
Debounce Logic Circuit (with VHDL example)

Code Downloads
Features
Introduction
Theory of Operation
Configuration
Port Descriptions
Reset
Conclusion
Appendix: Additional Information on Version 1.0
Contact

Code Downloads
Version 2.0: debounce.vhd

Added asynchronous active-low reset

Made stable time higher resolution and simpler to specify

Version 1.0: debounce_v1.vhd

Initial Public Release

Features
VHDL source code to debounce mechanical switches and buttons
Configurable time the input is required to be stable
Configurable system clock frequency

Introduction
Using mechanical switches for a user interface is a ubiquitous practice. However, when these switches are actuated, the contacts often rebound, or
bounce, off one another before settling into a stable state. The debounce component presented here is a simple digital logic circuit that addresses this
temporary ambiguity (a common task when interfacing FPGAs or CPLDs with pushbuttons or other switches). Figure 1 illustrates a typical example of this
Debounce component integrated into a system. This component was designed using Quartus Prime 17.0.0 Lite Edition.

Figure 1. Example Implementation

Theory of Operation

https://www.digikey.com/eewiki/download/attachments/4980758/debounce.vhd?version=5&modificationDate=1561738268680&api=v2
https://www.digikey.com/eewiki/download/attachments/4980758/debounce_v1.vhd?version=2&modificationDate=1561739135365&api=v2

Figure 2 illustrates the debounce circuit. It continuously clocks the button’s logic level into FF1 and subsequently into FF2. So, FF1 and FF2 always store
the last two logic levels of the button. When these two values remain identical for a specified time, then FF3 is enabled, and the stable value is clocked
through to the result output.

The XOR gate and the counter accomplish the timing. If the button’s level changes, the values of FF1and FF2 differ for a clock cycle, clearing the counter
via the XOR gate. If the button’s level is unchanging (i.e. if FF1 and FF2 are the same logic level), then the XOR gate releases the counter’s synchronous
clear, and the counter begins to count. The counter continues to increment in this manner until it (1) reaches the specified time and enables the output
register or (2) is interrupted and cleared by the XOR gate because the button’s logic level is not yet stable.

Figure 2. Debounce Component Circuit

Configuration
The Debounce component is configured by setting the GENERIC parameters in the ENTITY. Table 1 describes the parameters. Most switches reach a
stable logic level within 10ms of the actuation, so the parameter’s default value reflects this. stable_time

Table 1. Generic Parameter Descriptions

Generic Data Type Default Description

clk_freq integer 50_000_000 Frequency of the system clock input (PORT clk) (Hertz)

stable_time integer 10 Time an input must remain stable to be considered valid and debounced (milliseconds)

Port Descriptions
Table 2 describes the Debounce component’s ports.

Table 2. Port Descriptions

Port Width Mode Data Type Interface Description

clk 1 in standard logic user logic System clock

reset_n 1 in standard logic user logic Asynchronous active low reset

button 1 in standard logic button or switch Input signal prior to debounce

result 1 out standard logic user logic Debounced signal

Reset
The input port must have a logic high for the Debounce component to operate. A low logic level on this port asynchronously resets the reset_n
component. During reset, the component clears the three flipflops, setting the output result to ‘0’. Once released from reset, the Debounce component
resumes operation.

Conclusion
This simple debounce logic circuit addresses mechanical switch debouncing for programmable logic.

Appendix: Additional Information on Version 1.0

Version 1.0 of this design used the N-bit Counter’s size to determine the time required to validate the button’s stability. Figure 3 depicts this circuit. When
the counter increments to the point that its carry out bit is asserted, it disables itself from incrementing further and enables the output register FF3. The
circuit remains in this state until a different button value is clocked into FF1, clearing the counter via the XOR gate.

Figure 3. Version 1.0 Debounce Circuit

For this approach, the size of the counter and the clock frequency together determine the time period that validates the button’s stability. Equation 1 P
describes this relationship.

In typical applications, the number of clock cycles is large, so the additional two clock cycles from loading FF2 and FF3 can safely be disregarded.

Most switches reach a stable logic level within 10ms of the actuation. Supposing we have a 50MHz clock, we need to count 0.01*50,000,000 = 500,000
clock cycles to reach 10ms. A 19-bit counter fulfills this requirement. Using the counter’s carry out pin, as shown in Figure 1, eliminates the requirement of
evaluating the entire output bus of the counter. With this method, the actual time implemented is 2 +2 / 50,000,000 = 10.49ms.19

Debouncing typically does not require a high level of resolution, so the relatively small error introduced by using the carry out pin to identify the validation
time is adequate for most applications. However, if greater time resolution is desired, Version 2.0 fulfills this requirement.

Contact
Comments, feedback, and questions can be sent to .eewiki@digikey.com

mailto:eewiki@digikey.com

	Debounce Logic Circuit (with VHDL example)

