Software FIFO Buffer for UART Communication

Background
Purpose
Prerequisites
Theory of Operation
Customization
Error Handling
® Receive Errors
® Transmit Errors
® C/C++ Code
® Contact the Author

Background

UART communication is a very simple and inexpensive means of serial communication in embedded designs. Typically, a microcontroller has
only a one or two-byte hardware buffer for each UART receiver and transmitter. If a multi-byte transmit is needed, the user needs to wait for the
UART transmitter to shift out all of its data byte by byte so that data is not overwritten or discarded. This byte-by-byte "wait time" is amplified
when a CPU is operating at higher speeds while using lower baud rates for UART communication. Software data buffers alleviate this problem by
providing a larger buffer to store data while waiting for the UART to shift data out-of the transmitter or into the receiver.

Purpose

The purpose of this library is to provide a generic software buffer for UART communication, written in easy-to-understand C/C++ programming
language. The buffer is interrupt driven which allows the microcontroller to execute functions in parallel with UART communication. Alternatively,
the microcontroller can be put in a lower power mode (if supported) while waiting for UART TX or RX.

Prerequisites

® To use this software buffer, the microcontroller must support "UART TX buffer empty" and "UART RX data received" interrupts.
® |t's assumed that the reader has some prior experience with C/C++ programming language.
® Having prior knowledge of FIFO buffers is beneficial, but not required. Here's some background info: link

Theory of Operation

The software buffer behaves like a circular First-In, First-Out (FIFO) buffer. Data is entered and removed from the buffer in chronological order.
The size of the buffer is defined by FIFO_BUFFER_SIZE in sw_fifo.h and is limited by the amount of RAM in the microcontroller. The user
should keep the size of the buffer as small as possible while still ensuring no overflow occurs.

The buffer uses external flags to indicate that data is present in the RX or TX software buffer. Any user-function can check the flags at any time to
see if data has exists in either buffer. The flags are declared as external variables in sw_fifo.h. Therefore, in order to use the flags, the user must
declare them in their own main file (or wherever the flag check is being made) as shown below:

volatile uint8 t vuart_rx fifo_not_enpty flag = 0; // this flag is
automatically set and cleared by the software buffer
volatile uint8 t uart _tx fifo _not _enpty flag = 0; // this flag is
automatically set and cleared by the software buffer

The software buffer contains two flags for monitoring software buffer overflow conditions. These flags are automatically set by the software buffer
when an overflow condition occurs. However, the user needs to manually clear the flags. If the buffer is made large enough, the user should be
able get by without ever checking these flags. However, it is good practice to check if an overflow condition has occurred. These flags are
declared as external variables in sw_fifo.h. Therefore, in order to use these flags, the user must declare the variables in their own main file (or
wherever the flag check is being made) as shown below:

http://en.wikipedia.org/wiki/FIFO

volatile uint8 t uart_rx fifo ovf flag = 0; // this flag is not
automatically cleared by the software buffer
volatile uint8 t vuart_tx fifo_ ovf _flag = 0; // this flag is not
automatically cleared by the software buffer

The software buffer also contains two flags for monitoring if each buffer is currently full. These flags are automatically handled by the software
buffer and never need to be cleared by the user. Again, if the buffer is made large enough, the user should be able to get by without ever
checking these flags. However, it is good practice to check if the buffer is full before writing to it to prevent overflow conditions. These flags are
declared as external variables in sw_fifo.h. Therefore, in order to use these flags, the user must declare the variables in their own main.c file (or
wherever the flag check is being made) as shown below:

volatile uint8 t uart_rx fifo full _flag
set and cleared by the software buffer
volatile uint8 t vart_tx fifo full _flag
set and cleared by the software buffer

0; // this flag is automatically

0; // this flag is automatically

To interact with this software buffer, the user's functions simply need to call the uart_send_byte() and uart_get_byte() functions. The user can
monitor the 6 available software buffer flags if desired. For proper functionality, the user must enable global interrupts. The user also must
enable the individual "TX hardware buffer empty" and "received valid data" interrupts specific to the microcontroller being used.

This software buffer works best on devices that have separate RX and TX hardware buffers. If the microcontroller uses the same hardware
buffer for RX and TX, the "received data" interrupt will need to be disabled while data exists in the TX software buffer.

Customization

This software buffer was written in generic fashion. However, some portions are platform-specific (they will change depending on which
microcontroller is being used). These areas are indicated by Double Comment Bars as shown below:

LELEEEEEEE bbbt rrrr
/* platformspecific code required */
LECTEEEEEE bbbt brrrr

Error Handling

Receive Errors

® RX hardware buffer underflow errors should not occur because data is only added to the RX software buffer when the receive data
interrupt executes.

® RX hardware buffer overflow is a possibility and should be handled by the user if desired.

® Frame and parity errors are possible and should be handled by the user if desired.

® RX software buffer overflow will never overwrite existing data. The "uart_rx_fifo_ovf_flag" is set when this event occurs and remains set
until manually cleared by the user.

® RX software buffer underflow is possible. The uart_get_byte() function will return O under this condition. However, this can be avoided
by checking the "uart_rx_fifo_not_empty_flag" before calling the vart_get_byte() function.

Transmit Errors

® TX hardware buffer overflow should not occur because the software buffer waits for the "TX buffer empty" interrupt to execute.

® TX hardware buffer underflow should not occur because the software buffer disables the "TX buffer empty" interrupt when the last
element has been removed from the software buffer.

® TX software buffer overflow will never overwrite existing data. The "uart_tx_fifo_ovf_flag" is set when this event occurs and remains set
until manually cleared by the user. A TX software buffer overflow condition can be avoided by checking the "uart_tx_fifo_full_flag" prior
to calling the uart_send_byte() function.

C/C++ Code

w sw_fifo.c

Download sw_fifo.c

FEEEEEEEr bbb bbb bbb rrrrrrrrrr
Lt

/* enter necessary header files for proper interrupt vector and UART
[USART visibility */

FEEEEEEEr bbb bbb rrrrrrrrrr
FEErrrrrrrrrrnt

#i ncl ude <sw_fifo.h>

typedef struct {
uint8 t data_buf[FI FO BUFFER SI ZE]; // FIFO buffer

uintl6_t i _first; /1 index of oldest data byte in
buf f er

uintlé t i _|ast; /1 index of newest data byte in
buf f er

uint16_t num bytes; /1 nunber of bytes currently in
buf f er

}sw fifo_typedef;

sw fifo_typedef rx _fifo ={ {0}, O, O, O}; // declare a receive
sof tware buffer
sw fifo_typedef tx fifo ={ {0}, 0, O, 01}; // declare a transnit
sof tware buffer

/***

**/

/1 UART receive interrupt sub-routine

/1 - interrupts when valid data exists in rx hardware buffer

/1l - checks if there's roomin the rx software buffer

[l - if there's room it transfers the received data into the sw
buf f er

/1 - automatically handles "uart_rx_buffer full _flag"

/1l - sets overflow flag upon software buffer overflow (doesn't

overwite existing data)

FEEETEEE bbb rrrn
/* enter name of UART RX | RQ Handl er here */ {
FEEETELE b rrrn

/* Explicitly clear the source of interrupt if necessary */

if(rx_fifo.numbytes == FI FO BUFFER SI ZE) { /1 if the sw buffer
is full

https://www.digikey.com/eewiki/download/attachments/32112652/sw_fifo.c?version=4&modificationDate=1398191122757&api=v2

uart _rx _fifo_ ovf flag = 1; /'l set the overflow
flag
telse if(rx_fifo.numbytes < FIFO BUFFER SIZE) { // if there's room
in the sw buffer

(EEEEEEErr bbb rrrrr
/* read error/status reg here if desired */
/* handl e any hardware RX errors here if desired */
(EEEEEEErrrr bbb bbb nrrrr

FHOLELEEr i ri bbb rrrrrirlr
FHOLEPEEr il
HHHErrrrrrrry

rx_fifo.data_buf[rx_fifo.i_last] = /* enter pointer to UART rx
hardware buffer here */ // store the received data as the newest data
elenent in the sw buffer

PHEEEEEEEE i rrrrrrri
PEEEEEEEEE i rrrrrrrrrr
HErrrrrrrrrnd

rx_fifo.i | ast++; /1 increnent the
i ndex of the nost recently added el enent
rx_fifo.num bytes++; /1l increment the
byt es counter
}
if(rx_fifo.numbytes == FI FO BUFFER SI ZE) { /1 if sw buffer just
filled up
vart_rx_fifo_full _flag = 1; /1 set the RX FIFO
full flag
}
if(rx_fifo.i_last == FI FO BUFFER _SI ZE) { /1 if the index has
reached the end of the buffer
rx_fifo.i_last = 0; /1 roll over the
i ndex counter
}
uart_rx_fifo_not_enpty flag = 1; /1 set received-data
flag

} // end UART RX | RQ handl er

/***

**/

/***

**/

/1 UART transmt interrupt sub-routine

[l - interrupts when the tx hardware buffer is enpty

[l - checks if data exists in the tx software buffer

/1 - if data exists, it places the ol dest el ement of the sw buffer
into the tx hardware buffer

/1 - if the swbuffer is enptied, it disables the "hw buffer enpty"

i nterrupt

/1 - automatically handles "uart_tx_buffer full _flag"
FELELEL bbb rrrr
/* enter name of UART TX | RQ Handl er here */ {
FELETEEE b rrrr

/* Explicitly clear the source of interrupt if necessary */

if(tx_fifo.numbytes == FIFO BUFFER SIZE) { // if the sw buffer is
f ul

uart _tx fifo full _flag = O; /1l clear the buffer ful
fl ag because we are about to make room
}
if(tx_fifo.numbytes > 0) { /1 if data exists in the
sw buf f er

(EEEEEEE bbb bbb rrrrrrrn

FEEEEEEE bbb bbb bbb rrrirr
/* enter pointer to UART tx hardware buffer here */ = tx _fifo.

data_buf[tx_fifo.i_first]; // place oldest data element in the TX

har dwar e buf fer

PECEEEEEEE i
THEEEEEEEE i rrrrrr

tx_fifo.i_first++ /1 increnent the index of
t he ol dest el enent
tx_fifo.numbytes--; /1 decrenent the bytes
count er
}
if(tx fifo.i _first == FI FO BUFFER SI ZE) { /1 if the index has
reached the end of the buffer
tx fifo.i _first = 0; /1 roll over the index
count er
}
if(tx_fifo.numbytes == 0) { /!l if no nore data exists
uart _tx_fifo_not_enpty flag = O; /1 clear flag

FEEEEEEEr bbb bbb bbb rrrrrrrrrr
/1

/* disable UART "TX hw buffer enpty" interrupt
here */

[* if using shared RX/ TX hardware buffer, enable RX data interrupt
here */

FEEEEEEEEE i rrrrrrrri
11

}
}// end UART TX I RQ handl er

/***

**/

/***

*************~k**************************/

/1 UART data transnit function

/1 - checks if there's roomin the transmt sw buffer

/1 - if there's room it transfers data byte to sw buffer

/1 - automatically handles "uart_tx _buffer full _flag"

/!l - sets the overflow flag upon software buffer overfl ow (doesn't
overwite existing data)

/1 - if this is the first data byte in the buffer, it enables the "hw

buf fer enpty" interrupt
void uart_send byte(uint8_ t byte) {

FEEEDEEE bbb rrrn
/* disable interrupts while manipulating buffer pointers */
FEEETELEP bbb rrrrn

if(tx_fifo.numbytes == FI FO BUFFER_SI ZE) { /1 no roomin the sw
buf f er
uart _tx fifo ovf flag = 1; /1l set the overflow
flag

telse if(tx_fifo.numbytes < FIFO BUFFER SIZE) { // if there's room
in the sw buffer

tx_fifo.data buf[tx_fifo.i_last] = byte; /1 transfer data
byte to sw buffer
tx fifo.i_|ast++; /1 increnent the
i ndex of the nobst recently added el enent
tx_fifo.num bytes++; /1 increnent the
byt es counter
}
if(tx_fifo.numbytes == FI FO BUFFER SI ZE) { /1 if swbuffer is
f ul
uart _tx fifo full _flag = 1; /1 set the TX FIFO
full flag
}
if(tx_fifo.i_last == FI FO BUFFER SI ZE) { /1 if the "new data"
i ndex has reached the end of the buffer,
tx_fifo.i_last = 0; /1 roll over the
i ndex counter
}

FEEETELErrrr i rrrrrn
/* enable interrupts */
FHEETELEETrrrrrrrrrn

if(tx_fifo.numbytes > 0) { /1 if there is data
in the buffer

uart _tx fifo not _enpty flag = 1; /'l set flag

FEEEEEEEE bbb bbb bbb
111

/[* if using shared RX/ TX hardware buffer, disable RX data interrupt
here */

/* enable UART "TX hw buffer enpty" interrupt
her e */

PHETEEEEE i rrrrrrrrrri
111

}
}

/***

**/

/***

**/

// UART data receive function

/1 - checks if data exists in the receive sw buffer

/1 - if data exists, it returns the ol dest elenment contained in the
buf f er

/1 - automatically handles "uart_rx_buffer full _flag"

/1 - if no data exists, it clears the uart_rx_flag

uint8 t uart_get _byte(void) {

FHEETELE bbb rrrn
/* disable interrupts while manipul ating buffer pointers */
LHEETEL T rrrrn

uint8 t byte = 0;
if(rx _fifo.numbytes == FIFO BUFFER SIZE) { // if the sw buffer is
ful

vart_rx_fifo_full _flag = O; /1l clear the buffer ful
fl ag because we are about to make room
}
if(rx_fifo.numbytes > 0) { /1 if data exists in the
sw buffer

byte = rx_fifo.data buf[rx fifo.i _first]; // grab the ol dest
element in the buffer

rx_fifo.i _first++; /1 increnent the index of
t he ol dest el enment
rx_fifo.numbytes--; /1 decrenent the bytes
count er
}el sef /1 RX sw buffer is enpty
uart _rx _fifo _not _enpty flag = O; /1 clear the rx flag

}
if(rx_fifo.i_first == FI FO BUFFER SI ZE) { /1 if the index has

reached the end of the buffer
rx_fifo.i _first = 0; /1 roll over the index
count er

}

(HEEEEEErrrrr i
/* enable interrupts */
FEEEEEEErrrrr g

return byte; /1 return the data byte
}

/***

**/

w sw_fifo.h

Download sw_fifo.h

#def i ne FI FO BUFFER SI ZE 128 // software buffer size (in bytes)

/1 UART data transnmt function

[l - checks if there's roomin the transnmt sw buffer

/1 - if there's room it transfers data byte to sw buffer

/1 - automatically handles "uart_tx _buffer full _flag"

/[l - sets the overflow flag upon software buffer overfl ow (doesn't
overwite existing data)

/1 - if this is the first data byte in the buffer, it enables the "hw

buf fer enpty" interrupt
void uart_send byte(uint8 t byte);

/1 UART data receive function

/!l - checks if data exists in the receive sw buffer

// - if data exists, it returns the oldest elenent contained in the
buf f er

/1 - automatically handles "uart_rx_buffer full _flag"

/1 - if no data exists, it clears the uart_rx flag

uint8 t uart_get byte(void);

volatile extern uint8 t uart_rx _fifo_not_enpty flag; // this flag is
automatically set and cleared by the software buffer

volatile extern uint8 t uart_rx fifo full _flag; /1l this flag is
automatically set and cleared by the software buffer

volatile extern uint8_t vuart_rx_fifo_ovf_fl ag; /1l this flag is
not automatically cleared by the software buffer

volatile extern uint8 t uart_tx fifo full _flag; /1l this flag is
automatically set and cleared by the software buffer

vol atile extern uint8_t vuart_tx_fifo_ovf_fl ag; /1l this flag is

not automatically cleared by the software buffer
volatile extern uint8 t uart_tx fifo _not _enpty flag; // this flag is
automatically set and cleared by the software buffer

https://www.digikey.com/eewiki/download/attachments/32112652/sw_fifo.h?version=3&modificationDate=1398191108833&api=v2

« Example Usage
The following code shows how the user could interact with the UART software buffer from the main function:

#include <sw_ fifo.h>// nake software buffer visible to this file

volatile uint8 t uart_rx fifo_not_enpty flag
volatile uint8 t uart_rx fifo_full _flag =
volatile uint8 t uart_rx fifo_ovf _flag
volatile uint8 t uart_tx fifo full _flag
volatile uint8 t uart_tx fifo ovf flag =
volatile uint8 t uart_tx fifo_not_enpty flag

el

int min (void) {
uint8 t i = 0;
uint8 t rx _data = 0;

/1 initialize clocks

/1 disable global interrupts
/1 initialize gpio

/1l initialize uart/usart

/1 enable "UART RX" interrupt and "TX hardware buffer enpty"
i nterrupt
/1 enable global interrupts

whil e(uart_tx_fifo_full _flag); // wait for roomto open up in the
sof tware buffer

uart_send_byte(' A); /1 transmit ASCI| character 'A

whil e(uart_tx_fifo_full_flag);

uart_send_byt e(0x41); [l transmit ASCI| character 'A

/!l transmt ASCI| characters 1-5

for(i=0; i<5; i++) {
while(uart _tx fifo_full _flag);
uart_send_byte(i +48);

}
while(1) {
/1 enter sleep node if supported (wake from UART Rx)
while(uart _rx _fifo_not _enmpty flag) { /1 if data exists in
sof tware buffer
rx_data = uart_get_byte(); /1 grab first data byte

fromsoftware buffer
/* handl e received byte as desired */

uart _send_byte(rx_data); /1 exanmple of how to
echo received ASCI| characters

}

/] check for rx overflow condition
if(uart_rx_fifo_ovf_flag) {

/* handl e rx overfl ow condition as desired */

uart _rx _fifo ovf flag = 0; [// clear the rx overflow flag

/] check for tx overflow condition
if(uart_tx_fifo_ovf_flag) {

/* handl e tx overflow condition as desired */

uart _tx _fifo_ovf flag = 0; // clear the tx overflow flag

/1 if you need to disable global interrupts, you should wait
until the tx fifo is enpty

whil e(uart _tx fifo_not_enpty flag);

/* Disable global interrupts */

/* Do sonething */

/* Re-enable global interrupts */
} // end while
} // end main

Contact the Author

The nice thing about software buffers is that you can tailor them to your application. You can make them as large or small as you want and by
using an interrupt driven software buffer, you can perform other functions in parallel with UART communication. If your microcontroller supports
it, you can enter a lower power mode while waiting for incoming characters over UART. | implemented this software buffer on a microcontroller
that supported "wake from UART RX interrupt" sleep mode and it worked like a champ! The goal of this page was to provide a generic C/C++
based software buffer that can be applied to any microcontroller. | hope you find it useful and easy to understand. | have successfully
implemented it on a few different microcontrollers. The code can be used freely, however it is a "use at your own risk" scenario. If you have
questions, feedback, or would like to see something added to the eewiki, let me know at eewiki@digikey.com. Happy coding!

- Scott

mailto:eewiki@digikey.com.

	Software FIFO Buffer for UART Communication

