
Machine Model
Charged Device Model
> 2 kV
> 100 V
> 1 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Pb Pkg PbFree Pkg
SOIC8
TSSOP8
Level 1
Level 1
Level 1
Level 3
Flammability Rating Oxygen Index: 28 to 34 UL 94 V0 @ 0.125 in
Transistor Count 167 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
\D-U
NB6L11
http://onsemi.com
3
Table 3. MAXIMUM RATINGS
Symbol Parameter Condition 1 Condition 2 Rating Unit
VCC Positive Power Supply VEE = 0 V 3.6 V
VEE Negative Power Supply VCC = 0 V 3.6 V
VIPositive Input Voltage
Negative Input Voltage
VEE = 0 V
VCC = 0 V
VI v VCC
VI w VEE
3.6
3.6
V
V
VINPP Differential Input Voltage |D D| VCC VEE w 2.8 V
VCC VEE t 2.8 V
2.8
|VCC VEE|
V
Iout Output Current Continuous
Surge
25
50
mA
mA
TAOperating Temperature Range 40 to +85 °C
Tstg Storage Temperature Range 65 to +150 °C
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
SOIC8
SOIC8
190
130
°C/W
°C/W
qJC Thermal Resistance (JunctiontoCase) Standard Board SOIC841 to 44 °C/W
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
TSSOP8
TSSOP8
185
140
°C/W
°C/W
qJC Thermal Resistance (JunctiontoCase) Standard Board TSSOP841 to 44 °C/W
Tsol Wave Solder Standard
PbFree
v 3 sec @ 248°C
v 3 sec @ 260°C
265
265
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
NB6L11
http://onsemi.com
4
Table 4. DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 4)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Negative Power Supply Current (Note 5) 5 14 20 5 14 20 5 14 20 mA
VOH Output HIGH Voltage (Note 6) 1350 1450 1550 1400 1500 1600 1450 1550 1650 mV
VOL Output LOW Voltage (Note 6) 565 725 870 630 765 920 690 825 970 mV
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (Figures 14, 16) (Note 7)
Vth Input Threshold Reference Voltage Range
(Note 2)
1125 VCC
75
1125 VCC
75
1125 VCC
75
mV
VIH SingleEnded Input HIGH Voltage Vth
+75
VCC Vth
+75
VCC Vth
+75
VCC mV
VIL SingleEnded Input LOW Voltage VEE Vth
75
VEE Vth
75
VEE Vth
75
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15, 17) (Note 8)
VIHD Differential Input HIGH Voltage 1200 VCC 1200 VCC 1200 VCC mV
VILD Differential Input LOW Voltage VEE VCC
75
VEE VCC
75
VEE VCC
75
mV
VCMR Input Common Mode Range
(Differential CrossPoint Voltage) (Note 3)
950 VCC
38
950 VCC
38
950 VCC
38
mV
VID Differential Input Voltage (VIHD VILD) 75 2500 75 2500 75 2500 mV
IIH Input HIGH Current D
D
50
10
150
150
50
10
150
150
50
10
150
150
mA
IIL Input LOW Current D
D
150
150
5
30
150
150
5
30
150
150
5
30
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Vth is applied to the complementary input when operating in singleended mode.
3. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC.
4. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to 1.3 V.
5. All input and output pins left open.
6. All loading with 50 W to VCC 2.0 V.
7. Vth, VIH, and VIL parameters must be complied with simultaneously.
8. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously.
NB6L11
http://onsemi.com
5
Table 5. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 11)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Negative Power Supply Current (Note 12) 5 14 20 5 14 20 5 14 20 mA
VOH Output HIGH Voltage (Note 13) 2150 2250 2350 2200 2300 2400 2250 2350 2450 mV
VOL Output LOW Voltage (Note 13) 1365 1525 1670 1430 1565 1720 1490 1625 1770 mV
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (Figures 14, 16) (Note 14)
Vth Input Threshold Reference Voltage Range
(Note 9)
1125 VCC
75
1125 VCC
75
1125 VCC
75
mV
VIH SingleEnded Input HIGH Voltage Vth
+75
VCC Vth
+75
VCC Vth
+75
VCC mV
VIL SingleEnded Input LOW Voltage VEE Vth
75
VEE Vth
75
VEE Vth
75
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15, 17) (Note 15)
VIHD Differential Input HIGH Voltage 1200 VCC 1200 VCC 1200 VCC mV
VILD Differential Input LOW Voltage VEE VCC
75
VEE VCC
75
VEE VCC
75
mV
VCMR Input Common Mode Range
(Differential CrossPoint Voltage)
(Note 10)
950 VCC
38
950 VCC
38
950 VCC
38
mV
VID Differential Input Voltage (VIHD VILD) 75 2500 75 2500 75 2500 mV
IIH Input HIGH Current D
D
50
10
150
150
50
10
150
150
50
10
150
150
mA
IIL Input LOW Current D
D
150
150
5
30
150
150
5
30
150
150
5
30
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
9. Vth is applied to the complementary input when operating in singleended mode.
10.VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC.
11. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to 2.2 V.
12.All input and output pins left open.
13.All loading with 50 W to VCC 2.0 V.
14.Vth, VIH, and VIL parameters must be complied with simultaneously.
15.VIHD, VILD, VID and VCMR parameters must be complied with simultaneously.
NB6L11
http://onsemi.com
6
Table 6. DC CHARACTERISTICS, NECL VCC = 0 V; VEE = 3.465 V to 2.375 V (Note 18)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Negative Power Supply Current
(Note 19)
5 14 20 5 14 20 5 14 20 mA
VOH Output HIGH Voltage (Note 20) 1150 1050 950 1100 1000 900 1050 950 850 mV
VOL Output LOW Voltage (Note 20) 1935 1775 1630 1870 1735 1580 1810 1675 1530 mV
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (Figures 14, 16) (Note 21)
Vth Input Threshold Reference Voltage
Range (Note 16)
VEE
+1125
VCC
75
VEE
+1125
VCC
75
VEE
+1125
VCC
75
mV
VIH SingleEnded Input HIGH Voltage Vth
+75
VCC Vth
+75
VCC Vth
+75
VCC mV
VIL SingleEnded Input LOW Voltage VEE Vth
75
VEE Vth
75
VEE Vth
75
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15, 17) (Note 22)
VIHD Differential Input HIGH Voltage VEE
+1200
VCC VEE
+1200
VCC VEE
+1200
VCC mV
VILD Differential Input LOW Voltage VEE VCC
75
VEE VCC
75
VEE VCC
75
mV
VCMR Input Common Mode Range
(Differential CrossPoint Voltage)
(Note 17)
VEE
+950
VCC
38
VEE
+950
VCC
38
VEE
+950
VCC
38
mV
VID Differential Input Voltage (VIHD VILD) 75 2500 75 2500 75 2500 mV
IIH Input HIGH Current D
D
50
10
150
150
50
10
150
150
50
10
150
150
mA
IIL Input LOW Current D
D
150
150
5
30
150
150
5
30
150
150
5
30
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
16.Vth is applied to the complementary input when operating in singleended mode.
17.VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC
18.Input and output parameters vary 1:1 with VCC.
19.Input and output pins left open.
20.All loading with 50 W to VCC 2.0 V.
21.Vth, VIH, and VIL parameters must be complied with simultaneously.
22.VIHD, VILD, VID and VCMR parameters must be complied with simultaneously.
Dtoofi 0,0 5t?\ //K // //
NB6L11
http://onsemi.com
7
Table 7. AC CHARACTERISTICS VCC = 0 V; VEE = 3.465 V to 2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V (Note 23)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
VOUTPP Output Voltage Amplitude fin v 3 GHz
(See Figures 2 & 3)fin v 6 GHz
480
270
700
300
480
270
700
300
480
270
700
300
mV
fDATA Maximum Operating Data Rate 6 Gb/s
tPLH,
tPHL
Propagation Delay to
Output Differential @ 1 GHz D to Q, Q 110 150 190 110 150 200 120 160 220
ps
tSKEW Duty Cycle Skew
Within Device Skew (Note 24)
DevicetoDevice Skew
2
5
15
10
15
60
2
5
15
10
15
60
2
5
15
10
15
60
ps
tJITTER RMS Random Clock Jitter
(Note 25) fin v 6 GHz
PeaktoPeak Data Dependent Jitter
(Note 26) fin v 6 Gb/s
0.2
2
1
12
0.2
2
1
12
0.2
2
1
12
ps
VINPP Input Voltage Swing / Sensitivity
(Differential Configuration) (Note 27)
75 700 2500 75 700 2500 75 700 2500 mV
tr
tf
Output Rise/Fall Times @ 1 GHz Q, Q
(20% 80%)
30 75 120 30 75 120 30 75 120 ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
23.Measured using a 800 mV source, 50% duty cycle clock source. All loading with 50 W to VCC 2.0 V. Input edge rates 40 ps (20% 80%).
24. See Figure 13 tskew = |tPLH tPHL| for a nominal 50% differential clock input waveform. Skew is measured between outputs under identical
transitions and conditions @ 1 GHz.
25.Additive RMS jitter with 50% duty cycle clock signal at 6 GHz.
26.Additive PeaktoPeak data dependent jitter with NRZ PRBS 2231 data rate at 6 Gb/s.
27.VINPP(max) cannot exceed VCC VEE (applicable only when VCC VEE < 2500 mV). Input voltage swing is a singleended measurement
operating in differential mode
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
12 456783
OUTPUT VOLTAGE AMPLITUDE (V)
Figure 2. Output Voltage Amplitude (VOUTPP)
versus Input Clock Frequency (fIN) and
Temperature at VCC VEE = 3.3 V
INPUT CLOCK FREQUENCY (GHz)
85°C
40°C
25°C
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
12345678
OUTPUT VOLTAGE AMPLITUDE (V)
40°C
85°C
25°C
Figure 3. Output Voltage Amplitude (VOUTPP)
versus Input Clock Frequency (fIN) and
Temperature at VCC VEE = 2.5 V
INPUT CLOCK FREQUENCY (GHz)
$3 mnh-l-ql—cm m napalm-momma: m. Miami-m um
NB6L11
http://onsemi.com
8
Figure 4. Typical Phase Noise Plot at
fcarrier = 156.25 MHz
Figure 5. Typical Phase Noise Plot at
fcarrier = 622.08 MHz
Figure 6. Typical Phase Noise Plot at
fcarrier = 1.5 GHz
Figure 7. Typical Phase Noise Plot at
fcarrier = 2 GHz
The above phase noise plots captured using Agilent
E5052A show additive phase noise of the NB6L11 device at
frequencies 156.25 MHz, 622.08 MHz, 1.5 GHz and 2 GHz
respectively at an operating voltage of 3.3 V in room
temperature. The RMS Phase Jitter contributed by the
device (integrated between 12 kHz and 20 MHz; as shown
in the shaded region of the plot) at each of the frequencies
is 75 fs, 12 fs, 6 fs and 4 fs respectively. The input source
used for the phase noise measurements is Agilent E8663B.
NB6L11
http://onsemi.com
9
Figure 8. Typical Output Waveform at
2.488 Gb/s with PRBS 2231 (Total System
PkPk Jitter is 17 ps. Device PkPk Jitter
Contribution is 4 ps)
TIME (64 ps/div)
OUTPUT VOLTAGE AMPLITUDE
(100 mV/div)
Figure 9. Typical Output Waveform at
6.125 Gb/s with PRBS 2231 (Total System
PkPk Jitter is 20 ps. Device PkPk Jitter
Contribution is 5 ps)
TIME (32 ps/div)
OUTPUT VOLTAGE AMPLITUDE
(100 mV/div)
NOTE: VCC VEE = 3.3 V; VIN = 700 mV; TA = 25°C.
110
130
150
170
190
210
2.375 2.5 3.3 3.465
85°C
40°C25°C
PROPAGATION DELAY (ps)
Figure 10. Propagation Delay versus Power
Supply Voltage and Temperature
POWER SUPPLY VOLTAGE (V)
30
40
50
60
70
80
90
100
110
120
2.375 2.5 3.3 3.465
85°C
40°C
25°C
Figure 11. Rise/Fall Time versus Power Supply
Voltage and Temperature
POWER SUPPLY VOLTAGE (V)
RISE/FALL TIME (ps)
5
8
11
14
17
20
40 25 85
VCC VEE = 3.465 V
VCC VEE = 2.375 V
Figure 12. IEE Current versus Temperature and
Power Supply Voltage
TEMPERATURE (°C)
IEE CURRENT (mA)
NB6L11
http://onsemi.com
10
Figure 13. AC Reference Measurement
D
D
Q
Q
tPHL
tPLH
VINPP(D) = VIH(D) VIL(D)
VINPP(D) = VIH(D) VIL(D)
VOUTPP(Q) = VOH(Q) VOL(Q)
VOUTPP(Q) = VOH(Q) VOL(Q)
D
Vth
D
Vth
Figure 14. Differential Input Driven
SingleEnded
D
D
Figure 15. Differential Inputs Driven
Differentially
VIHmax
VILmax
VIH
Vth
VIL
VIHmin
VILmin
VCC
Vthmax
Vthmin
GND
Vth
VIHDmax
VILDmax
VIHDmin
VILDmin
VIHDtyp
VILDtyp
VID = VIHD VILD
VCMR
VCC
VCMmax
VCMmin
GND
Figure 16. Vth Diagram Figure 17. VCMR Diagram
Figure 18. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D Termination of ECL Logic Devices.)
Driver
Device
Receiver
Device
QD
Q D
Zo = 50 W
Zo = 50 W
50 W50 W
VTT
VTT = VCC 2.0 V
NB6L11
http://onsemi.com
11
ORDERING INFORMATION
Device Package Shipping
NB6L11DG SOIC8
(PbFree)
98 Units / Rail
NB6L11DR2G SOIC8
(PbFree)
2500 / Tape & Reel
NB6L11DTG TSSOP8
(PbFree)
100 Units / Rail
NB6L11DTR2G TSSOP8
(PbFree)
2500 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D ECL Clock Distribution Techniques
AN1406/D Designing with PECL (ECL at +5.0 V)
AN1503/D ECLinPSt I/O SPiCE Modeling Kit
AN1504/D Metastability and the ECLinPS Family
AN1568/D Interfacing Between LVDS and ECL
AN1672/D The ECL Translator Guide
AND8001/D Odd Number Counters Design
AND8002/D Marking and Date Codes
AND8020/D Termination of ECL Logic Devices
AND8066/D Interfacing with ECLinPS
AND8090/D AC Characteristics of ECL Devices
NB6L11
http://onsemi.com
12
PACKAGE DIMENSIONS
SOIC8 NB
D SUFFIX
CASE 75107
ISSUE AK
SEATING
PLANE
1
4
58
N
J
X 45 _
K
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 75101 THRU 75106 ARE OBSOLETE. NEW
STANDARD IS 75107.
A
BS
D
H
C
0.10 (0.004)
DIM
A
MIN MAX MIN MAX
INCHES
4.80 5.00 0.189 0.197
MILLIMETERS
B3.80 4.00 0.150 0.157
C1.35 1.75 0.053 0.069
D0.33 0.51 0.013 0.020
G1.27 BSC 0.050 BSC
H0.10 0.25 0.004 0.010
J0.19 0.25 0.007 0.010
K0.40 1.27 0.016 0.050
M0 8 0 8
N0.25 0.50 0.010 0.020
S5.80 6.20 0.228 0.244
X
Y
G
M
Y
M
0.25 (0.010)
Z
Y
M
0.25 (0.010) ZSXS
M
____
1.52
0.060
7.0
0.275
0.6
0.024
1.270
0.050
4.0
0.155
ǒmm
inchesǓ
SCALE 6:1
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
EEEJHEI-“EE I 7’? I M m 1 E H H g a O «A a F‘ |:| DETAIL E umms was um MAX um mx 2m am um um 2m am um um no no um um: nus ms nnuz nuns owls-am» E um um urns um Q m (0 0‘” I assasc unasssc _1-_ sauna n 9 a w w “"5 DETAIL E m 556 u m use nWa‘ n“ s’ W J
NB6L11
http://onsemi.com
13
PACKAGE DIMENSIONS
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A2.90 3.10 0.114 0.122
B2.90 3.10 0.114 0.122
C0.80 1.10 0.031 0.043
D0.05 0.15 0.002 0.006
F0.40 0.70 0.016 0.028
G0.65 BSC 0.026 BSC
L4.90 BSC 0.193 BSC
M0 6 0 6
____
SEATING
PLANE
PIN 1
14
85
DETAIL E
B
C
D
A
G
DETAIL E
F
M
L
2X L/2
U
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V S
T
0.10 (0.004)
T
V
W
0.25 (0.010)
8x REFK
IDENT
K0.25 0.40 0.010 0.016
TSSOP8
DT SUFFIX
CASE 948R02
ISSUE A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages.Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
NB6L11/D
ECLinPS is a trademark of Semiconductor Components Industries, LLC.
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative